(完整版)圆的标准方程练习题
高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。
圆的方程练习及答案

考点四十 圆的方程知识梳理1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 5. 解决与圆有关的最值问题的常用方法(1) 形如μ=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题;(2) 形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3) 形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.典例剖析题型一 求圆的方程例1 若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 . 答案 (x -2)2+(y ±3)2=4解析 因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(1-2)2+b 2=4,b 2=3,b =±3.变式训练 (1)圆心在y 轴上且经过点(3,1)的圆与x 轴相切,则该圆的方程是 .(2) 已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________. 答案 (1) x 2+y 2-10y =0 (2) (x -2)2+y 2=10解析 (1)设圆心为(0,b ),半径为r ,则r =|b |,∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得:b =5. ∴圆的方程为x 2+y 2-10y =0.(2) 设圆心坐标为(a,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2, 解得a =2,∴圆心为(2,0),半径为10, ∴圆C 的方程为(x -2)2+y 2=10.解题要点 求圆的方程一般用待定系数法,根据题意,可以选择标准方程或一般方程求解. 题型二 点与圆的位置关系例2 已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 . 答案 在圆内解析 因为(3-2)2+(2-3)2=2<4,故点P (3,2)在圆内.变式训练 点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是________. 答案 在圆C 外部解析 将点P (1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0, ∴点P 在圆C 外部.题型三 二次方程表示圆的条件例3 方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件的是 . 答案 m <14或m >1解析 由(4m )2+4-4×5m >0,得m <14或m >1.变式训练 方程2x 2+2y 2-4x +8y +10=0表示的图形是 . 答案 一个点解析 方程2x 2+2y 2-4x +8y +10=0,可化为x 2+y 2-2x +4y +5=0, 即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0表示点(1,-2).解题要点 1.方程x 2+y 2+Dx +Ey +F =0表示圆的条件是D 2+E 2-4F >0. 2.二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件:⎩⎪⎨⎪⎧B =0,A =C ≠0,D 2+E 2-4AF >0.,即方程中不含xy 项, x 2,y 2前系数相同,且D 2+E 2-4AF >0. 题型四 与圆有关的最值问题例4 已知实数x 、y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解析 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx=k ,即y =kx , 则圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|k 2+1=3,解得k 2=3,∴k max =3,k min =- 3.(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)(2)设y -x =b ,则y =x +b ,仅当直线y =x +b 与圆切于第四象限时,截距b 取最小值,由点到直线的距离公式,得|2-0+b |2=3,即b =-2±6,故(y -x )min =-2- 6.(3)x 2+y 2是圆上点与原点的距离的平方,故连接OC ,与圆交于B 点,并延长交圆于C ′,则 (x 2+y 2)max =|OC ′|2=(2+3)2=7+43, (x 2+y 2)min =|OB |2=(2-3)2=7-4 3.解题要点 (1)与圆相关的最值,若几何意义明显时,可充分利用几何性质,借助几何直观求解.否则可转化为函数求最值.(2)①形如u =y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 形式的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.当堂练习1.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为.答案(x-2)2+(y-1)2=2解析所求圆与x轴交于A(1,0),B(3,0)两点,故线段AB的垂直平分线x=2过所求圆的圆心,又所求圆的圆心在直线2x-3y-1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为,所以圆的标准方程为(x-2)2+(y -1)2=2.2.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为.答案(x-2)2+(y+2)2=1解析圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1.3. 圆的圆心和半径分别.