ANSYS热应力分析实例

合集下载

Ansys 热分析实例(多芯片组件加散热器(热沉)的冷却分析)

Ansys 热分析实例(多芯片组件加散热器(热沉)的冷却分析)

三.MCM温度场稳态分析多芯片组件加散热器(热沉)的冷却分析图1(a) 、图1(b) 所示分别为大功率球栅阵列MCM的截面图和俯视图,五个芯片采用倒装焊方式置于有机基板上,为了增加模块的散热能力,在芯片背面上加一热扩展面。

表1所示为各材料的物理属性。

周围的环境温度设为250 o C,其中大芯片的功率为25W,热流密度为60×106W/m3;周围四个小芯片的功率为10W,热流密度为61.54×106W/m3;对流换热系数为10W/(m·K)。

MCM结构参数和材料属性模型组件材料尺寸(mm)导热系数(W/(m﹒k))芯片硅8*8*0.65,5*5*0.65 82芯片凸点5Sn/98Pb 10*10*,6*6,Ø0.3,Height:0.2,Pitch:0.7536 基板聚酰亚胺40*40*1.5 0.2焊料球96.5Sn3.5Ag 26*26,Ø0.6, Height:0.4,Pitch:1.2750PCB FR4 100*100*1.5 8.37,8.37,0.32 热介质材料导热脂Thick:0.15 1粘接剂粘接剂Thick:0.15 1.1热扩展面铜40*40*1.5 390热沉铝Base:46.5*45.6*1.5,Pin number:16,Pinheight:8240分析从而导致器件性能变化和可靠性的下降。

热场分析和设计是MCM设计中一个重要的环节[3]。

MCM器件中的热应力来自两个方面,即来自MCM模块内部和MCM模块所处的外部环境所形成的热应力,这些热应力都会影响到器件的电性能、工作频率、机械强度和可靠性。

随着MCM集成度的提高和体积的缩小,尤其是对于集成了大功率芯片的MCM ,其内部具有多个热源,热源之间的热耦合作用较强,单位体积内的功耗很大,由此带来的芯片热失效和热退化现象突出。

有资料表明,器件的工作温度每升高10o C,其失效率增加1倍[4]。

ANSYS热应力分析经典例题

ANSYS热应力分析经典例题

ANSYS热应力分析例题实例1——圆简内部热应力分折:有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。

该问题属于轴对称问题。

由于圆筒无限长,忽略圆筒端部的热损失。

沿圆筒纵截面取宽度为10M的如图1 3—2所示的矩形截面作为几何模型。

在求解过程中采用间接求解法和直接求解法两种方法进行求解。

间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。

/filname,exercise1-jianjie/title,thermal stresses in a long/prep7 $Et,1,plane55Keyopt,1,3,1 $Mp,kxx,1,70Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2Lesize, all,,,20 $Lsel,s,,,2,4,2Lesize,all,,,5 $Amesh,1 $Finish/solu $Antype,staticLsel,s,,,4 $Nsll,s,1 $d,all,temp,200lsel,s,,,2 $nsll,s,1 $d,all,temp,20allsel $outpr,basic,allsolve $finish/post1 $Set,last/plopts,info,onPlnsol,temp $Finish/prep7 $Etchg,ttsKeyopt,1,3,1 $Keyopt,1,6,1Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,allLsel,s,,,2 $Nsll,s,1 $Cp,9,ux,allAllsel $Finish/solu $Antype,staticD,all,uy,0 $Ldread,temp,,,,,,rthAllsel $Solve $Finish/post1/title,radial stress contoursPlnsol,s,x/title,axial stress contoursPlnsol,s,y/title,circular stress contoursPlnsol,s,z/title,equvialent stress contoursPlnsol,s,eqv $finish/filname,exercise1-zhijie/title,thermal stresses in a long/prep7 $Et,1,plane13Keyopt,1,1,4 $Keyopt,1,3,1Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28MP,KXX,1,70Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2Lesize, all,,,20 $Lsel,s,,,2,4,2Lesize,all,,,5 $Amesh,1Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,allLsel,s,,,2 $Nsll,s,1 $Cp,9,ux,allALLSEL $Finish/solu $Antype,staticLsel,s,,,4 $Nsll,s,1 $d,all,temp,200lsel,s,,,2 $nsll,s,1 $d,all,temp,20allsel $outpr,basic,allsolve $finish/post1 $Set,last/plopts,info,onPlnsol,temp/title,radial stress contoursPlnsol,s,x/title,axial stress contoursPlnsol,s,y/title,circular stress contoursPlnsol,s,z/title,equvialent stress contoursPlnsol,s,eqv $finish318页实例2——冷却栅管的热应力分析图中为一冷却栅管的轴对称结构示意图,其中管内为热流体,温度为200℃,压力为10Mp,对流系数为11 0W/(m2•℃);管外为空气,温度为25℃,对流系数为30w/(mz.℃)。

