时间序列ARMA模型及分析

合集下载

时间序列中的ARMA模型

时间序列中的ARMA模型
件期望是相等旳,若设为u,则得到 :
c u=
1 (1 2 ... p)
旳无条
7
ARIMA模型旳概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
(1
2
1
1≤j≤22q ... q2 )
0 j>q
j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程旳一种特征
如下图:
18
ARMA模型旳辨认
MA(2)过程
yt =0.5ut-1 0.3ut2 ut
19
ARMA模型旳辨认
⑵ AR(p)过程旳偏自有关函数
j p 时,偏自有关函数旳取值不为0 j>q 时,偏自有关函数旳取值为0 AR(p)过程旳偏自有关函数p阶截尾 如下图:
32
ARMA模型旳预测
二. 基于MA过程旳预测
过程 结论:
MA (2) 过程仅有2期旳记忆力
33
ARMA模型旳预测
三. 基于ARMA过程旳预测
结合对AR过程和MA过程进行预测 ARMA模型一般用于短期预测
34
五、实例:ARMA模型在金融数 据中旳应用
数据: 1991年1月到2023年1月旳我国货币供
3
ARIMA模型旳概念
2.MA(q)过程旳特征
1. E(Yt)=u
2.
var(Yt)
(1
2

arma模型(自回归移动平均)数学公式

arma模型(自回归移动平均)数学公式

arma模型(自回归移动平均)数学公式ARMA模型是一种常用的时间序列分析方法,它结合了自回归(AR)和移动平均(MA)模型,用于描述时间序列数据的动态特征。

在ARMA模型中,每个观测值被认为是过去观测值的线性组合,其中包括自回归项和移动平均项。

ARMA模型的数学公式可以表示为:y_t = c + ϕ_1*y_(t-1) + ϕ_2*y_(t-2) + ... + ϕ_p*y_(t-p) + ε_t - θ_1*ε_(t-1) - θ_2*ε_(t-2) - ... - θ_q*ε_(t-q)其中,y_t表示时间序列的观测值,c为常数,ϕ_1, ϕ_2, ..., ϕ_p 为自回归系数,ε_t为满足白噪声条件的随机误差,θ_1, θ_2, ..., θ_q为移动平均系数。