答案解析将圆配方得:,故知圆心为(2,-1),半径为.4.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围是.答案-解析∵原点O在圆(x-m)2+(y+m)2=4的内部,∴(0-m)2+(0+m)2<4,得2m2<4,解得-<m<,即实数m的取值范围为:-<m<.5.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是.答案m<解析∵方程x2+y2-x+y+m=0即表示一个圆,∴-m>0,解得m<.课后作业一、填空题1.以点A(-5,4)为圆心且与x轴相切的圆的标准方程是.答案(x+5)2+(y-4)2=16解析∵所求的圆以点A(-5,4)为圆心,且与x轴相切,∴所求圆的半径R=4,∴圆的标准方程为(x+5)2+(y-4)2=16.2.若一圆的标准方程为,则此圆的的圆心和半径分别为.答案解析圆的标准方程为,表示圆心为,半径为的圆.3.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是.答案(x-2)2+(y-1)2=1解析设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.4.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是.答案-<a<1解析由题意,4a2+(a-1)2-2(a-1)-4<0,即5a2-4a-1<0,解之得:-<a<1.5.圆的圆心坐标是.答案(2,-3)解析将方程化为圆的标准方程得,所以圆心是(2,-3).6.圆x2+y2=16上的点到直线x-y=3的距离的最大值为.答案4+解析圆心即原点到直线的距离,所以直线与圆相交,则圆上的点到直线的最大距离为.7.若方程x2+y2-x-2y+c=0(c∈R)是一个圆的一般方程,则c的范围是.答案c<解析化为标准方程为:,由题意得,,∴.8.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是.答案(x-2)2+(y-1)2=1解析由已知设所求圆的圆心坐标为:C(a,b)(a>0且b>0),由已知有:,所以所求圆的方程为:(x-2)2+(y-1)2=1.9.圆的方程过点和原点,则圆的方程为.答案解析设圆的一般方程为,将三点代入得:,解得,所以圆的方程为.10.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.答案(3,0),3解析(x-3)2+y2=9,圆心坐标为(3,0),半径为3.11.从直线x-y+3=0上的点向圆x2+y2-4x-4y+7=0引切线,则切线长的最小值为答案解析把圆的方程化为标准式后,找出圆心坐标和圆的半径,利用图形可知,当圆心A与直线x-y+3=0垂直时,过垂足作圆的切线,切线长最短,连接AB,根据圆的切线垂直于过切点的直径可得三角形ABC为直角三角形,利用点到直线的距离公式求出圆心到直线x -y+3=0的距离即为|AC|的长,然后根据半径和|AC|的长,利用勾股定理即可求出此时的切线长.由于圆心(2,2),半径为1,那么可知圆心到直线的距离为,那么利用勾股定理可知切线长的最小值为二、解答题12.求下列各圆的标准方程:(1)圆心在y=-x上且过两点(2,0),(0,-4)(2)圆心在直线2x+y=0上,且与直线x+y-1=0切于点(2,-1)解析(1)设圆心坐标为(),则所求圆的方程为,∵圆心在上,∴,①又∵圆过(2,0),(0,-4)∴,②,③由①②③联立方程组,可得.∴所求圆的方程为.(2)∵圆与直线相切,并切于点M(2,-1),则圆心必在过点M(2,-1)且垂直于的直线:上,,即圆心为C(1,-2),r=,∴所求圆的方程为:13.求经过三点A(-1,-1),B(-8,0),C(0,6)的圆的方程,并指出这个圆的半径和圆心坐标.解析设所求圆的方程为点A(-1,-1),B(-8,0),C(0,6)的坐标满足上述方程,分别代入方程,可得解得:D=8,E=-6,F=0 .于是得所求圆的方程为:,圆的半径r=,圆心坐标是.。
圆的标准方程练习

D.(1,-2),4
2.已知一圆的圆心为点 A(2,-3),一条直径的端点分别在 x 轴和 y 轴上,则圆的标准方程为( )
A.(x+2)2+(y-3)2=13
B.(x-2)2+(y+3)2=13
C.(x-2)2+(y+3)2=52
D.(x+2)2+(y-3)2=52
3.若点(5a+1,12a)在圆(x-1)2+y2=1 的内部,则实数 a 的取值范围是( )
A.|a\<1
B.a<1
3
C.|a\<1
5
D.|a\< 1
13
4.已知直线 l 过圆 x2+(y-3)2=4 的圆心,且与直线 x+y+1=0 垂直,则 l 的方程为( )
A.x+y-2=0
B.x-y+2=0
C.x+y-3=0
D.x-y+3=0
5.已知 A(3,-2),B(-5,4),则以 AB 为直径的圆的方程是( )
A.(-1,1)
B.(0,1)
C.(-∞,-1)∪(1,+∞)
D.a=±1
二、填空题
9.已知圆 C:x2+y2=1,则圆上的点到点(3,4)距离的最大值为
.
10.圆(x+2)2+y2=5 关于原点(0,0)对称的圆的方程为________.
11. 点 P(8,m)与圆 x2+y2=24 的位置关系是
A.(x-1)2+(y+1)2=25
B.(x+1)2+(y-1)2=25
C.(x-1)2+(y+1)2=100
圆与方程试题及答案

圆与方程试题及答案一、选择题1. 若圆心在原点,半径为5的圆的标准方程是()。
A. x^2 + y^2 = 25B. (x-5)^2 + y^2 = 25C. (x+5)^2 + y^2 = 25D. x^2 + y^2 - 10x - 10y = 0答案:A2. 已知圆的方程为(x-3)^2 + (y-4)^2 = 25,圆心坐标为()。
A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)答案:A3. 圆x^2 + y^2 = 9与直线x + y = 0相交于两点,这两点之间的距离是()。
A. 2√2B. 3√2C. √2D. √3答案:A二、填空题4. 圆心在(2, -3),半径为4的圆的方程是______。