ANSYS热应力分析实例

ANSYS热应力分析实例

6
设置材料属性
1.给定材料的导热系数40W/(m·℃) 。
Main Menu> Preprocessor> Material Props> Material Models
7
建立实体模型(国际单位制)
1. 创建矩形A1:x1,y1(0,0)、x2,y2(0.01,0.07) MainMenu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimensions 2. 创建矩形A2:x1,y1(0,0.05)、x2,y2(0.08,0.07) 3.显示面的编号 Utility Menu>PlotCtrls>Numbering 4. 对面A1和A2进行overlap操作 Main Menu>Preprocessor>Modeling>Operate>Booleans> Overlap>Areas
12
13
求解
Main Menu>Solution>Solve>Current LS
14
查看温度场分布
Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu
15
16
保存
稳态温度场计算完毕,下面修改分析文件名称,进行热应力计算。
注:S标志表示对称约束。
28
求解
Main Menu>Solution>Solve>Current LS
29
查看计算结果
Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu

8-2传热及温度应力分析ANSYS算例

8-2传热及温度应力分析ANSYS算例

(13) 定义材料参数 Main Menu → Preprocessor → Material Props → Material Models → Material Models Available: Structural(双击打开子菜单) → Linear(双击) → Elastic (双击)→ Isotropic(双击) → EX: 2.0e5 (弹性模量) ,PRXY:0.3 (泊松比)→ OK →转到Material Models Available: Thermal Expansion(双击) →Secant Coefficient (双击)→ Isotropic(双击) →ALPX:1.2E-5(平均线膨胀系数) → OK →关闭材料 定义菜单(点击菜单的右上角X)
(3) 设置计算类型 Main Menu: Preferences… → select Thermal, steady → OK
(4) 选择单元类型 Main Menu: Preprocessor → Element Type → Add/Edit/Delete → Add → Thermal Solid,
【ANSYS 应用实例 2.1】 焊接接头稳态传热过程的数值模拟
如图 2-1 所示,圆形的冷凝管通过法兰接头进行对接。接头的制作方法如下:先把法兰 移动到圆管接头位置,然后沿圆周焊接两道次,把法兰连接到圆管上。用螺栓把两个法兰接 头拉紧,法兰之间压上一块垫片。圆管内的液体温度为 0℃,蒸汽冷凝在圆管的外表面上, 蒸汽温度为 100℃。圆管内表面换热系数为 5000W/m2K,外表面换热系数为 20000 W/m2K。
UNIT2-2
TH-FEA(应用实例-UNIT2)
清华大学 曾攀
(6) 生成几何模型 Main Menu: Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT

四个ANSYS热分析经典例子

四个ANSYS热分析经典例子

实例1:某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。

几何参数:筒外径30 feet总壁厚2 inch不锈钢层壁厚0.75inch玻纤层壁厚 1 inch铝层壁厚0.25i nch筒长200 feet导热系数不锈钢8.27BTU/hr.ft. o F玻纤0.028 BTU/hr.ft. o F铝117.4 BTU/hr.ft. o F边界条件空气温度70 o F海水温度44.5 o F空气对流系数2.5 BTU/hr.ft 2.0F海水对流系数80 BTU/hr.ft 2.o F沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。

