浅析稀疏表示分析解析
稀疏编码与稀疏表示的关系与差异分析

稀疏编码与稀疏表示的关系与差异分析稀疏编码和稀疏表示是机器学习和信号处理领域中两个重要的概念。
虽然它们都与稀疏性有关,但它们在定义和应用上存在一些差异。
首先,稀疏编码是一种数据压缩技术,旨在通过找到数据的稀疏表示来减少数据的维度。
稀疏编码的基本思想是,给定一组数据样本,可以将每个样本表示为其他样本的线性组合。
通过最小化表示中的非零系数数量,可以实现数据的压缩。
稀疏编码的应用非常广泛,例如图像压缩、语音信号处理等。
稀疏表示则是一种信号处理技术,用于表示信号或数据。
稀疏表示的目标是找到一组基函数,使得信号在这组基函数下的表示具有尽可能少的非零系数。
通过稀疏表示,可以更好地理解信号的结构和特征。
稀疏表示的应用也非常广泛,例如图像处理、模式识别等。
尽管稀疏编码和稀疏表示都利用了稀疏性的概念,但它们在定义和应用上存在一些差异。
首先,稀疏编码更加注重数据的压缩和降维,而稀疏表示更加注重信号的表示和分析。
稀疏编码通过最小化非零系数的数量来实现数据的压缩,而稀疏表示通过寻找最优的非零系数表示来实现信号的分析。
其次,稀疏编码和稀疏表示在应用上也有所不同。
稀疏编码主要应用于数据压缩和降维,例如图像压缩和语音信号处理。
稀疏编码可以通过找到数据的稀疏表示来减少数据的维度,从而实现数据的压缩和存储。
稀疏表示主要应用于信号处理和模式识别,例如图像处理和语音识别。
稀疏表示可以通过找到信号的稀疏表示来提取信号的结构和特征,从而实现信号的分析和识别。
最后,稀疏编码和稀疏表示在算法上也有所不同。
稀疏编码的常用算法有Lasso、OMP等,这些算法通过最小化表示中的非零系数数量来实现数据的压缩。
稀疏表示的常用算法有KSVD、OMP等,这些算法通过寻找最优的非零系数表示来实现信号的分析。
虽然这些算法在具体实现上有所不同,但它们都基于稀疏性的概念,通过优化算法来实现稀疏编码或稀疏表示。
综上所述,稀疏编码和稀疏表示虽然都与稀疏性有关,但它们在定义和应用上存在一些差异。
机器学习知识:机器学习中的稀疏表示方法

机器学习知识:机器学习中的稀疏表示方法稀疏表示方法是机器学习中一个重要的技术,它可以在高维数据中找出有效的表示方式,从而提高机器学习算法的效果。
本文将介绍稀疏表示方法的基本概念、应用领域和常用算法,以及其在机器学习中的作用和意义。
一、稀疏表示方法的基本概念稀疏表示的基本思想是将数据表示为最少的线性组合,即通过选择少数重要的特征,来表示整个数据集。
这种方法不仅可以减少每个样本的特征数量,还可以有效降低数据量,提高模型训练和预测的效率。
稀疏表示方法在机器学习中主要涉及两个方面:一是通过一定的约束条件,使得每个样本的表示向量在某个空间中更加稀疏;二是通过对简单线性组合的最优化求解,得到每个样本的最优表示。
二、稀疏表示方法的应用领域稀疏表示方法在机器学习中应用广泛,包括图像处理、文字识别、语音识别、自然语言处理等多个领域。
在图像处理中,稀疏表示方法被广泛应用于压缩和去噪。
它可以通过选定一些特定的基向量,来表示图像中的部分结构,从而达到降低图像信息存储和传输的目的。
同时,它也可以对图像中的噪声进行修复,提高图像质量。
在文字识别和自然语言处理中,稀疏表示方法可以用于单词和短语的编码,从而构建语言模型。
它可以通过学习大量的语料库,得到单词和短语在向量空间中的稀疏表示,从而提高自然语言处理的效果。
在语音识别中,稀疏表示方法可以将语音波形信号的短时频谱分解成多个基向量的线性组合,然后通过选择最优系数来重构原始信号,从而实现语音信号的稀疏表示和识别。