答案:(x-2)^2 + (y+3)^2 = 165. 若圆(x-1)^2 + (y+2)^2 = 9与直线y = 2x + 3相切,则圆心到直线的距离为______。
答案:√5三、解答题6. 已知圆C的方程为x^2 + y^2 - 6x - 8y + 24 = 0,求圆C的圆心坐标和半径。
答案:圆C的方程可以写成标准形式:(x-3)^2 + (y-4)^2 = 1。
所以圆心坐标为(3, 4),半径为1。
7. 求圆x^2 + y^2 - 4x + 6y + 9 = 0与圆x^2 + y^2 + 2x - 6y +8 = 0的公共弦所在直线的方程。
答案:将两个圆的方程相减得公共弦所在直线的方程为:-6x + 12y - 1 = 0,即3x - 6y + 1/2 = 0。
8. 已知圆x^2 + y^2 - 2x - 4y + 4 = 0,求过点(1, 2)的圆的切线方程。
答案:圆心坐标为(1, 2),半径为1。
过点(1, 2)的切线方程为x = 1或y - 2 = -(x - 1),即x = 1或x + y - 3 = 0。
圆的标准方程 练习

一、单选题2.圆心是()3,4C -,半径是5的圆的方程为( )A .()223(4)5x y -++=B .()223(4)25x y -++=C .()223(4)5x y ++-=D .()223(4)25x y ++-= 3.圆心为()1,2-,半径为3的圆的方程是( )A .()()22129x y ++-=B .()()22123x y -++=C .()()22123x y ++-=D .()()22129x y -++= 6.已知圆的一条直径的端点分别是()0,0A ,()2,4B ,则此圆的方程是( )A .()()22125x y -+-=B .()()221225x y -+-=C .()2255x y -+=D .()22525x y -+= 7.圆2221x y y ++=的半径为( )A .1B C .2 D .4 8.已知圆()()22:684,C x y -+-=O 为坐标原点,则以OC 为直径的圆的方程( )A .()()2234100x y -++=B .()()2234100x y ++-=C .()()223425x y -+-=D .()()22+3425x y +-= 4.圆心为(0,1)且与直线2y =相切的圆的方程为( )A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1y x +-=D .22(1)1x y ++=1.若圆C 与圆22(2)(1)1x y ++-=关于原点对称,则圆C 的标准方程为( )A .22(2)(1)1x y -++=B .22(2)(1)1x y -+-=C .22(2)(2)1x y -++=D .22(1)(2)1x y ++-= 5.圆()()22141x y +--=关于直线y x =称的圆是( )A .()()22141x y --+=B .()()22411x y --+=C .()()22411x y +--=D .()()22141x y ---= 9.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .22(2)(1)1x y -+-=B .227(3)13x y ⎛⎫-+-= ⎪⎝⎭ C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭ 10.已知圆C 与圆()2211x y -+=关于直线y x =-对称,则圆C 的方程为( )A .()2212x y ++=B .222x y +=C .()2211x y ++=D .()2211x y +-= 11.圆心为()1,2-,且与x 轴相切的圆的标准方程为( ) A .()()22122x y -+=+ B .()()22124x y -++= C .()()22122x y ++-= D .()()22124x y ++-= 12.圆心在y 轴上,半径为1,且过点()12,的圆的方程是( ) A .()2221x y +-= B .()2221x y ++= C .()()22131x y -+-= D .()2231x y +-= 13.在平面直角坐标系xOy 中,矩形OABC 的顶点坐标分别为()()0,0,4,0,4,(2)(),0,2O A B C ﹣﹣,则矩形OABC 的外接圆方程是( )A .22420x y x y +-+=B .22420x y x y ++-=C .22840x y x y +-+=D .22840x y x y ++-= 14.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是( )A .22210x y x y +-++=B .222210x y x y ++-+=C .22210x y x y +-+-=D .222210x y x y +-+-=15.以点()3,2-为圆心,且与x 轴相切的圆的标准方程是( )A .()()22329x y ++-=B .()()22324x y +++=C .()()22324x y ++-=D .()()22329x y -++= 16.以点()1,1A -为圆心且与直线20x y +-=相切的圆的方程为( )A .22(1)(1)1x y -++=B .22(1)(1)1x y ++-=C .22(1)(1)2x y -++=D .22(1)(1)2x y ++-=18.半径为1的圆C 的圆心在第四象限,且与直线y =060y --=均相切,则该圆的标准方程为( )A .22(1)(1x y -+-=B .22((1)1x y -+-=C .22(1)(1x y -+=D .22((1)1x y ++= 17.已知{1,2,3},{4,5,6,7}a b ∈∈,则方程22()()4x a y b -+-=可表示不同的圆的个数为( ) A .7B .9C .12D .16第II 卷(非选择题)二、解答题19.已知圆C 过点()()3153A B ,,,,圆心在直线y x =上,求圆C 的方程.20.求圆心在直线30x y -=上,与x 轴相切,被直线0x y -=截得的弦长的圆的方程21.已知圆过两点()1,4A 、()3,2B,且圆心在直线0y =上.(1)求圆的标准方程;(2)判断点()2,4P 与圆的关系.22.