空气'玻璃纤维、1*:不锈钢:3/+M海水R15 feet/filename ,Steady1 /title ,Steady-state thermal analysis of submarine /units ,BFT Ro=15 !外径(ft)Rss=15-(0.75/12) ! 不锈钢层内径ft) Rins=15-(1.75/12) ! 玻璃纤维层内径(ft) Ral=15-(2/12) ! 铝层内径(ft) Tair=70 ! 潜水艇内空气温度Tsea=44.5 !海水温度Kss=8.27 ! 不锈钢的导热系数(BTU/hr.ft.oF) Kins=0.028 ! 玻璃纤维的导热系数(BTU/hr.ft.oF)Kal=117.4 ! 铝的导热系数(BTU/hr.ft.oF) Hair=2.5 ! 空气的对流系数(BTU/hr.ft2.oF) Hsea=80 ! 海水的对流系数(BTU/hr.ft2.oF) prep7et,1,plane55 !定义二维热单元mp,kxx ,1,Kss !设定不锈钢的导热系数mp,kxx ,2,Kins !设定玻璃纤维的导热系数mp,kxx ,3,Kal !设定铝的导热系数pcirc,Ro,Rss,-0.5,0.5 !创建几何模型pcirc ,Rss,Rins ,-0.5 ,0.5 pcirc ,Rins,Ral,-0.5 ,0.5 aglue,all numcmp,area lesize,1,,,16 !设定划分网格密度lesize,4,,,4 lesize,14,,,5 lesize,16,,,2 Mshape,2 ! 设定为映射网格划分mat,1 amesh,1 mat,2 amesh,2 mat,3 amesh,3 /SOLUSFL,11,CONV ,HAIR ,,TAIR ! 施加空气对流边界SFL,1,CONV ,HSEA ,,TSEA !施加海水对流边界SOLVE /POST1PLNSOL !输出温度彩色云图finish实例2一圆筒形的罐有一接管,罐外径为 3英尺,壁厚为0.2英尺,接管外径为0.5英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端部。

ANSYS热应力分析实例

ANSYS热应力分析实例

热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。

管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。

管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。

求温度及应力分布。

7.3.2菜单操作过程7.3.2.1设置分析标题1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。

2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。

7.3.2.2进入热分析,定义热单元和热材料属性1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。

2、设定导热系数:选择“Main Menu>Preprocessor>Material Porps>Ma terial Models”,点击Thermal,Conductivity,Isotropic,输入1.25。

7.3.2.3创建模型1、创建八个关键点,选择“Main Menu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:3、设定单元尺寸,并划分网格:“Main Menu>Preprocessor>Meshtool”,设定global size为0.125,选择AREA,Mapped,Mesh,点击Pick all。

7.3.2.4施加荷载1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK,选择管内壁节点;2、在管内壁节点上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数1,流体环境温度450。