三、稀疏表示方法的常用算法稀疏表示方法中最常用的算法是L1范数正则化和L0范数正则化。
L1范数正则化是指将L1范数作为稀疏表示的约束条件,即使得每个样本的表示向量在L1范数的限制下更加稀疏。
这种方法的优点是可以在保留重要特征的同时减少特征数量,从而避免过拟合和提高模型的泛化能力。
而L1范数正则化的求解可以通过单个样本的坐标下降法或者批量梯度下降法进行。
L0范数正则化是指将L0范数作为稀疏表示的约束条件,即选择最少的非零系数来表示每个样本。
强化学习算法中的稀疏表示学习方法详解(十)

强化学习算法中的稀疏表示学习方法详解强化学习是一种通过试错来学习最优行为的机器学习方法,而稀疏表示学习则是其中的一种重要技术。
本文将详细介绍强化学习算法中的稀疏表示学习方法,包括其基本概念、应用场景以及相关算法原理。
一、稀疏表示学习的基本概念稀疏表示学习是一种通过线性组合来表示输入数据的方法。
在稀疏表示学习中,输入数据被表示为少量非零元素的线性组合,这些非零元素通常被称为字典或基。
通过对输入数据进行稀疏表示,我们可以实现对数据的高效压缩和信息提取,从而更好地理解和利用输入数据。
在强化学习中,稀疏表示学习被广泛应用于状态空间的表示和值函数的学习。
通过将状态空间进行稀疏表示,可以有效地减少状态空间的维度,从而减少值函数的计算复杂度。
此外,稀疏表示还可以帮助我们更好地理解状态空间的结构和特征,从而提高值函数的学习效率和性能。
二、稀疏表示学习在强化学习中的应用场景稀疏表示学习在强化学习中有多种应用场景,其中最主要的应用包括状态表示、特征提取和值函数逼近。
在状态表示方面,稀疏表示学习可以帮助我们将高维的状态空间进行有效地表示和压缩,从而减少值函数的计算复杂度。
在特征提取方面,稀疏表示学习可以帮助我们从原始的状态空间中提取出更有用的特征,从而提高值函数的泛化能力和学习效率。
在值函数逼近方面,稀疏表示学习可以帮助我们通过少量的基函数来逼近值函数,从而减少值函数的计算复杂度和提高值函数的学习性能。
三、稀疏表示学习的相关算法原理稀疏表示学习的相关算法主要包括奇异值分解(SVD)、主成分分析(PCA)和稀疏编码等。
在奇异值分解中,我们通过分解输入数据的奇异值分解矩阵来得到稀疏表示的基函数。
在主成分分析中,我们通过找到输入数据的主成分来得到稀疏表示的基函数。
在稀疏编码中,我们通过最小化输入数据与稀疏表示的基函数之间的误差来得到稀疏表示的基函数。
在强化学习中,我们常常使用基于稀疏表示学习的价值函数逼近方法来学习值函数。
信号处理中的稀疏表示技术研究

信号处理中的稀疏表示技术研究信号处理是一个非常广阔而重要的研究领域,其中涵盖了大量的技术和理论。
而稀疏表示技术则是其中最为重要的技术之一。
今天,我们将深入探讨什么是稀疏表示技术,以及它在信号处理中的应用。
什么是稀疏表示技术稀疏表示技术是指利用少量非零系数来近似表示一个向量或矩阵的技术。
它被广泛应用于信号处理、图像处理、计算机视觉和机器学习等领域,并且已经成为了这些领域中的基础性技术之一。
在稀疏表示技术中,我们假设我们的信号可以表示为向量x的线性组合,而这个向量只有很少的非零系数。
这种假设在实际中非常常见,因为大多数信号都是由少量的基函数或原子组合而成的。
比如说,可以将图像表示为少量的基函数(如小波基)的线性组合。
利用这种假设,我们可以通过优化问题来求解最优的系数向量,从而实现对信号的稀疏表示。