ARMA模型的阶数分别为p和q,分别表示自回归项和移动平均项的阶数。

ARMA模型的核心思想是利用过去观测值的线性组合来预测未来观测值。

自回归项描述了当前观测值与过去观测值之间的线性关系,移动平均项描述了当前观测值与过去误差项之间的线性关系。

通过调整自回归系数和移动平均系数的取值,我们可以得到不同的ARMA模型,从而适应不同时间序列数据的特点。

ARMA模型的建立可以通过多种方法,其中一种常用的方法是最大似然估计。

该方法通过最大化观测数据出现的概率来确定模型的参数。

具体而言,我们需要估计自回归系数、移动平均系数和误差项的方差。

通过最大似然估计,我们可以得到最优的参数估计值,从而建立起准确的ARMA模型。

ARMA模型在时间序列分析中具有广泛的应用。

首先,ARMA模型可以用于时间序列数据的预测和预测不确定性的度量。

通过拟合ARMA模型,我们可以根据过去观测值来预测未来观测值,并得到相应的置信区间。

其次,ARMA模型可以用于时间序列数据的平滑和去除季节性因素。

通过去除ARMA模型的季节性分量,我们可以得到更平滑的时间序列数据,从而更好地分析其长期趋势。

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

时间序列分析和ARMA模型建模研究

时间序列分析和ARMA模型建模研究

时间序列分析和ARMA模型建模研究一、引言时间序列是一种基本的统计数据类型,它记录了随时间变化的某个现象的数值,如股票价格、气温、销售额等等。

时间序列分析是一种用来探测和预测时间序列中趋势、季节性和周期性等特征的统计方法。

ARMA模型是时间序列分析中最常用的模型之一,它将时间序列视为由自相关(AR)和移动平均(MA)两个过程混合而成的结果,可以对其进行预测和建模分析。

本文旨在介绍时间序列分析和ARMA模型建模的基本理论,包括数据分析方法、模型拟合和预测等相关内容。

二、时间序列分析1、基本概念时间序列指在时间轴上每个时刻所对应的变量值的序列,它是由许多个观察值构成的。

一个时间序列通常可以用以下公式来表示:Yt = f (t, εt)其中,Yt表示时间t时刻的变量值,f表示一个关于t和随机误差项εt的函数。

时间序列可以分为平稳和非平稳两类。

2、样本自相关函数与偏自相关函数在时间序列分析中,自相关函数(ACF)和偏自相关函数(PACF)都是非常重要的概念,它们用于刻画序列内部的相关性。

ACF是一个时间序列与其滞后版本之间的相关性度量,而PACF则是在除去其它所有的滞后版本影响下,一个时间序列与其滞后版本之间关系的度量。

3、时间序列模式的识别对于时间序列分析来说,关键任务之一就是识别出序列的模式。

模式可以分为三种:趋势、季节性和周期性。

趋势模式是指序列中长期变化的基本趋势,被认为是序列的“平滑”或“漂移”的程度。

季节性模式是指序列随时间变化的基本周期规律。

周期性模式是连续时间周期性变化的随机性模式。

三、ARMA模型建模1、ARMA模型的概念ARMA模型是时间序列中最常用的模型之一,它表示为自回归(AR)和移动平均(MA)过程的线性组合。

ARMA模型的一般表达式为:Yt = μ + εt + ΣφiYt-i + Σθjεt-j其中,μ是常数项,εt是序列的随机误差项,φi和θj是AR和MA的参数。

2、模型拟合方法在建立ARMA模型时,目标是最小化模型拟合误差。

ARMAARIMA模型介绍及案例分析

ARMAARIMA模型介绍及案例分析

ARMAARIMA模型介绍及案例分析AR、MA和ARIMA是时间序列分析中常见的模型,用于分析和预测时间序列数据的特征和趋势。

下面将对这三种模型进行介绍,并提供一个案例分析来展示它们的应用。

自回归模型(AR)是一种基于过去的观测值来预测未来观测值的模型。

它基于一个假设:未来的观测值可以由过去的观测值的线性组合来表示。

AR模型的一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项。

AR模型的关键是确定自回归阶数p和自回归系数ϕ。

移动平均模型(MA)是一种基于过去的误差项来预测未来观测值的模型。

它基于一个假设:未来的观测值的误差项可以由过去的误差项的线性组合来表示。

MA模型的一般形式可以表示为:y_t=c+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。

MA模型的关键是确定移动平均阶数q和移动平均系数θ。

自回归移动平均模型(ARIMA)结合了AR和MA模型的特点,同时考虑了时间序列数据的趋势性。

ARIMA模型一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。

ARIMA模型的关键是确定自回归阶数p、移动平均阶数q和相关系数ϕ和θ。

下面举一个电力消耗预测的案例来展示AR、MA和ARIMA模型的应用:假设有一段时间内的电力消耗数据,我们想要用AR、MA和ARIMA模型来预测未来一段时间内的电力消耗。

ARMA模型时间序列分析法

ARMA模型时间序列分析法

ARMA模型时间序列分析法ARMA模型时间序列分析法简称为时序分析法,是一种利用参数模型对有序随机振动响应数据进行处理,从而进行模态参数识别的方法。

参数模型包括AR自回归模型、MA滑动平均模型和ARMA自回归滑动平均模型。

1969年AkaikeH首次利用自回归滑动平均ARMA模型进行了白噪声激励下的模态参数识别。

N个自由度的线性系统激励与响应之间的关系可用高阶微分方程来描述,在离散时间域内,该微分方程变成由一系列不同时刻的时间序列表示的差分方程,即ARMA时序模型方程:(1)式(1)表示响应数据序列与历史值的关系,其中等式的左边称为自回归差分多项式,即AR模型,右边称为滑动平均差分多项式,即MA模型。

2N为自回归模型和滑动均值模型的阶次,、分别表示待识别的自回归系数和滑动均值系数,表示白噪声激励。

当k=0时,设。

由于ARMA过程{}具有唯一的平稳解为(2)式中:为脉冲响应函数。

的相关函数为(3)是白噪声,故(4)式中:为白噪声方差。

将此结果代人式(3),即可得(5)因为线性系统的脉冲响应函数,是脉冲信号,激励该系统时的输出响应,故由ARMA过程定义的表达式为(6)利用式(5)和式(6),可以得出:(7)对于一个ARMA过程,当是大于其阶次2N时,参数=0。