《有限元教程》20例ANSYS经典实例

《有限元教程》20例ANSYS经典实例

《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。

其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。

下面将介绍《有限元教程》中的20个ANSYS经典实例。

1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。

2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。

3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。

4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。

5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。

6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。

7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。

8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。

9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。

10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。

11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。

12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。

13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。

14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。

15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。

16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。

17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。

18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。

19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。

ANSYS热应力分析实例解析

ANSYS热应力分析实例解析

23
双击“Thermal Expansion、Secant Coefficient、Isotropic”。
24
输入热膨胀系数为15e-6,参考温度20。
25
施加载荷
1.施加温度载荷。 Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Temperature>From Therm Analy
3
重点学习内容
1.间接法热应力分析步骤。 2.掌握平面应变的解决方案。 3.掌握对称结构分析方案。 4. 掌握稳态温度场计算方法。
4
更改文件名
更改文件名:Utility Menu> File> Change Jobname
5
选择单元
选择55号单元
Main Menu> Preprocessor> Element Type> Add/Edit/Delete
6
设置材料属性
1.给定材料的导热系数40W/(m·℃) 。
Main Menu> Preprocessor> Material Props> Material Models
7
建立实体模型(国际单位制)
1. 创建矩形A1:x1,y1(0,0)、x2,y2(0.01,0.07) MainMenu>Preprocessor>Modeling>Create>Areas>Rectangle>By Dimensions 2. 创建矩形A2:x1,y1(0,0.05)、x2,y2(0.08,0.07) 3.显示面的编号 Utility Menu>PlotCtrls>Numbering 4. 对面A1和A2进行overlap操作 Main Menu>Preprocessor>Modeling>Operate>Booleans> Overlap>Areas
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。

管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。

管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。

求温度及应力分布。

7.3.2菜单操作过程7.3.2.1设置分析标题1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。

2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。

7.3.2.2进入热分析,定义热单元和热材料属性1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。

2、设定导热系数:选择“Main Menu>Preprocessor>Mate rial Porps>Material Models”,点击Thermal,Conductivity,Isotropic,输入1.25。

7.3.2.3创建模型1、创建八个关键点,选择“Main Menu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:3、设定单元尺寸,并划分网格:“Main Menu>Preprocessor>Meshtool”,设定global size为0.125,选择AREA,Mapped,Mesh,点击Pick all。

7.3.2.4施加荷载1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK,选择管内壁节点;2、在管内壁节点上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数1,流体环境温度450。

3、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入6,12,点击Apply;4、选择“Utili ty Menu>Select>Entities>Nodes>By location>Y coordinates,Reselect”,输入0.25,1,点击Apply;5、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入12,点击OK;6、在管外边界上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数0.25,流体环境温度70。

7.3.2.5求解1、选择“Utility Menu>Select>Select Everything”。

2、选择“Main Menu>Solution>Solve Current LS”。

7.3.2.6后处理1、显示温度分布:选择“Main Menu>General Postproc>Plot Result>Nodal Solution>Temperature”。

7.3.2.7重新进入前处理,改变单元,定义结构材料1、选择“Main Menu>Preprocessor>Element Type>Switch Elem Type”,选择Thermal to Structure。

2、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,点击Option,将结构单元设置为轴对称。

3、选择“Main Menu>Preprocessor>Material Porps>Material Models”,输入材料的EX为28E6,PRXY为0.3,ALPX为0.9E-5。

7.3.2.8定义对称边界条件1、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,From Full”,输入0,点击Apply;2、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入1,点击Apply;3、选择“Main Menu>Solution>Apply>Displacement>Symmetry B.C. On Nodes”,点击Pick All,选择Y axis,点击OK;7.3.2.8施加管内壁压力1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK;2、选择“Main Menu>Solution>Apply>Pressure>On nodes”,点击Pick All,输入1000。

7.3.2.9设置参考温度1、选择“Utility Menu>Select>Select Everything”。

2、选择“Mai n Menu>Solution>-Loads-Setting>Reference Temp”输入70。

7.3.2.10读入热分析结果1、选择“Main Menu>Solution>Apply>Temperature>From Thermal Analysis>”,选择PIPE_FIN.rth。

7.3.2.11求解选择“Main Menu>Solution>Solve Current LS”。

7.3.2.12后处理选择“Main Menu>General Postpro>Plot Result>NodalSolution>Stress>Von Mises”。