具体来说,稀疏表示问题可以表示为以下形式:minimize ||x-Da||_2subject to ||a||_0 <= k其中,x是我们想要表示的信号,D是表示信号的原子库,a是系数向量,k是我们想要的非零系数的数量。
在这个问题中,我们通过最小化表示误差来求解最优的系数向量a,同时限制a中非零元素的数量不超过k个,从而实现稀疏表示。
稀疏表示技术在信号处理中的应用稀疏表示技术在信号处理中有着非常广泛的应用,下面我们将详细介绍其中的几个方面。
1. 压缩感知压缩感知是一种利用稀疏表示来实现信号压缩的方法。
它通过使用较少的测量样本(比如说,对信号进行采样)来重构完整的信号。
具体来说,压缩感知算法可以表示为以下形式:minimize ||a||_1subject to y = Ax其中,a是系数向量,y是我们的测量向量,A是测量矩阵,x是原始信号。
这个问题可以通过基于稀疏表示的算法来求解,比如说OMP(正交匹配追踪)和MP(匹配追踪)算法等。
2. 图像处理稀疏表示技术在图像处理中有着广泛的应用。
通过将图像表示为稀疏系数向量的形式,我们可以实现对图像的降噪、去模糊、超分辨等操作。
人脸识别系统中的稀疏表示算法分析比较

人脸识别系统中的稀疏表示算法分析比较人脸识别技术作为生物特征识别的一种重要应用,被广泛应用在安全系统、身份验证、人脸检索等领域。
稀疏表示算法作为一种常用的特征提取方法,在人脸识别系统中发挥着重要的作用。
本文将对人脸识别系统中的稀疏表示算法进行综述,并分析比较各种算法的优缺点。
稀疏表示算法是一种通过训练样本的线性组合来表示待识别样本的方法。
这种算法的基本思想是,每个人脸图像都可以通过有限个训练样本来表示,而且表示的系数应该是稀疏的。
在人脸识别系统中,稀疏表示算法将每个人脸图像表示为一组系数,然后利用这些系数进行分类或者比对。
常用的稀疏表示算法包括L1范数最小化算法、L2范数最小化算法、稀疏主成分分析算法等。
L1范数最小化算法是一种常用的稀疏表示算法。
它的基本思想是,通过将待识别样本表示为训练样本的线性组合,使得系数具有较高的稀疏性。
L1范数最小化算法通过在优化问题中引入L1范数的约束,将待识别样本的系数向量尽可能地稀疏化。
这种算法具有良好的鲁棒性和适应性,但是计算复杂度较高,且需要进行大量的样本训练。
L2范数最小化算法是另一种常用的稀疏表示算法。
与L1范数最小化算法不同的是,L2范数最小化算法将稀疏性约束改为了平滑性约束,即通过最小化待识别样本与训练样本之间的残差来获得系数。
这种算法计算简单且效果良好,但是对噪声敏感,并且无法处理样本集中存在线性相关性的情况。
稀疏主成分分析算法是一种基于主成分分析的稀疏表示方法。
它通过将待识别样本投影到稀疏子空间中,从而减小样本之间的差异。
稀疏主成分分析算法适用于维数较高的数据,并且具有较好的鲁棒性和鉴别性。
然而,该算法对于数据的线性相关性不敏感,且计算复杂度较高。
在实际应用中,选择合适的稀疏表示算法需要根据具体的任务需求和数据特点来进行。
在性能方面,L1范数最小化算法相对较强,在处理噪声和数据集中存在的线性相关性方面表现出色。
而L2范数最小化算法计算简单且效果良好。
时序数据的稀疏表示及其应用研究

时序数据的稀疏表示及其应用研究时序数据是指按照时间顺序排列的数据序列,例如气温、股票价格、心电信号等。
这类数据具有连续性、持续性、复杂性和噪声性等特点,因此对其高效率的处理方式具有挑战性。
目前,时序数据的稀疏表示及其应用正成为研究热点。
