第8章-史密斯预估控制说课讲解
Smith预估控制原理

R(S)
这样,引入了Smith预估器后,系统 中等效对象的传递函数就不含纯滞 s 后环节 e 部分
_
D(S)
G(s)
e s
显然,经Smith预估补偿后,已消除了纯滞后部分对控制系统的影响,而受控制对象的纯 滞后部分在等效系统的闭环控制回路之外,不影响系统的稳定性。所以对任何纯滞后时 间,系统都是稳定的。
u (t ) K P e(t ) TI
e(t )d (t ) T
0
D
dt
式中u(t)-控制器的输出; e(t)-控制器的输入,它是给定值和被控对象输出的差,称为偏差 信号;
K P -控制器的比例系数;
TI
TD
-控制器的积分时间; -控制器的微分时间。
PID控制器各控制规律的作用如下: (1)比例控制(P):比例控制是一种最简单的控制方式。其控制器的输 出与输入误差信号成比例关系,能较快克服扰动,使系统稳定下来。但当仅 有比例控制时系统输出存在稳态误差 (2)积分控制(I):在积分控制中,控制器的输出与输入误差信号的积分 成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称 此控制系统是有差系统。为了消除稳态误差,在控制器中必须引入“积分项” 积分项对误差的累积取决于时间的积分,随着时间的增加,积分项会越大。 这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输 出增大使稳态误差进一步减小,直到等于零。但是过大的积分速度会降低系统 的稳定程度,出现发散的振荡过程。比例+积分(PI)控制器,可以使系统在进 入稳态后无稳态误差。 (3)微分控制(D):在微分控制中,控制器的输出与输入误差信号的微分 (即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能 会出现振荡甚至失稳。其原因是由于存在有较大惯性环节或有滞后环节,具有 抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的 作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
斯密斯预估控制器

施密斯预估控制姓名:学号:班级:1 实验目的对大多数控制系统,采用常规的控制技术均可以达到满意的控制效果,但对于复杂及特殊要求的控制系统,采用常规的控制室技术很难达到目的,在这种情况下,就需要采用复杂控制技术,其中Smith 预估控制算法是常用的一种,通过本实验加深对Smith 预估控制算法的理解和掌握。
2 实验原理图1为被控对象具有纯滞后特性的单回路反馈控制系统,D (s )是控制器,被控对象的传递函数为etss -)(G p ,其中,)(G p s 为被控对象中不包含纯滞后部分的传递函数,ts-e为被控对象纯滞后部分的传递函数。
)(t r )(t e )(t u )(t y_施密斯预估原理:与D (s )并接一补偿环节,用来补偿被控对象中的纯滞后部分,这个补偿环节称为预估器,其传递函数为)1)((G p tse s --,t 为纯滞后时间,补偿后的系统结构如图2所示。
)(t r )(t e )(t u )(t y_ _)(t y τ由施密斯预估控制器)1)((G p tses --和控制器D (s )组成的回路陈伟纯滞后补偿器,)(s Ds e s τ-)(G p)(s Ds e s τ-)(G p)1)((G p ts e s --其传递函数为:)1)(()(1)()(D m s p e s G s D s D s τ--+=经过补偿后的系统闭环传递函数为:s p p sp m sp m e s G s D s G s D es G s D e s G s D τττ---+=+=Φ)()(1)()()()(1)()(s )(该式说明,进过补偿后,消除了之后部分对控制系统的影响,因为式中ts-e 在闭环控制回路之外,不影响系统的稳定性。
设广义被控对象为:1011()()()1Ts s se e H s G s G s es T sττ----==⋅+取T=1、τ=2、T 1=2.88,经采样(T=1s )保持后,其广义对象z 传递函数为00.2934()0.7066G z z =-,而2se -转换为2个单位迟延。
内模控制和Smith预估器

第五节 Smith 预估控制Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。
一、Smith 预估控制原理预估控制系统原理图如图7-24所示。
(a) 预估控制系统原理框图 (b) Smith 预估器图7-24 预估控制系统原理图 图中,s e s G τ−)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象;)(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ−−=1)()(p m ;)(s D 为(前馈)内模控制器;)(s d 为扰动;)(s R 为参考输入;)(s Y 为被控对象输出;)(m s Y 为内部模型输出。
由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。
在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。
