数学物理方程积分变换共62页
数理方程第三章行波法与积分变换法-PPT课件

t2
2019/3/8
3
数学物理方程与特殊函数
第3章行波法与积分变换法
x a t 1 1 u ( x , t ) ( x a t ) ( x a t ) ( ) d x a t 2 2 a
4 解的物理意义
u (,) x t ( x a t ) ( x a t ) a. 只有初始位移时,
2 2 u u 2 1 1 a , x ,t 0 2 2 t x u ( x ,0 ) 1 u ( x ,0 ) ( x ) , ( x ) , x 1 t 2 2 u u 2 2 2 a f (xt ,) , x ,t 0 2 2 t x u x ,0 ) 2( u ( x ,0 ) 0 , 0 , x 2 t x a t 1 1 u ( x , t ) ( x a t ) ( x a t ) ( ) d 1 x a t 2 2 a
u u u u u y y y
2 2 2 2 u u u u u u u u 2 2 2 y y y 2
数学物理方程与特殊函数
第3章行波法与积分变换法
第三章 行波法与积分变换法
一 行波法
1 基本思想: 先求出偏微分方程的通解,然后用定解条件确定 特解。这一思想与常微分方程的解法是一样的。 2 关键步骤: 通过变量变换,将波动方程化为便于积分的齐 次二阶偏微分方程。 3 适用范围:
积分变换 ppt课件

16
可将d-函数用一个长度等于1的有向线段表示,
这个线段的长度表示d-函数的积分值, 称为d-函数
的强度.
d (t)
1
O
t
d-函数有性质:
d d (t)f(t)dtf(0)及 (tt0)f(t)dtf(t0).
( ft为 连 续 函 数 )
可见d-函数和任何连续函数的乘积在实轴上的
这表明在通常意义下的函数类中找不到一个
函数能够表示这样的电流强度. 为了确定这样的电
流强度, 引进一称为狄拉克(Dirac)的函数, 简单记
成d-函数:
d
t
0
t 0 t 0
有了这种函数, 对于许多集中于一点或一瞬时的量,
例如点电荷, 点热源, 集中于一点的质量及脉冲技
பைடு நூலகம்
术中的非常窄的脉冲等, 就能够象处理连续分布的
F() f(t)eitdt 1 eitdt eit 1
1
i
1
1 eiei 2sin
i
f(t)21
F()eitd1
F()costd
0
102s incostd20sin costd
9
例 2求 指 数 衰 减 函 数 f(t) e 0 ,t,
t0的 傅 氏 变 换 及 其 t0
积 分 表 达 式 ,其 中 0.
如果成立
F(w) f(t)ejwdt t
f(t)1 F(w)ejwdt w
2
并称F(ω)为f (t)的象函数
或付里叶变换,记为
F[f(t)];称f (t)为F(ω)的象 原函数或付里叶逆变换,
记为F-1[F(ω)]
8
例1
求矩形脉冲函数
数学物理方程第三章_行波法和积分变换法

[x − at , x + at ] 上的值,而与其他点上的初始条件无关,这个区间称为点 (x, t ) 的依赖区间,
它是过 ( x, t ) 点分别作斜率为 ±
1 的直线与 x 轴相交所截得的区间,如图 3-2 所示. a
(x,t0)
y
x O x-at0 x+at0
图 3-1
初 始 时 刻 t = 0 时 , 取 x 轴 上 的 一 个 区 间 [x1 , x 2 ] , 过 点 x1 作 斜 率 为
同理可得
2 ∂ 2u ∂ 2u ∂ 2u ⎤ 2⎡∂ u = + a + 2 ⎢ 2 ∂ξ∂η ∂η 2 ⎥ ∂t 2 ⎣ ∂ξ ⎦
将其代入式(3.1.1),得
∂ 2u =0 ∂ξ∂η
对 ξ 积分,得
∂u = f (η ) ∂η
对此式再关于η 积分,得
u = ∫ f (η )dη + f1 (ξ ) = f1 (ξ ) + f 2 (η )
第三章 行波法与积分变换法 本章我们介绍两个常用的解题方法:行波法和积分变换法。行波法只用于求解无界区 域上的波动方程定解问题, 积分变换法不受方程类型的限制, 一般应用于无界区域的定界问 题,有时也应用于有界域的定解问题.
3.1 达朗贝尔公式及波的传播 在求解常微分方程的特解时,一般先求出方程的通解,然后利用所给的定解条件去解出 通解中含有的任意常数,最后得到了满足所给条件的特解.这个想法能否推广到求解偏微分方 程的过程中呢?一般情况下,随着自变量个数的增加,偏微分方程的通解非常难求,并且偏微分 方程的通解一般都含有任意函数,这种任意函数很难由定解条件确定为具体的函数.所以在求 解数学物理方程时,主要采用通过分析各类具体的定解问题,直接求出符合定解条件的特解的 方法.但事情没有绝对的,在有些情况下,我们可以先求出含任意函数的通解,然后根据定解条 件确定出符合要求的特解.本节我们研究一维波动方程的求解,就采用这种方式. 3.1.1 达朗贝尔公式 如果我们所考察的弦无限长,或者我们只研究弦振动刚一开始的阶段,且距弦的边界较远 的一段,此时可以认为弦的边界,对此端振动的弦不产生影响.这样,定解问题就归结为如下形 式
数学物理方程课件 积分变换法