一、稀疏表示概述稀疏表示是指利用尽可能少的基向量线性组合表示数据的方法。
例如,对于一个稀疏向量x,我们可以将它表示为x = α1v1 + α2v2 + … + αkvk,其中v1, v2, …,vk为基向量,α1, α2, …, αk为系数。
这种表示方法非常符合实际应用,因为在很多情况下,数据具有高度的局部性,只需要少量基向量就可以表示整个数据。
二、稀疏表示在时序数据中的应用在时序数据处理中,我们可以利用稀疏表示来降低噪声的影响、压缩数据、提高数据的可视化效果等。
下面分别介绍几个应用场景。
1. 信号去噪在时序数据中,噪声是常见的问题之一。
为了减少噪声的影响,我们可以利用稀疏表示对信号进行去噪。
具体来说,我们可以把一些噪声中的信号表示为一些基旋转变化的系数,然后通过求解约束条件下的最优系数,即可获得一个更加干净的信号。
2. 数据压缩在时序数据处理中,数据的大小往往是一个瓶颈问题。
为了解决这个问题,我们可以利用稀疏表示对数据进行压缩。
具体来说,我们可以通过选取少量的基向量对数据进行线性组合,从而实现对数据的压缩。
而且,由于时序数据具有高度的局部性,所以只需要选择与数据本身最相似的一些基向量就可以获得较好的压缩效果。
3. 数据可视化在时序数据处理中,数据的可视化一直是一个挑战性问题。
由于时序数据的复杂性,我们往往需要在更高的维度空间进行可视化。
而利用稀疏表示可以有效地将高维数据映射到低维空间中进行可视化。
具体来说,我们可以将数据表示为一些基向量线性组合的形式,然后通过PCA(主成分分析)等方法将数据映射到低维空间中进行可视化。
三、稀疏表示的模型当我们使用稀疏表示方法时,需要选择一个合适的模型来表示数据。
稀疏表示与稀疏分解

2.1贪婪法
我们知道稀疏解x包括非0系数的位置索引和幅值两个信息, 贪婪法的主体思路是先确定x中非0元素的位置索引,然后用最小 二乘求解对应的幅值。 与凸松弛算法相比,贪婪法具有比较低的复杂度。
我们这里主要介绍的算法是匹配追踪算法(MP)与正交匹配 追踪算法(OMP)。因为这 两个算法是复杂贪婪算法的基础。
问题。所以我们只能采用次优的逼近算法求解。
主要采用的逼近算法
1.凸松弛法
基追踪(BP), 基追踪去噪算法(BPDN) ,平滑L0范数(SL0) 等等。
2.贪婪法
匹配追踪(MP) ,正交匹配追踪(OMP),弱匹配追踪等等。
2.1凸松弛法
凸松弛算法的核心思想就是用凸的或者是更容易处理的稀疏 度量函数代替(1)中非凸的L0范数 ,通过转换成凸规划或非线 性规划问题来逼近原先的组合优化问题,变换后的模型则可采用 诸多现有的高效算法进行求解,降低了问题的复杂度。 min x 我在这里主要介绍的是基追踪算法( BP)与基追踪去噪算法 (BPDN)。这两个算法的基础是用L1范数替代L0范数即将 min ||x||_0 subject to y=Dx 转化为 min||x||_1 subject to ||y-Dx||_2<ε
并且
<1/μ ,那么上式就是信号s在D中最稀疏的表示。
注释:定理1中的非相干原子库D指的是指相干系数μ 小于某一常数 的原子库,相关系数定义如下:
相关系数的大小与原子的相关性呈正比。若μ =1,即表明原子库中 至少有两个原子相同,当μ 比较小时,即表明原子间的相关性不高 即可称此原字库为非相干原字库。
基追踪:我们将L1范数替换L0范数之后,稀疏表示模型: min||x||_1 subject to y=Dx 就变成了一个常见的线性规划问题,我们可以用单纯性算法或内点法来 求解.