现在,系统中假设没有补偿器(预估器),则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ−=)()()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。
若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即)()()()(m p s G e s G s U s Y s +=′−τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足)()())(()()(p m p s G s G e s s G s U s Y s =+=′−τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为()s e s G s G τ−−=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为)()(1)()()1)(()(1)()(1)1)(()(1)()()()(p p p p p p s G s D e s G s D e s G s D e s G s D e s G s D e s G s D s R s Y s s s s+=−++−+=−−−−−ττττ (7-54) 由上式可以明显看出,在系统的特征方程中,已经不含有s e τ−项。
Smith预估控制原理

R(S)
这样,引入了Smith预估器后,系统 中等效对象的传递函数就不含纯滞 s 后环节 e 部分
_
D(S)
G(s)
e s
显然,经Smith预估补偿后,已消除了纯滞后部分对控制系统的影响,而受控制对象的纯 滞后部分在等效系统的闭环控制回路之外,不影响系统的稳定性。所以对任何纯滞后时 间,系统都是稳定的。
u (t ) K P e(t ) TI
e(t )d (t ) T
0
D
dt
式中u(t)-控制器的输出; e(t)-控制器的输入,它是给定值和被控对象输出的差,称为偏差 信号;
K P -控制器的比例系数;
TI
TD
-控制器的积分时间; -控制器的微分时间。
PID控制器各控制规律的作用如下: (1)比例控制(P):比例控制是一种最简单的控制方式。其控制器的输 出与输入误差信号成比例关系,能较快克服扰动,使系统稳定下来。但当仅 有比例控制时系统输出存在稳态误差 (2)积分控制(I):在积分控制中,控制器的输出与输入误差信号的积分 成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称 此控制系统是有差系统。为了消除稳态误差,在控制器中必须引入“积分项” 积分项对误差的累积取决于时间的积分,随着时间的增加,积分项会越大。 这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输 出增大使稳态误差进一步减小,直到等于零。但是过大的积分速度会降低系统 的稳定程度,出现发散的振荡过程。比例+积分(PI)控制器,可以使系统在进 入稳态后无稳态误差。 (3)微分控制(D):在微分控制中,控制器的输出与输入误差信号的微分 (即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能 会出现振荡甚至失稳。其原因是由于存在有较大惯性环节或有滞后环节,具有 抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的 作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
Smith预估器控制设计【计算机课程设计专用】

b)电流输出,稳定时间为1s
c)可双缓冲输入,单缓冲输入或直接数字输入,单一电源供电
DA转换器的电路设计:
(1)参考电压选择+5V,直接与供电电源相连。
(2)选择DAC为单缓冲方式,即输入寄存器工作于受控状态,DAC寄存器处于直通状态,由DAC0832的引脚特性,将DAC0832的引脚接发如下:
uchar UK0,UK1;//分别为k,k-1时刻的控制器的输出
uchar EK0,EK1;//分别为k,k-1时刻的AD的输入
uint i=0;
uchar in0=0; //系统输入采样
void delay(uchar time)//延时
{
uchar i,j;
for(i=0;i<time;i++)
OE=0;
return value;
}
main()
{
C1K0=C1K1=C1K2=C1K3=C1K4=C1K5=C1K6=C1K7=C1K8 =C1K9=C1K10=C1K11=C1K12=0; //系统初始化
UK0=UK1=0;
CK1=0;
EK1=0;
wr=0;
rd=0;
ST=0;
OE=0;
TMOD=0X01; //定时器0控制方式1,16位的定时器计数器
EK1=EK0;
DAC08=0X58;
TH0=0X9E; //延时50ms
EA=1;
}
六、设计工作总结
采用带Smith预估器控制的设计与传统的PID控制设计相比,大大的减少了响应曲线的超调,同时也加快了系统的响应过程,增加了系统的稳定性,使系统逐渐趋于稳定,达到了预期控制的目的。
{
史密斯预估器ppt课件

.