故当l>2N时,式(7)恒等于零,于是有(8)或写成(9)设相关函数的长度为L,并令M=2N。

对应不同的l值,由代人以上公式可得一组方程:(10)将式(10)方程组写成矩阵形式,则有(11)或缩写为(12)式(12)为推广的Yule-walker方程。

一般情况下,由于L比2N大得多,采用伪逆法可求得方程组的最小二乘解,即(13)由此求得自回归系数。

滑动平均模型系数可通过以下非线性方程组来求解:(14)其中(15)式中:为响应序列的自协方差函数。

滑动平均模型MA系数的估算方法很多,主要的有基于Newton-Raphson算法的迭代最优化方法和基于最小二乘原理的次最优化方法。

arma的特征方程

arma的特征方程

arma的特征方程一、介绍ARMA模型(Autoregressive Moving Average Model)是一种常用的时间序列分析方法,它将自回归模型(AR)和移动平均模型(MA)结合起来,能够较好地描述时间序列数据中的相关关系和随机波动。

ARMA模型的特征方程是其重要的数学表达式之一,本文将对ARMA模型及其特征方程进行详细介绍。

二、ARMA模型1. AR模型自回归模型是指时间序列数据中当前时刻的值与其过去若干个时刻的值之间存在线性相关关系。

具体地,假设$y_t$表示时间为$t$时刻的观测值,则AR(p)模型可以表示为:$$y_t=\phi_1 y_{t-1}+\phi_2 y_{t-2}+\cdots+\phi_p y_{t-p}+\epsilon_t$$其中$\phi_1,\phi_2,\cdots,\phi_p$是待估计的系数,$\epsilon_t$是噪声项。

2. MA模型移动平均模型是指时间序列数据中当前时刻的值与其过去若干个噪声项之间存在线性相关关系。

具体地,假设$y_t$表示时间为$t$时刻的观测值,则MA(q)模型可以表示为:$$y_t=\epsilon_t+\theta_1 \epsilon_{t-1}+\theta_2 \epsilon_{t-2}+\cdots+\theta_q \epsilon_{t-q}$$其中$\theta_1,\theta_2,\cdots,\theta_q$是待估计的系数,$\epsilon_t$是噪声项。

3. ARMA模型ARMA模型将自回归模型和移动平均模型结合起来,可以描述时间序列数据中的相关关系和随机波动。

具体地,假设$y_t$表示时间为$t$时刻的观测值,则ARMA(p,q)模型可以表示为:$$y_t=\phi_1 y_{t-1}+\phi_2 y_{t-2}+\cdots+\phi_p y_{t-p}+\epsilon_t+\theta_1 \epsilon_{t-1}+\theta_2 \epsilon_{t-2}+\cdots+\theta_q \epsilon_{t-q}$$其中$\phi_1,\phi_2,\cdots,\phi_p$和$\theta_1,\theta_2,\cdots,\theta_q$是待估计的系数,$\epsilon_t$是噪声项。

中级计量经济学-考察时间序列自相关性的ARMA模型

中级计量经济学-考察时间序列自相关性的ARMA模型

rˆh l E rhl rh , rh1,
E c0 ahl 1ahl1 c0
eh l rhl rˆh l ahl 1ahl1
vareh l
1 12
2 a
总 结 : 对 于 MA(1) 模 型,超过1步的点预测 为rt的无条件均值,预 测误差的方差为rt的无 条件方差
,当l
1
0,当l 1
1,当l 0
1
1 12
,当l
1
MA2:l
0
1 12
2 2
0,02 当1l2122
2 2
,当l
2
总结:MA(q)的ACF会在滞后q期之后截尾,有限记 忆,利用此性质来确定MA模型的order
22
实际MA模型的应用
模型的选择 模型的估计 模型的检验 模型的预测 模型应用举例
6
AR(2)模型的性质(续)
ACF特征:l 1l1 2l2 l c1 x1l c2 x2l
如果 12 42 0 ,x1, x2 为实数,ACF为两个指数衰减的混合 如果 12 42 0 ,x1, x2 为虚数,ACF为逐渐衰弱的正弦余弦波
,表明商业周期的存在
7
AR(p)模型
23
MA模型的应用——模型选择
ACF与PACF
若ACF表现为一个衰减拖尾的形状(非截尾),基本 可以选择AR模型,再以截尾的PACF来确定order
若ACF在滞后期为q处截尾,即 q 0,但对于 l q则有l 0
则rt服从一个MA(q)模型
Information Criteria
24
表达式:
rt 0 1 rt1 p rt p at
11B pBp rt 0 at
特征方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ARMA模型及分析
本次试验主要是通过等时间间隔,连续读取70个某次化学反应的过程数据,构成一个时间序列。