强化学习算法中的稀疏表示学习方法详解(九)

强化学习算法中的稀疏表示学习方法详解强化学习是一种机器学习领域的方法,其目的是通过与环境的交互来学习如何做出最优的决策。
在强化学习中,稀疏表示学习方法被广泛应用,它通过学习环境中的稀疏特征来提高学习效率和泛化能力。
本文将详细介绍强化学习算法中的稀疏表示学习方法,包括其原理、算法和应用。
1. 稀疏表示学习的原理稀疏表示学习是一种通过学习数据的稀疏表示来提取数据特征的方法。
在强化学习中,环境的状态通常是高维度的,而且往往是稀疏的。
稀疏表示学习方法可以有效地提取和利用这些稀疏特征,从而提高学习效率和泛化能力。
稀疏表示学习的原理是通过最小化数据的稀疏表示来学习数据的特征。
具体而言,给定一个数据集X,稀疏表示学习的目标是找到一个稀疏矩阵S,使得X≈XS,其中X是原始数据矩阵,XS是通过稀疏矩阵S表示的数据。
通过最小化稀疏矩阵S的范数,可以得到数据的稀疏表示,从而提取数据的特征。
2. 稀疏表示学习的算法稀疏表示学习有许多不同的算法,其中最常用的包括Lasso、L1正则化和压缩感知等。
Lasso是一种基于L1正则化的稀疏表示学习方法,它通过最小化数据的稀疏表示来学习数据的特征。
具体而言,Lasso的目标是最小化X-AS的Frobenius范数加上S的L1范数,其中A是一个稀疏矩阵,S是数据的稀疏表示。
通过最小化这个目标函数,可以得到数据的稀疏表示,从而提取数据的特征。
L1正则化是一种基于L1范数的稀疏表示学习方法,它通过最小化数据的稀疏表示来学习数据的特征。
具体而言,L1正则化的目标是最小化X-AS的Frobenius范数加上S的L1范数,其中A是一个稀疏矩阵,S是数据的稀疏表示。
通过最小化这个目标函数,可以得到数据的稀疏表示,从而提取数据的特征。
压缩感知是一种基于测量矩阵的稀疏表示学习方法,它通过最小化数据的稀疏表示来学习数据的特征。
具体而言,压缩感知的目标是最小化X-AS的L1范数,其中A是一个稀疏矩阵,S是数据的稀疏表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、稀疏表示的应用 系数表示在图像处理的反问题中,主要有三种应用: 1、图像去噪:主要适用于加性噪声 2、图像超分辨率的重建:训练高低分辨率图像的两个字 典(有的文章给出两个字典之间的关系系数)。 3、图像修复:利用待修复图像内的有效信息,采用K-SVD 算法对所有不重叠取块后的图像块进行训练,得到与待修复图 像相适应的新字典,求出稀疏系数,更新图像块,修复受损图像。
Original clean image
Noisy image, 20.1578dB Clean Image by Adaptive dictionary, 29.6051dB
3、稀疏表示的应用(稀疏去噪)
原始图像
JPEG失真图像 psnr=21.6077
用ksvd训练出的字 典处理后的图像 psnr=22.1077
i 1
L
x N×1
D N×L a L×1
其中:D—过完备字典, di—原子, a—稀疏表示的系数, a只有有限个(k个)非零元素,则称a是 k稀疏的。
1、获取稀疏的分解系数方法
已知信号x和字典D求解稀疏系数a是求解欠定方程组的问题,可以得到无数多 个解,在这些解构成的解空间中求最稀疏的解,就是要求的系数向量a中的非零向 量最少,稀疏问题就可以表示为求解公式(2),在实际中,我们还要将公式(2) 转换成公式(3)的形式,转化为稀疏逼近问题来求近似解。
式中 K —字典的原子总数; k —要更新的原子索引。
从Ek中除去没有用到原子dk(J-1)的列得到EkR,对EkR进行SVD分解从而更新 dk(J-1),同时更新aRk。
2、设计与构建有效的图像稀疏表示字典
DCT方法训练字典
MOD方法训练字典
K-SVD方法训练字典
字典训练的两种方式: 1,把失真图像为先验知识来训练字典。 2,把原始无失真图像作为先验知识来训练字典。
x di ai Da s.t. min||a||0 (1)
i 1
L
(2)
(3) 公式(3)本质上式组合优化问题。
1、获取稀疏的分解系数方法
对于组合优化的问题,很难求出来,所以公式(3)要转化为公式(4),对其 进行求解: (3) (4)
目前有很多方法对公式(4)进行求解: 贪婪算法:匹配追踪(Matching Pursuit,MP) 正交匹配追踪(Orthogonal Matching Pursuit,OMP) 子空间追踪(Subspace Pursuit,SP) 松弛算法:最小绝对收缩和选择操作算法(Least Absolute Shrinkage And Selection Operator,LASSO) 最小角回归算法(Least Angle Regression,LAR) 非凸算法:迭代重新加权算法 Beyesian算法
要得到更新的字典,要上式进关于D求导;
这种MOD方法总体还是有效的,但是由于涉及到矩阵的逆运算,计 算量很大。与之相比,KSVD算法在字典更新上大大降低了计算复杂度。
2、设计与构建有效的图像稀疏表示字典
K-SVD算法通过对字典的每一列进行操作,而不是采用对矩阵求逆的方法。 同时更新现有的原子和与之相关的稀疏系数,使得算法更具效率。因此相对于 MOD算法,K-SVD是一种要求更低的高效快速算法。 K-SVD法包括稀疏求解和字典更新两个阶段,其核心步骤为: 1,系数更新 对每一个向量xi,用任一匹配追踪算法求解其稀疏系数; 2,字典更新: 更新D(J-1)中的每一列
3、稀疏表示的应用(图像超分辨率的重建)
3、稀疏表示的应用(图像超分辨率的重建)
高分辨率图像 256*256
低分辨率图像 128*128
用稀疏表示方法重建的 超分辨率图像 256*256
谢谢大家!!!