2
史密斯(Smits)es
GP(s)是G(s)中不含纯滞后特性的部分
r(t)
e(t)
D(s)
u(t)
y(t)
GP(s)e-τs
+-
史密斯预估器的原理:与D(s)并联一个补偿环节,用来补偿对象 中的纯滞后环节。
这个补偿环节叫做预估器。
它的传递函数:
GP(s)(1es)
1(s)1DD (s()sG)G P(Ps()s)
(s) 1(s)eS
.
5
.
(4 .4 1 )
4
经过补偿后的闭环系统,因其滞后特性e-τs相当于已到了闭环 回路之外,它相当于下面的系统
(s) D(s)GP(s) es 1D(s)GP(s)
r(t)
e(t)
+-
D(s) u(t) GP(s) y1(t) e-τs y(t)
它不影响系统的稳定性,只是将y1(t)后移了一段时间。其控 制性能相当于无滞后系统
纯滞后对象的控制算法
在工业生产的控制中,有许多控制对象含有较大的纯滞 后特性。
被控对象的纯滞后时间τ使系统的稳定性降低,动态性能变 坏,如容易引起超调和持续的振荡。
对象的纯滞后特性给控制器的设计带来困难。 纯滞后补偿控制——史密斯(Smith)预估器 大林(Dahlin)算法
.
1
• Smith预估控制是一种广泛应用的对纯滞后对象进行补偿的控 制方法,实际应用中,表现为给PID控制器并接一个补偿环节, 该补偿环节称为Smith预估器。
• Smith预估补偿是在系统的反馈回路中引入补偿装置,将控制 通道传递函数中的纯滞后部分与其他部分分离。
• 其特点是预先估计出系统在给定信号下的动态特性,然后由预 估器进行补偿,力图使被延迟了的被调量超前反映到调节器, 使调节器提前动作,从而减少超调量并加速调节过程。
第8章史密斯预估控制

但是对于图8-1所示的PID控制方案,微分环节的输入是对偏差作 了比例积分运算后的值。因此,实际上微分环节不能真正起到对被控 参数变化速度进行校正的目的,克服动态超调的作用是有限的。
如果将微分环节更换一个位置(见图8-3所示),则微分作用克服 超调的能力就大不相同了。这种控制方案称为微分先行控制方案。
因此,这样的过程必然会产生较明显的超调量和较 长的调节时间。所以,具有纯滞后的过程被公认为是较难 控制的过程,其难度将随着纯滞后时间占整个过程动态时 间份额的增加而增加。
第8章基于模型的控制方法
典型的工艺过程实例——带传输过程 在工业生产过程中,一些块状或粉状的物料,例如硫酸生产
中沸腾焙烧炉的硫铁矿进料、热电厂燃煤锅炉的煤粉进料等,需 用图8-1所示的带运输机进行输送。
第8章基于模型的控制方法
第8章 基于模型的控制方法
自动化131-3、机电131
第8章基于模型的控制方法
8.1 史密斯预估控制
在工业生产过程中,被控对象除了具有容积滞后外,往往不同 程度地存在着纯滞后。 特点:
当控制作用产生后,在时延时间范围内,被控参数完全没有响应。 例如:
在热交换器中,被控变量为被加热物料的出口温度,而操作变 量为载热介质的流量,当改变载热介质流量后,对物料出口温度的 影响必然要滞后一段时间,即介质经管道所需的时间。
第8章基于模型的控制方法
图8-l为常规反馈控制方案,其中“广义对象”包括除控制器 外的所有环节,通常由执行机构、被控对象、传感变送单元等部 分组成。对象特性均用KpGp(s)e-τs表示,其中Kp表示对象的静态 增益,Gp(s)表示除去纯滞后环节和静态增益后剩下的动态特性。 对于Kp=2,Tp=4min,τ=4min的一阶加纯滞后对象,若采用常规 PID进行反馈控制,其最佳PID整定参数为:Kc=0.6,Ti=8min, Td=0min;对应的设定值跟踪响应如图8-2所示。
浅谈Smith预估控制及其改进算法

1引 言
缺 点就 是太 过依 赖精确 的数 学模 型 , 当估计 模 型与实
在 工业过 程控 制领域 中 , 许多 被控 制对 象都不 同