设F[ f1(x)] F1(), F[ f2 (x)] F2 (),
则F[ f1(x) f2 (x)] F1() F2 ()
(5)
其中,为常数,逆变换也成立,即
F-1[ F1() F2 ()] f1(x) f2 (x)
(6)
试证明Fourier正弦变换和Fourier余弦变换的公式分别为
Fs1[Fs ()]
f (x)
2
0 fs (x) sin xdx
Fc1[Fc ()]
f
(x)
2
0 fc (x) cos xdx
§4.1.1 Fourier变换法
证明:F () F[ f (x)] f (x)eixdx
i
2
0
Fs
(
)
ei
x
d
(欧拉公式)
即Fourier正弦变换的公式为
f (x) 2
0 Fs () cos xd
§4.1.1 Fourier变换法
例9:证明
x 0 1 x2
sin xdx
2
e
(
0)。
证明:本题直接积分不易计算,考虑到fs
1 l
l l
f (x) cos n
l
xdx, n 0,1, 2,...
bn
1 l
l l
f (x) sin n
l
xdx, n 1, 2,...
§4.1.1 Fourier变换法
二、Fourier变换
设f (x)在(-, )上满足
i)逐段光滑(可导);
数学物理方程——8 积分变换法

下午9时10分
数学物理方法
第五章
积分变换法
拉普拉斯逆变换
1 σ + i∞ f (t ) = F ( p )e pt dp, 2π i ∫σ −i∞
p = σ + iω
又称 f (t )为 原函数 ⇔ F ( p )
为像函数
13
下午9时10分
数学物理方法
第五章
积分变换法
例2
(1) 求 L[1]
1 L[1] = ∫ 1 ⋅ e − pt dt = − e − pt 0 p
∞ ∞ 0
=
1 . p
(2) 求 L[t ]
1 ∞ 1 − pt ∞ 1 ∞ − pt 1 ∞ − pt 1 − pt L[t] = ∫ t ⋅ e dt = − ∫ t ⋅ d(e ) = − [t ⋅ e ] 0 + ∫ e dt = ∫ e dt = 2 . 0 p 0 p p 0 p0 p
− pt ∞
数学物理方法
第五章
积分变换法
1. Fourier变换 1.1 Fourier变换的定义
+∞ +∞
1 f ( x) = 2π
∫ ∫
−∞
(
−∞
f (τ )e −iωτ dτ )e iω x dω ,
(*)
傅里叶积分定理:设f 在 (−∞,+∞) 内满足下面两个条件:
+∞
(1)积分
−∞
∫
f ( x) dx 存在;
⎧ d 2U (ω , t ) t>0 = − a 2ω 2U (ω , t ), ⎪ ⎪ dt 2 ⎨ ⎪U (ω ,0) = Φ (ω ), dU (ω ,0) = Ψ (ω ), ⎪ dt ⎩ U (ω , t ) = A cos aωt + B sin aωt Ψ (ω ) B= U (ω , 0) = A = Φ (ω ) aω Ψ (ω ) U (ω , t ) = Φ (ω ) cos aωt + sin aωt aω
数学物理方程课件第三章行波法与积分变换法