直线l 过点(1,0)-,圆C 的圆心为()2,0C .(1)若圆C 的半径为2,直线l 截圆C 所得的弦长也为2,求直线l 的方程;(2)若直线l 的斜率为1,且直线l 与圆C 相切,求圆C 的方程.三、填空题23.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是________24.已知圆的内接正方形相对的两个顶点的坐标分别是()5,6,()3,4-,则这个圆的方程是____________. 25.以点P (1,1)为圆心,且经过原点的圆的标准方程为____________.26.圆22(2)(1)1x y -+-=关于(1,2)A 对称的圆的方程为________.27.以点()5,4A -为圆心且与y 轴相切的圆的标准方程为______________________;28.已知方程x 2+y 2-2x +2y +F =0表示半径为2的圆,则实数F =________.四、双空题29.直线142x y +=与x 轴、y 轴分别交于点A ,B ,则AB =______;以线段AB 为直径的圆的方程为_________. 30.已知圆C 的圆心在直线230x y -+=,半径为r ,且与直线:40l x y -+=切于点()2,2P -,则圆C 的圆心坐标为______;半径r =______.31.圆C :x 2+y 2-8x -2y =0的圆心坐标是____;关于直线l :y =x -1对称的圆C '的方程为_.10参考答案1.A【详解】圆22(2)(1)1x y ++-=的圆心为()21-,,半径为1. 点()21-,关于原点的对称点为()21C -,, 所以圆C 的方程为22(2)(1)1x y -++=.故选:A2.D【详解】圆心是()3,4C -,半径是5的圆的方程为: ()223(4)25x y ++-=,故选:D3.D因为圆心为()1,2-,半径为3,故圆的方程为:()()22129x y -++=. 故选:D.4.C【解析】设圆方程()2221x y r +-=,直线2y =与圆相切,∴圆心到直线的距离等于半径r ,211r ∴=-=,故圆的方程为()2211x y +-=,故选C.5.B圆心()1,4-关于直线y x =的对称点为()41-,,半径不变,∴所求圆的方程为()()22411x y -+-=.故选:B6.A【详解】直径两端点为()()0,0,2,4 ∴圆心坐标为()1,2圆的半径r ==,∴圆的方程为:()()22125x y -+-=.故选:A.7.B试题分析:由题意得,圆2221x y y ++=,可化为22(1)2x y ++=,所以R =B . 8.C由题得OC 中点坐标为(3,4),,所以圆的方程为()()223425x y -+-=.故选C9.A【解析】试题分析:设圆心坐标为(a ,b )(a >0,b >0),由圆与直线4x-3y=0相切,可得圆心到直线的距离d=4315a br -==,化简得:|4a-3b|=5①,又圆与x 轴相切,可得|b|=r=1,解得b=1或b=-1(舍去),把b=1代入①得:4a-3=5或4a-3=-5,解得a=2或a=-12(舍去),∴圆心坐标为(2,1),则圆的标准方程为:(x-2)2+(y-1)2=1.故选A10.C由题意,圆心为()0,1-,半径1r =,则圆的方程为()2211x y ++=, 故选:C .11.B解:因为圆心为()1,2-,圆与x 轴相切,所以圆的半径为2,所以圆的标准方程为()()22124x y -++=,故选:B12.A 因为圆心在y 轴上,所以可设所求圆的圆心坐标为()0,b ,则圆的方程为22()1x y b +-=,又点()12,在圆上,所以()2121b +-=,解得2b =.故选:A13.B矩形OABC 的中心为(2,1)-=所以矩形OABC 的外接圆的圆心为(2,1)-所以矩形OABC 的外接圆方程是22(2)(1)5++-=x y ,即22420x y x y ++-=. 故选:B14.B由题可知小正方形边长为2,则内切圆半径为1,可得第一象限的的圆心为()1,1,方程为()()22111x y -+-=,即222210x y x y +--+=; 第二象限的的圆心为()1,1-,方程为()()22111x y ++-=,即222210x y x y ++-+=; 第三象限的的圆心为()1,1--,方程为()()22111x y +++=,即222210x y x y ++++=; 第四象限的的圆心为()1,1-,方程为()()22111x y -++=,即222210x y x y +-++=; 故选:B.15.C 由题可以构建图像,观察可知该圆半径为2则以点()3,2-为圆心,2为半径为的圆的标准方程为()()22324x y ++-=. 故选:C16.D【详解】由题意r ==, ∴圆方程为22(1)(1)2x y ++-=.故选:D.17.C【详解】得到圆的方程分两步:第一步:确定a 有3种选法;第二步:确定b 有4种选法,由分步乘法计数原理知,共有3×4=12(个).故选:C.18.D如图,由题意可设圆心坐标为(a ,﹣1),r =1.则1d ==52-=,解得a =3.结合选项可得,所求圆的方程为22((1)1x y ++=.故选:D19.()()22334x y -+-=.解:由题意设圆心为(),C a a ,半径为r ,则圆的标准方程为()222()x a y a r -+-=.由题意得()()222222(3)1(5)3a a r a a r ⎧-+-=⎪⎨-+-=⎪⎩,解得32a r =⎧⎨=⎩, 所以圆C 的标准方程为()()22334x y -+-=.20.22(1)(3)9x y +++=或22(1)(3)9x y -+-=由已知设圆心为(,3)a a ,与x 轴相切则3r a =圆心到直线的距离d =,弦长为:224792a a += 解得1a =±圆心为()1,3或()1,3--,3r =圆的方程为22(1)(3)9x y -+-=或22(1)(3)9x y +++=.21.(1)()22120x y ++=;(2)点P 在圆外.(1)圆心在直线0y =上, ∴设圆心坐标为(),0C a , 则AC BC =,= 即()()2211634a a -+=-+,解得1a =-,即圆心为()1,0-,半径r AC ====则圆的标准方程为()22120x y ++=(2)PC ===5=r > ∴点()2,4P 在圆的外面.22.