程 度存 在着 时滞 现象 , mi S t 估 补偿 控制 方 法最 大 h预 的优点 是将 闭环特 征方程 中的时滞 去掉 了, 因而有 时 滞 过程 的设计 问题 就转化 成无 时滞 的问题 。
第 2 卷第 3 8 期
Vo . 8 ‘ 【2 N0. 3
萍 乡高等 专科 学校 学报
J u n l fP n xa g Colg o r a ig in l e o e
2l 年 6 O1 月
Jn.O1 u e 2 1
浅 谈 Sm ih 预 估 控 制 及 其 改 进 算 法 t
入补 偿装 置 , 控制通 道传 递 函数 中的纯 滞后 部分 与 将
其他 部分 分离 , 其特 点是 预先估 计 出系统 在 给定 的信 号下 的动态 特 性 , 然后 由预估 器 进 行补 偿 , 图使 被 力
个没 有时滞 的被 调节量 反馈 到控 制器 , 使得 整个 系统
的控 制犹 如没有 时滞环 节 。 的结构 是在 常规控 制器 它 上 并 联 一个 时滞 预估 器 , 而 构 成 S t 从 mi h预 估 控 制 器。 当预估 模型完 全准 确 时 , 系统 闭环特 征方 程 , 该 其 中, 是控 制器 的传 递 函数 , 是对 象 的传递 函数 。可见 , S t mi h预估 控 制 系统 的最 大 优 点 就是 将 时 滞 环 节 移 到 了闭环 之外 , 使控 制 品质 大 大提高 。 是 , 最大 的 但 其
张斌 , 子 良 : 钟 浅谈 S t mi h预 估 控 制及 其 改进 算 法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章史密斯预估控制
由此可见,由于纯滞后环节的存在,使被调量存在较 大的超调,且响应速度很慢,如果在控制精度要求很高的 场合,则需要采取其他控制手段,例如补偿控制、采样控 制等。
第8章史密斯预估控制
8.1 史密斯补偿概述
在纯滞后系统中采用的补偿方法不同于前馈补偿,它是按照 过程的特性设想出一种模型加入到原来的反馈控制系统中,以补偿 过程的动态特性。这种补偿反馈也因其构成模型的方法不同而形成 不同的方案。
第8章史密斯预估控制
第8章-史密斯预估控制
第8章史密斯预估控制
此外,如反应器、管道混合、皮带传输以及用分析仪表测量 流体的成分等过程都存在着较大的纯滞后。
在这些过程中,由于纯滞后的存在,使得被控变量不能及时 反映系统所受的扰动,即使测量信号到达控制器,执行机构接受 调节信号后立即动作,也需要一段纯滞后以后,才会影响被控变 量,使之受到控制。
Y R((ss))1GG c(cs()sG )G 0(0s()se)ess 对干扰量的闭环传递函数为
Y F((ss))1Gc(G s)fG (s0)(s)es
在上两式的特征方程中,由于引入了e- s项,使闭环系统的品质大大 恶化。
若能将G0(s)与e- s分开并以G0(s)为过程控制通道的传递函数,以G0(s) 的输出信号作为反馈信号,则可大大改善控制品质。
第8章史密斯预估控制
史密斯预估控制: G m (s)G 0(s)1 (e s)
Y(s) Gc(s)G0(s)es R(s) 1Gc(s)G0(s)
第8章史密斯预估控制
【例8-1】 对一阶惯性加纯滞后的过程进行单回路控制和加入史密斯 预估器进行控制。设过程参数kp=2, =4 ,Tp=4,当调节器参数Kc =20,TI=1min时,系统在设定值扰动(设x=10.1(t))下的响应曲线 如图8-6所示。其中: 黑线是经过史密斯预估器补偿后的响应曲线,其超调量仅为 0.32,调节时间缩短到8s,与单回路PID控制(图中红线所示)相比, 效果十分显著。
因此,这样的过程必然会产生较明显的超调量和较长的调节 时间。所以,具有纯滞后的过程被公认为是较难控制的过程,其 难度将随着纯滞后时间占整个过程动态时间份额的增加而增加。