U (,0)
a 2 2U (, t), (), dU (,0)
dt
(),
t0
U (,t) Acosat Bsin at
U (,0) A ()
B () a
U (,t) () cos at () sin at
a
f(x ) F ()e j
x
f()d
F ()
0
j
数学物理方程与特殊函数
u(x,t) 1 (x at) (x at) 1
xat
( )d
t2
2a xat
t
P( x, t )
依赖区间
x
x at x at
x x1 at
x x2 at
决定区域
x1
x2
x
t
x x1 at
影响区域
x1
x2
x x2 at
x at C 特征线 x at x at 特征变换
第3章行波法与积分变换法
补充作业: 解定解问题
4
2u t 2
25
2u x2
,
u(
x,
0)
sin
x,
u ( x, t
0)
3x,
y 0, x x
数学物理方程与特殊函数
第3章行波法与积分变换法
二 积分变换法
1 傅立叶变换法
傅立叶变换的定义
U (, t) u(x, t)e jxdx
数学物理方程与特殊函数
第3章行波法与积分变换法
u(x,t) 1 (x at) (x at) 1
xat
( )d
2
2a xat
5 达朗贝尔公式的应用
utt
a
u |t0
数学物理方法3-4积分变换法

§3.4.1
第三章 偏微分方程的定解问题 第四节 积分变换法
直线上的初值问题
例3.4.1求解热传导 问题
dU(, t) 2 2 a U(, t), t 0 解:利用傅立 dt 叶变换的性质 U(, 0) (), t a22 a22t C () U(, t) e C F(, ) e d
思考 利用积分变换方法求解问题的好处是什么?
第三章 偏微分方程的定解问题 第四节 积分变换法
傅立叶变换的定义
U ( , t ) u ( x, t )e
j x
1 dx , u ( x , t ) 2
U ( , t )e j x d
傅立叶变换的性质 微分性 位移性 f ( n ) (x) ( j ) n F ( )
e
d d
1 2a
t
( )e
2 x
4 a 2t
d
第三章 偏微分方程的定解问题 第四节 积分变换法
§3.4.2
半无界直线上的问题
半无界区域上的热传导(扩散)问题 2 u 2 u 0 x , t 0 t a x 2 0, 例3.4.4 求解 t 0 u (0, t ) u0 , u ( x, 0) 0, 0 x 做代换 u ( x, t ) v( x, t ) u0 转化为直线上热传导方程 2 v v 2 对称延拓法(奇延拓) a , 0 x , t 0 2 x t x0 u0 , v(0, t ) 0, t0 ( x) u0 , x0 v( x, 0) u0 , 0 x 考虑与无界区域上 波传播问题的差别
数学物理方法课件 第十章-积分变换法

第九章积分变换法引言:•无界区域:与系统的特征尺度相比,物理量变化的特征尺度是个小量如个点热源在个体积很大的物体尺度是一个小量。
如:一个点热源在一个体积很大的物体中产生的热传导现象。
“无界区域”是数学上一个理想化的名词,是对实际物理问题的一个近似。
的名词是对实际物问题的个近似•前面讨论的都是有界区域的问题,本征值和本征函数是由齐次边界条件(或周期性边界条件)确定的。
•对于无界问题,前面介绍的分离变量法及傅里叶级数展对于无界问题前面介绍的分离变量法及傅里叶级数展开均不能使用。
本章的主要内容:1、傅里叶积分变换法无界或半无界空域的定解问题;—无界或半无界空域的定解问题;2、拉普拉斯积分变化法—半无界时域,并带有初始值的问题。
3、联合变换法:傅里叶积分变换+拉普拉斯积分变换;傅里叶积分变换+傅里叶级数展开。
,这些变换的目的:“化偏为常,甚至为代”。
特别是:傅里叶积分变换和拉普拉斯积分变换可以处理一些带有奇异性的问题,如点源的热传导。
些带有奇异性的问题如点源的热传导让·巴普蒂斯·约瑟夫·傅里叶:法国数学家、物理学家。
1768人物传纪巴普蒂斯约瑟夫傅叶法国数学家物理学家年3月21日生于欧塞尔,1830年5月16日卒于巴黎。
9岁父母双亡,被当地教堂收养。
12岁由一主教送入地方军事学校读书。
17岁(1785)回乡教数学1794到巴黎成为高等师范学校的17岁(1785)回乡教数学,1794到巴黎,成为高等师范学校的首批学员,次年到巴黎综合工科学校执教。
1798年随拿破仑远征埃及时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔省地方长官。
1817年当选为科学院院士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会主席主席。
主要贡献是在研究热的传播时创立了一套数学理论。
1807年向巴黎科学院呈交《热的传播》论文,推导出着名的热传导方程,并在求解该方程时发现解函数以由角函数构成的级数形式表示从而提出任函数都以展成角函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。