(1)1)2y x =±+;(2)229(2)2x y -+=. 【分析】(1)根据圆心和半径,可得圆的方程,根据弦长公式,计算圆心到直线的距离,然后通过讨论直线斜率存在与否,可得结果.(2)根据直线与圆的位置关系,可得r d =,计算可得结果.(1)若直线l 斜率不存在,即直线l 方程为1x =-,显然不合题意.若直线l 斜率存在,设斜率为k ,则直线l 的方程为(1)y k x =+,即0kx y k -+=由直线l 截圆C 所得的弦长也为2,可知圆心(2,0)C 到直线l ==∴2k =±故所求直线的方程是(1)2y x =±+ (2)依题意得:直线l 的方程为1y x =+∵直线l 与圆C 相切∴r d ===故所求圆的方程是229(2)2x y -+=23.()()22211x y -++= 已知圆圆心为(2,1)-,∴(2,1)C -,∴圆C 方程为22(2)(1)1x y -++=.24.()()224126x y -+-=; 由题得圆心的坐标为5364(,)22+-,即(4,1).=所以圆的方程为()()224126x y -+-=.故答案为:()()224126x y -+-=25.()()22112x y -+-=∵P (1,1)为圆心,且经过原点,∴半径r=,∴圆的标准方程为()()22112x y -+-=. 故答案为()()22112x y -+-=.26.22(3)1x y +-=圆22(2)(1)1x y -+-=的圆心为(2,1),半径为1r =, 又圆心(2,1)关于(1,2)A 对称的点为(,)x y ,则212122x y +⎧=⎪⎪⎨+⎪=⎪⎩,得0,3x y ==, 故所求圆的方程为22(3)1x y +-=.故答案为:22(3)1x y +-=27.22(5)+(4)25x y +-=∵以点()5,4A -为圆心的圆,且与y 轴相切,∴所求圆的半径为5,∴圆的标准方程为22(5)+(4)25x y +-=,故答案为:22(5)+(4)25x y +-=.圆的标准方程答案第11页,总11页 28.-2方程x 2+y 2-2x +2y +F =0可化为(x -1)2+(y +1)2=2-F , 因为方程x 2+y 2-2x +2y +F =0表示半径为2的圆,所以222F -=,所以F =-2.故答案为:-229. 22420x y x y +--=令0x =得2y =,令0y =得4x =,所以(4,0),(0,2)A B , 所以AB==所以AB 中点坐标为()2,1所以圆的方程:()222(1)5x y -+-=.故答案为:22420x y x y +--= 30.()1,1-由题联立方程230y x x y =-⎧⎨-+=⎩,解得圆心为()1,1-,所以r ==所求圆的方程为()()22112x y ++-=,它是以()1,1-为半径的圆.故答案为:()1,1-.31.(4,1) (x -2)2+(y -3)2=17由圆的一般式方程可得圆心坐标(4,1),半径r ==设(4,1)关于直线l 的对称点为(,)x y ,则11414122y x y x -⎧=-⎪⎪-⎨++⎪=-⎪⎩,解得23x y =⎧⎨=⎩, 所以圆C 关于直线l 对称的圆C '的方程为22(2)(3)17x y -+-=. 故答案为:(4,1);22(2)(3)17x y -+-=.。
圆的标准方程题

圆的标准方程题一、已知圆的标准方程为 (x - 2)2 + (y - 3)2 = 16,则该圆的圆心坐标为A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)(答案:C)二、圆的标准方程 (x + 1)2 + (y - 2)2 = 9 的半径是A. 1B. 2C. 3D. 9(答案:C)三、若圆的标准方程为 x2 + y2 + 4x - 6y - 12 = 0,将其化为标准形式后,圆心坐标为A. (-2, 3)B. (2, -3)C. (3, -2)D. (-3, 2)(答案:A)四、圆的标准方程 (x - a)2 + (y - b)2 = r2 中,若 a = 0, b = -1, r = 2,则圆的方程为A. x2 + (y + 1)2 = 2B. x2 + (y - 1)2 = 4C. x2 + (y + 1)2 = 4D. (x + 1)2 + y2 = 4(答案:C)五、已知圆的标准方程为 (x - 1)2 + (y + 2)2 = 5,则该圆与 x 轴的交点坐标为A. (1, 0) 和 (-1, 0)B. (2, 0) 和 (0, 0)C. (1, 2) 和 (1, -2)D. (-1, 2) 和 (-1, -2)(答案:A)六、圆的标准方程为 (x + 3)2 + (y - 4)2 = 25,则该圆与 y 轴的交点坐标为A. (0, 4) 和 (0, -4)B. (3, 0) 和 (-3, 0)C. (0, 9) 和 (0, -1)D. (-3, 4) 和 (3, 4)(答案:C)七、若圆的标准方程为 (x - h)2 + (y - k)2 = r2,且该圆经过点 (1, 1),(2, 2) 和 (3,3),则 r 的可能值为A. 1B. √2C. 2D. 3(答案:B,假设三点不共线且满足题意,则通过距离公式可求得半径为点与圆心之间的距离,这里简化为选项中的√2作为可能答案)八、已知圆的标准方程 (x - 2)2 + (y + 3)2 = 10,则圆心到直线 x - y + 1 = 0 的距离为A. √2B. 2√2C. 3√2D. 4√2(答案:C,利用点到直线距离公式求得)。
2.4.1 圆的标准方程(原卷版) 附答案.pdf

.
故选 A
9.已知直线 l 过圆 (x 1)2 ( y 2)2 1 的圆心,当原点到直线 l 距离最大时,直线 l 的方程为( )
A. y 2
B. x 2 y 5 0
C. x 2 y 3 0
D. x 2 y 5 0
【参考答案】D
【解析】由题意,圆 (x 1)2 ( y 2)2 1 的圆心为 A(1, 2) ,设原点为 O ,
| PA | 1 之为“阿波罗尼斯圆”.若 A(1, 0) , B(1,0) ,动点 P 满足 | PB | 2 ,则该圆的圆心坐标为_______.
3
三、解答题
19.已知圆过两点 A1, 4 、 B 3, 2 ,且圆心在直线 y 0 上.
(1)求圆的标准方程;
P 2, 4
(2)判断点
与圆的关系.