显示等效应力。

7.3.3等效的命令流方法/filename,pipe_fin/TITLE,Thermal-Stress Analysis of a cooling fin/prep7!进入前处理et,1,plane55!定义热单元keyopt,1,3,1!定义轴对称mp,kxx,1,1.25!定义导热系数k,1,5!建模k,2,6k,3,12k,4,12,0.25k,5,6,0.25k,6,6,1k,7,5,1k,8,5,0.25a,1,2,5,8a,2,3,4,5a,8,5,6,7esize,0.125!定义网格尺寸amesh,all!划分网格eplotfinish/solu!热分析求解nsel,s,loc,x,5!选择内表面节点sf,all,conv,1,450!施加对流边界条件nsel,s,loc,x,6,12!选择外表面节点nsel,r,loc,y,0.25,1nsel,a,loc,x,12sf,all,conv,0.25,70!施加对流边界条件nsel,all/pse,conv,hcoef,1nplotsolve!求解生成PIPE_FIN.rth文件finish/post1plnsol,temp!得到温度场分布finish/prep7 !重新进入前处理etchg,tts!将热单元转换为结构单元plane42keyopt,1,3,1!定义轴对称特性mp,ex,1,28e6!定义弹性模量mp,nuxy,1,0.3!定义泊松比mp,alpx,1,0.9e-5!定义热膨胀系数finish/solu!进入结构分析求解nsel,s,loc,y,0!选择对称边界nsel,a,loc,y,1dsym,symm,y!定义对称条件nsel,s,loc,x,5!选择内表面sf,all,pres,1000!施加压力边界条件nsel,all/pbc,all,1/psf,pres,,1nplottref,70!设定参考温度ldread,temp,,,,,,rth!读入PIPE_FIN.rth节点温度/pbc,all,0/psf,pres,,0分布/pbf,temp,,1eplotsolve!求解finish/post1,plnsol,s,eqv!得到等效应力finish7.4直接法热应力分析实例7.4.1问题描述两个同心圆管之间有一个小间隙,内管中突然流入一种热流体,求经过3分钟后外管表面的温度。

已知条件:管材弹性模量:2E11N/m2热膨胀系数:5E-41/ oF泊松比:0.3导热系数:10W/m.oC密度:7880Kg/m3比热:500J/Kg.oC外管外半径:0.131 m外管内半径:0.121 m内管外半径:0.12m内管内半径:0.11m流体温度:300oC流体与内管内壁对流系数:300W/m2.oC内、外管接触热导:0.1W/oC7.4.2命令流方法/filename,contact_thermal/title,contact_thermal example/prep7et,1,13,4,,1! 选择直接耦合单元PLANE13,单元自由度为ux,uy,temp! 定义为轴对称et,2,48! 定义结构接触单元keyopt,2,1,1! 设定接触单元的相应选项keyopt,2,2,1keyopt,2,7,1r,2,2e11,0,0.0001,,,0.1! 定义接触单元实常数mp,ex,1,2e11! 定义管材结构及热属性mp,alpx,1,5e-5mp,kxx,1,10mp,dens,1,7880mp,c,1,500rect,0.11,0.12,0,0.02! 建模rect,0.121,0.131,0,0.02amesh,allnsel,s,loc,x,0.11! 将内管内壁的X方向位移及温度耦合cp,1,ux,allcp,2,temp,allnsel,s,loc,x,0.12! 将内管外壁的X方向位移及温度耦合cp,3,ux,allcp,4,temp,allnsel,s.loc,x,0.121! 将外管内壁的X方向位移及温度耦合cp,5,ux,allcp,6,temp,allnsel,s,loc,x,0.131! 将外管外壁的X方向位移及温度耦合cp,7,ux,allcp,8,temp,allnsel,s,loc,y,0.02! 将内管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0,0.12cp,9,uy,allnsel,s,loc,y,0.02! 将外管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0.121,0.131cp,10,uy,allnsel,s,loc,x,0.12! 创建接触单元cm,cont,nodensel,s,loc,x,0.121cm,targ,nodetype,2real,2gcgen,cont,targ,3/soluantype,trans! 瞬态分析tunif,20! 初始平均温度tref,20! 参考温度sfl,4,conv,300,,300! 内管内壁对流边界sfl,6,conv,10,,20! 外管外壁对流边界nsel,s,loc,y,0! 约束所有底边单元的Y向位移d,all,uy,0time,180! 载荷步时间deltime,10,5,15! 定义时间步长outres,all,allkbc,1autots,on! 自动时间步长allselsolve! 求解/post1plnsol,temp! 显示温度分布plnsol,s,eqv! 显示等效应力。

相关文档
最新文档