试对该时间序列进行ARMA模型拟合以及模型的优化,最后进行预测。

以下本次试验的数据:
表1 连续读取70个化学反应数据
47 64 23 71 38 64 55 41 59 48 71 35 57 40
58 44 80 55 37 74 51 57 50 60 45 57 50 45
25 59 50 71 56 74 50 58 45 54 36 54 48 55
45 57 50 62 44 64 43 52 38 59 55 41 53 49
34 35 54 45 68 38 50 60 39 59 40 57 54 23 资料来源:O’Donovan, Consec. Readings Batch Chemical Proces, ler et al.
下面的分析及检验、预测均是基于上述数据进行的,本次试验是在Eviews 6.0上完成的。

一、序列预处理
由于只有对平稳的时间序列才能建立ARMA模型,因此在建立模型之前,有必要对序列进行预处理,主要包括了平稳性检验和纯随机检验。

序列时序图显示此化学反应过程无明显趋势或周期,波动稳定。

见图1。

图2 化学反应过程相关图和Q统计量
从图2的序列的相关分析结果:1. 可以看出自相关系数始终在0周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值在滞后2、3、4期是都为0,所以拒接原假设,即序列是非纯随机序列,即非白噪声序列(因为序列值之间彼此之间存在关联,所以说过去的行为对将来的发展有一定的影响,因此为非纯随机序列,即非白噪声序列)。

二、模型识别
由于检验出时间序列是平稳的,且是非白噪声序列,因此可以建立模型,在建立模型之前需要识别模型阶数即确定阶数。

阶数确定要借助于时间序列的相关图,即序列的自相关函数和偏自相关函数,并根据他们之间的理论模式进行阶数最后的确定。

下面给出自相关函数和偏自相关函数之间的理论模式:
表2 时间序列的AC与PAC理论模式
自相关系数偏相关系数模型定阶
拖尾P阶截尾AR(p)模型
q阶截尾拖尾MA(q)模型
拖尾拖尾ARMA(p,q)模型
关系数1阶截尾性,我们尝试拟合ARMA(1,2)模型。

三、模型参数估计
在识别了模型的形式后,我们就可以使用Eviews估计方程参数。

下面就对ARMA(1,2)模型其参数估计的结果。

图3 ARMA(1,2)模型估计结果
以上就是拟合ARMA(1,2)的结果,我们用yield
t
来表示时间序列,于是我们基于上述结果写出ARMA(1,2)的估计结果:
8193
.7
6898
.7
1577
.0
2
1948
.0
2
)
250664
050699
1(
19406
51
)
304925
.0
1(
2
=
=
=
-
=
+
-
+
=
-
准则
准则SC
AIC
R
R
ε
B
.
B
.
.
yield
B
t
t
对于ARMA(1,2)模型估计,其命令形式为:ls yield c ar(1) ma(1) ma(2)。

四、模型诊断检验
ARMA模型参数估计后,应该检验模型的确认是否正确,通常是对模型的残差序列进行白噪声检验。

图4 模型ARMA(1,2)的残差相关图和Q统计量
对残差序列进行白噪声检验,可以看出ACF和PACF都没有显著异于零,Q统计量的P值都远远大于0.05,因此可以认为残差序列为白噪声序列,模型信息提取比较充分。

常数和滞后一阶参数的P值都很小,参数显著;因此整个模型比较精简,模型较优。

在模型检验之后,我们还可以对模型优化,模型优化的主要判断标准就是AIC准则和SC准则。

在几个模型都符合要求,且也都有效参数显著,这个时候我就要通过比较AIC准则和SC准则,从而来确定最终的模型,当然是AIC准则和SC准则越小越优。

五、模型预测
通过上述的分析我们知道,模型ARMA(1,2)是合适的,因此,我们就基于它来进行预测。

在这我们利用模型对65到70的这几个数据进行预测,预测结果如下图:
图5 模型预测图
我们下面给出预测和实际值的对比表:
表2 65期到70期的yield预测值和实际值
从预测的效果来看,预测值和实际值之间还是存在比较大的差距的。

因此,我们还有必要选择更好的ARMA模型或者其他模型来提高预测的精度。

相关文档
最新文档