12.瑞士数学家欧拉(LeonhardEuler)1765 年在其所著的《三角形的几何学》一书中提出:任意三角形的
外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知 ABC 的顶点 A4, 0 , B 0, 4 ,其
欧拉线方程为 x y 2 0 ,则顶点 C 的坐标可以是( )
1, 3
A.第一象限
B.第二象限
C.第三象限
【参考答案】D
【解析】由题,因为直线 y ax b 经过第一、二、四象限,
D.第四象限
所以 a 0 , b 0 ,
因为圆的方程为 (x a)2 ( y b)2 1 ,
所以圆心为 a, b ,则 a 0 , b 0 ,
所以圆心位于第四象限, 故选 D
16.若
P 2, 2
在圆 x
12
y2
25
的直径
AB
圆的标准方程-练习题

一、选择题1. 圆心是(4, -1),且过点(5.2)的圆的标准方程是( )Λ. α-4)2+(y+l)2=10 B. (A ^+4)2+(y-l)2=10 C. (χ-4)2+(y÷l)2=100D. (%-4)2÷ (y+1)2=√W2. 已知圆的方程是(χ-2)2+(y-3)2=4,则点P(3,2)满足() A.是圆心B.在圆上C.在圆内3. 圆(A -+1)2+(7-2)2=4的圆心坐标和半径分别为() Λ. (-1,2), 2B. (1, -2), 2C. (-1,2), 44. (2016 •锦州高一检测)若圆C 与圆(x+2)2÷(y-l)2= 1关于原点对称,则圆C 的方程是()Λ. α-2)2+(y+l)2=l B. (χ-2)2+(y-l)2=l C. U-l)2+(y+2)2=lD. (A ÷1)2÷(7+2)2=15. (2016 •全国卷II)圆√+∕-2χ-8y+13=0的圆心到直线ax+y-1 =0的距离为1,则日=()6. 若Pa 一1)为圆(χ-l)2+y=25的弦/矽的中点,则直线/矽的方程是(Λ )二、 填空题7. 以点(2, — 1)为圆心且与直线x+y=6相切的圆的方程是8. 圆心既在直线x —y=0上,又在直线x+y —4=0上,且经过原点的圆的方程是三、 解答题9. 圆过点 Atl 9 一2)、B(-l,4).求 (1) 周长最小的圆的方程;⑵圆心在直线2x —y —4 = 0上的圆的方程.10. 已知圆川的标准方程为(%-5)2+(y-6)2=a 2(a>0).Λ.B.C. √3D. 2 D.在圆外D. (h -2), 4A. X —y —3=0B ・ 2x+ y — 3 = 0C ・ x+ y — 1 =0D. 2%—y —5=0(1)若点M6.9)在圆上,求。
的值;(2)已知点A3,3)和点0(5.3),线段図(不含端点)与圆再有且只有一个公共点,求臼的取值范围.B级素养提升一、选择题1. (2016〜2017-宁波高一检测)点与圆√+∕=j的位置关系是Λ.在圆上 B.在圆内 C.在圆外 D.不能确定2.若点(2o, a-l)在圆√÷(y+l)2=5的内部,则&的取值范围是( )Λ. (一8, 1] B. (一1・1) C. (2.5) D・(1, +∞)3.若点P(l, 1)为圆α-3)2+72=9的弦的中点,则弦聽V所在直线方程为( )Λ. 2x+y—3=0 B・X—2y+l=0 C. x+2y—3=0 D・(IX—y—1=04.点"在圆(Λ--5)2+(7-3)2=9上,则点J/到直线3x+4y-2=0的最短距离为( )Λ. 9B・8 C・5 D・2二、填空题5.已知圆C经过力(5∙1). 0(1∙3)两点,圆心在才轴上,则C的方程为6.以玄线2x+y-4 = 0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为C级能力拔高1・如图,矩形力仇0的两条对角线相交于点M2,0), /矽边所在直线的方程为χ-3y-6=0, 边所在的直线上•求力〃边所在直线的方程・2.求圆心在直线4x+y=0上,且与直线才+y—l =0切于点Λ3, 一2)的圆的方程,并找出圆的圆心及半径.一、选择题1・圆z÷√-4x+6y= O的圆心坐标是( )Λ. (2.3) B. (-2,3) C. (一2, -3) D. (2, -3)2・(2016〜2017 •曲靖高一检测)方程√+∕÷2^r-Λy÷c= 0表示圆心为67(2,2),半径为2的圆,则血b、C 的值依次为( )Λ. —2,4.4 B. —2, —4,4 C. 2, —4,4 D. 2, —4, —43.(2016〜2017 •长沙高一检测)已知圆C过点J∕(l,l), A r(5,1),且圆心在直线y=x~2上,则圆C的方程为 ( )A・ X ÷y-6A r-2y÷6 = 0 B. x ÷y÷6%-2y÷6=0[C・ x'÷y ÷6x÷2y÷6=0 D・ A r÷y —2χ-6y÷6=04.设圆的方程是Y÷y2+2ax÷2y+(a-l)2=0,若O<X1,则原点与圆的位置关系是( )Λ.在圆上 B.在圆外 C.在圆内 D.不确定5・若圆√+∕-2χ-4y= 0的圆心到直线AT-y÷5= 0的距离为专,则日的值为( )1 3A. —2 或2B. §或O C・ 2 或0 D. —2 或06.圆Z÷∕-2y-l =O关于直线y=x对称的圆的方程是( )Λ. (X—1)^+y =2 B. (x+l)'+y i=2C. (A-I)2+y =4D. (^+l)2+y=4二、填空题7.圆心是(-3,4),经过点.f∕(5,l)的圆的一般方程为______________________ .8.设圆√+y-4,r+2y-ll= 0的圆心为儿点P在圆上,则刊的中点〃的轨迹方程是一三、解答题9.判断方程X + y -4^+ 2my+ 20/»-20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点J(-l,0). g(3∙0)和C(0.1)的圆的方程.B级素养提升一、选择题1.若圆x2+y2-2ax÷36y= 0的圆心位于第三象限,那么直线x+ay+b =0—定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2•在圆√+y2-2-γ-6y =0内,过点F(OJ)的最长弦和最短弦分别为和加,则四边形/处9的面只为( )Λ. 5√2 B. 10√5 C. 15√2D・20√23.若点(2o, a— 1)在圆x2÷y2—(Iy-5a'=0的内部,则日的取值范围是( )4 4 4 Q QΛ. ( — 8, -] B. (―-, ξ) C. (―[, +∞) D. (丁,+∞)4.若直线7:乩γ+by+l=O始终平分圆J/: z+y+4x÷2y÷l=0的周长,则(a-2)2+(Z,-2)2的最小值为)二、填空题5.已知圆C: √+∕+2,γ+ay-3 = 0U为实数)上任意一点关于直线/:χ-y+2=0的对称点都在圆C上,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 4.1 4.1.1A 级 基础巩固一、选择题1.圆心是(4,-1),且过点(5,2)的圆的标准方程是 ( ) A .(x -4)2+(y +1)2=10 B .(x +4)2+(y -1)2=10 C .(x -4)2+(y +1)2=100 D .(x -4)2+(y +1)2=10 2.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 ( ) A .是圆心B .在圆上C .在圆内D .在圆外3.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为 ( ) A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),44.(2016·锦州高一检测)若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是 ( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1D .(x +1)2+(y +2)2=15.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a = ( ) A .-43B .-34C .3D .26.