第8章史密斯预估控制
一般说来,在过程的动态特性中,大多既包含纯滞后时间, 又包含惯性时间常数T,通常用/T比值来衡量过程纯滞后的严 重程度。
第8章史密斯预估控制
图8-l为常规反馈控制方案,其中“广义对象”包括除控制器 外的所有环节,通常由执行机构、被控对象、传感变送单元等部 分组成。对象特性均用KpGp(s)e-τs表示,其中Kp表示对象的静态 增益,Gp(s)表示除去纯滞后环节和静态增益后剩下的动态特性。 对于Kp=2,Tp=4min,τ=4min的一阶加纯滞后对象,若采用常规 PID进行反馈控制,其最佳PID整定参数为:Kc=0.6,Ti=8min, Td=0min;对应的设定值跟踪响应如图8-2所示。
图中:
G0(s)是被控过程除去纯滞后环节 e- s后的传递函数。
Y1(s)
Gm(s)是史密斯预估器的传递函数。 假如无此预估器,则由控制器
输出u(s)到被控量Y(s)之间的传递函数为:
图8-4史密斯预估控制系统框图
Y(s) u(s)
G0(s)es
上式表明,受到调节作用之后的被控量要经过滞后时间之后才 能返回到控制器。
第8章史密斯预估控制
第8章史密斯预估控制
系)es R(s) 1Gc(s)G0(s)
很显然,此时在系统的特征方程中,已不包含e-τs项。这就是 说,这个系统已经消除了纯滞后对系统控制品质的影响。当然闭环 传递函数分子上的e-τs说明被调量y(t)的响应还比设定值迟延τ时间。
y(t)
10
5
0
5 10 15
20 25
30
t/s
图8图-66-系23 统系 统在在设设定定 值值扰扰动动下 的下过的渡过过 程渡过程
史密斯(Smith,1958)预估补偿器是最早提出的纯滞后补偿方案 之一。其基本思想是将纯滞后环节移至控制回路外。
第8章史密斯预估控制
设G0(s) e- s为过程控制通道特性,其中G0(s)为过程不包含纯滞后部分的传递 函数;Gf(s)为过程扰动通道传递函数(不考虑纯滞后);Gc(s)为控制器 的传递函数,则单回路系统闭环传递函数为:
若/T<0.3,称为一般滞后过程; 若/T>0.3,则称之为大滞后过程。当纯滞后时间τ与过程 的时间常数T之比增大,滞后现象更为突出,有时甚至会引起系 统的不稳定,被调量超过安全限,从而危及设备与人身安全。 因此大纯滞后过程一直受到人们的关注,成为重要的研究课 题之一。 解决纯滞后影响的方法很多,最简单的则是利用常规PID调 节器适应性强、调整方便的特点,经过仔细的参数整定,在控制 要求不太苛刻的情况下,可以满足生产过程的要求。
但是实际工业过程中G0(s)与e- s是不可分割的,所以Smith提出如图 8-4所示采用等效补偿的方法来实现。
第8章史密斯预估控制
8.2史密斯预估控制的特点:
预先估计出过程在干扰作用下的动态特性,然后由预估器进行 补偿,力图使被时延了时间的被控量超前反映到控制器的输入端, 使控制器提前动作,从而明显地减小超调量和加速调节过程。其控 制系统方块图如图8-4所示。
第8章史密斯预估控制
若系统采用预估补偿器,则调节量u(s)与反馈到调节器的信号 Y1(s)之间的传递函数是两个并联通道之和,即
Y u1((ss)) G0(s)es Gm(s)
为使调节器采集的信号Y1(s)与调节量u(s)不存在纯滞后时间,则 要求上式为
Y u1((ss)) G 0(s)G 0(s)esG m(s)
从上式便可得到预估补偿器Gm(s)的传递函数为
G m (s)G 0(s)1 (e s)
一般称上式表示的预估器为史密斯预估器。其实施框图如图8-5所示。
第8章史密斯预估控制
求和点前移
图8-5史密斯预估控制实施框图
在实际应用中,史密斯预估器并不是接在被控对象上,而是反向 并接在控制器上,则纯滞后补偿控制系统如上图所示。