2、设计与构建有效的图像稀疏表示字典
图像信号自身在空间域通常是不稀疏的,但在特定的字典下,其分解系数可 能会变得稀疏,因此字典的设计也是稀疏表示中的一个重要问题。当前构造字典 的方式有以下几种: (1)直接使用现有的正交基作为稀疏表示字典,如,离散的DCT字典,小波 字典等,这类字典能够实现快速变化但是不能充分地对信号进行稀疏分解。 (2)将正交基,紧框架系统之间进行组合,从而能够反映图像中不同的几何 结构,可以形成更稀疏的表示。 (3)通过学习的方法获得稀疏字典。其基本思想是由一些训练样本通过机器 学习得到特定的稀疏表示字典。常用的方法有最佳方向法(Method of Optional Directions, MOD),K-SVD法,以及在线学习算法(Online Learning)等。
浅析稀疏表示
姓名:袁其政 导师:邵枫老师
对于一个完整的稀疏表示模型,要解决三个关键的问题: 1、如何有效获取图像在字典下最稀疏的分解系数 2、如何设计与构建有效的图像稀疏表示字典 3、如何将图像稀疏表示模型应用于具体的图像处理 反问题(Inverse P的图像稀疏表示字典
最佳方向法(Method of Optional Directions, MOD):找到一个字 典D和稀疏表示矩阵A使得目标函数的误差最小,如下式:
ai—稀疏系数矩阵A的第i列。 优化的过程包括稀疏系数的更新和字典更新两个阶段。稀疏系数更 新时,对每一个向量xi,用任一匹配追踪算法求解其稀疏系数,字典更 新时考虑信号的表示误差:
稀疏表示的思想是自然信号可以被压缩表示,将信号看作是有限个元 素的线性组合。
稀疏表示模型可如表达式(1)所示,其中x∈Rn为待处理信号,D∈R(N×L) 为字典,a∈RL为稀疏系数,||a||0≪m。||a||0为a的0范数,它表示x中非0 的个数,即表示a的稀疏度。
x di ai Da s.t. min||a||0 (1)
1、获取稀疏的分解系数方法
贪婪算法的主要流程思想:根据事前设定的度量准则,通过迭代从过完备字典中 逐次选择最有用的原子(即与目标信号分量残差值最小的原子)构建逼近过程。 匹配追踪算法(Matching Pursuit,MP):此算法的每次迭代,根据目标信号 分量与字典原子之间的残差值为主要的度量原则,从过完备原子库里(即过完备字典 矩阵D)选择与信号分量之间残差值最小(也就是“最匹配”)的原子,然后迭代重复执 行上述过程,经过一定次数的迭代,最终信号的每一个分量均可以由若干字典原子的 线性组合再加上最后的残差值来表示。MP算法一般得到的都是次优解。 正交匹配追踪算法(Orthogonal Matching Pursuit,OMP):OMP算法是在MP 算法的基础上改进而来的,有效克服了次优问题。在原子选择准则的选取上,OMP算法 与MP算法是一样的,不同之处在于OMP算法通过对迭代的每一步实现对所选的全部原 子进行正交化处理这一目的,这样的处理可以保证迭代的最优性,同时大大减少了迭 代的次数。
3、稀疏表示的应用(稀疏去噪)
N是噪声
用K-SVD方法训练出字典D
用OMP算法求出稀疏系数 此公式中的T是一个阈值,它与噪声N 有一定的关系,一个合理的 阈值T可以让去噪效果达到更好。 则去噪之后的图像X’为 X ' D
3、稀疏表示的应用(稀疏去噪)
Original clean image Noisy image, 20.1578dB Clean Image by DCT dictionary, 28.6744dB