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是 ( A ) A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=0二、填空题7.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是 .8.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是 三、解答题9.圆过点A (1,-2)、B (-1,4),求 (1)周长最小的圆的方程;(2)圆心在直线2x -y -4=0上的圆的方程.10.已知圆N 的标准方程为(x -5)2+(y -6)2=a 2(a >0). (1)若点M (6,9)在圆上,求a 的值;(2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.B 级 素养提升一、选择题1.(2016~2017·宁波高一检测)点⎝⎛⎭⎫12,32与圆x 2+y 2=12的位置关系是 ( )A .在圆上B .在圆内C .在圆外D .不能确定2.若点(2a ,a -1)在圆x 2+(y +1)2=5的内部,则a 的取值范围是 ( ) A .(-∞,1]B .(-1,1)C .(2,5)D .(1,+∞)3.若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 ( ) A .2x +y -3=0 B .x -2y +1=0C .x +2y -3=0D .2x -y -1=04.点M 在圆(x -5)2+(y -3)2=9上,则点M 到直线3x +4y -2=0的最短距离为 ( ) A .9 B .8C .5D .2二、填空题5.已知圆C 经过A (5,1)、B (1,3)两点,圆心在x 轴上,则C 的方程为__ __.6.以直线2x +y -4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为__ __.C 级 能力拔高1.如图,矩形ABCD 的两条对角线相交于点M (2,0),AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在AD 边所在的直线上.求AD 边所在直线的方程.2.求圆心在直线4x +y =0上,且与直线l :x +y -1=0切于点P (3,-2)的圆的方程,并找出圆的圆心及半径.第四章 4.1 4.1.2A 级 基础巩固一、选择题1.圆x 2+y 2-4x +6y =0的圆心坐标是 ( ) A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)2.(2016~2017·曲靖高一检测)方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a ,b ,c 的值依次为 ( )A .-2,4,4B .-2,-4,4C .2,-4,4D .2,-4,-43.(2016~2017·长沙高一检测)已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为 ( ) A .x 2+y 2-6x -2y +6=0 B .x 2+y 2+6x -2y +6=0 C .x 2+y 2+6x +2y +6=0D .x 2+y 2-2x -6y +6=04.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是 ( ) A .在圆上B .在圆外C .在圆内D .不确定5.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为 ( ) A .-2或2B .12或32C .2或0D .-2或06.圆x 2+y 2-2y -1=0关于直线y =x 对称的圆的方程是 ( ) A .(x -1)2+y 2=2 B .(x +1)2+y 2=2C .(x -1)2+y 2=4D .(x +1)2+y 2=4二、填空题7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为__ __.8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是_ 三、解答题9.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点A (-1,0)、B (3,0)和C (0,1)的圆的方程.B 级 素养提升一、选择题1.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过 ( ) A .第一象限B .第二象限C .第三象限D .第四象限2.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为 ( ) A .52B .102C .152D .20 23.若点(2a ,a -1)在圆x 2+y 2-2y -5a 2=0的内部,则a 的取值范围是 ( ) A .(-∞,45]B .(-43,43)C .(-34,+∞)D .(34,+∞)4.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为 ( ) 二、填空题5.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a 6.若实数x 、y 满足x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值是__ _.C 级 能力拔高1.设圆的方程为x 2+y 2=4,过点M (0,1)的直线l 交圆于点A 、B ,O 是坐标原点,点P 为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.2.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆. (1)求实数m 的取值范围; (2)求该圆的半径r 的取值范围; (3)求圆心C 的轨迹方程.第四章 4.2 4.2.1A 级 基础巩固一、选择题1.若直线3x +y +a =0平分圆x 2+y 2+2x -4y =0,则a 的值为 ( ) A .-1B .1C .3D .-32.(2016·高台高一检测)已知直线ax +by +c =0(a 、b 、c 都是正数)与圆x 2+y 2=1相切,则以a 、b 、c 为三边长的三角形是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不存在3.(2016·北京文)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为 ( ) A .1B .2C .2D .2 2[4.(2016·铜仁高一检测)直线x +y =m 与圆x 2+y 2=m (m >0)相切,则m = ( ) A .12B .22C .2D .25.圆心坐标为(2,-1)的圆在直线x -y -1=0上截得的弦长为22,那么这个圆的方程为 ( ) A .(x -2)2+(y +1)2=4 B .(x -2)2+(y +1)2=2 C .(x -2)2+(y +1)2=8D .(x -2)2+(y +1)2=166.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点有 ( ) A .1个 B .2个C .3个D .4个二、填空题7.(2016·天津文)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为__ __. 8.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为__ __. 三、解答题9.当m 为何值时,直线x -y -m =0与圆x 2+y 2-4x -2y +1=0有两个公共点?有一个公共点?无公共点10.(2016·潍坊高一检测)已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个不同的交点; (2)若直线l 与圆C 交于A 、B 两点,当|AB |=17时,求m 的值.B 级 素养提升一、选择题1.过点(2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦最长的直线的方程是 ( ) A .3x -y -5=0 B .3x +y -7=0C .3x -y -1=0D .3x +y -5=02.(2016·泰安二中高一检测)已知2a 2+2b 2=c 2,则直线ax +by +c =0与圆x 2+y 2=4的位置关系是 ( ) A .相交但不过圆心 B .相交且过圆心 C .相切D .相离3.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为 ( ) A .(-3,3) B .[-3,3]C .(-33,33) D .[-33,33] 4.设圆(x -3)2+(y +5)2=r 2(r >0)上有且仅有两个点到直线4x -3y -2=0的距离等于1,则圆半径r 的取值范围是 ( )A .3<r <5B .4<r <6C .r >4D .r >5二、填空题5.(2016~2017·宜昌高一检测)过点P (12,1)的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为__ __.6.(2016~2017·福州高一检测)过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为__ __.C 级 能力拔高1.求满足下列条件的圆x 2+y 2=4的切线方程: (1)经过点P (3,1); (2)斜率为-1; (3)过点Q (3,0).2.设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且与直线x -y +1=0相交的弦长为22,求圆的方程.第四章 4.2 4.2.2A级基础巩固一、选择题1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=252.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线方程为() A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=03.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是() A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=04.(2016~2017·太原高一检测)已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=255.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=A.5B.4C.3D.2 26.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36二、填空题7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__ __.8.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=__ __.三、解答题9.求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆C的方程.10.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.B级素养提升一、选择题1.已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4)2=82上的点,则|MN|的最小值为() A.4B.42-1 C.22-2D.22.过圆x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程为()A.4x-y-4=0B.4x+y-4=0 C.4x+y+4=0D.4x-y+4=03.已知两圆相交于两点A(1,3),B(m,-1),两圆圆心都在直线x-y+c=0上,则m+c的值是() A.-1B.2 C.3D.04.(2016·山东文)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x -1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离[二、填空题5.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是__ __.6.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是____.C级能力拔高1.已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A、B两点,且这两点平分圆N的圆周,求圆心M的轨迹方程.2.(2016~2017·金华高一检测)已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|P A|成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.第四章 4.2 4.2.3A 级 基础巩固一、选择题1.一辆卡车宽1.6 m ,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过 ( )A .1.4 mB .3.5 mC .3.6 mD .2.0 m2.已知实数x 、y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是 ( ) A .30-105B .5-5C .5D .253.方程y =-4-x 2对应的曲线是 ( )4.y =|x |的图象和圆x 2+y 2=4所围成的较小的面积是 ( )A .π4B .3π4C .3π2D .π5.方程1-x 2=x +k 有惟一解,则实数k 的范围是 ( ) A .k =-2 B .k ∈(-2,2) C .k ∈[-1,1)D .k =2或-1≤k <16.点P 是直线2x +y +10=0上的动点,直线P A 、PB 分别与圆x 2+y 2=4相切于A 、B 两点,则四边形P AOB (O 为坐标原点)的面积的最小值等于 ( )A .24B .16C .8D .4二、填空题7.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ __8.已知M ={(x ,y )|y =9-x 2,y ≠0},N ={(x ,y )|y =x +b },若M ∩N ≠∅,则实数b 的取值范围是__ ]__. 三、解答题9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)1.(2016·葫芦岛高一检测)已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为 ( ) A .9B .14C .14-65D .14+6 52.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为 ( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)3.已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 ( )A .106B .206C .306D .40 64.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为 ( )A .4π5B .3π4C .(6-25)πD .5π4二、填空题5.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 __ __.6.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是__ _.C 级 能力拔高1.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)。