污泥干燥技术

合集下载

论述污泥干燥的基本原理

论述污泥干燥的基本原理

论述污泥干燥的基本原理污泥干燥技术是将污泥中的水分蒸发除去,使其达到一定的干燥程度的过程。

污泥干燥的基本原理主要包括水分蒸发和溶质传递两个方面。

首先,水分蒸发是污泥干燥的基本原理之一。

污泥中的水份存在于两个形式,一个是结合水,它和一个固体结合在一起;另一个是游离水,即污泥中的自由水。

在干燥过程中,首先是自由水从表层开始蒸发,然后逐渐侵入污泥的内部,最后污泥中的结合水也开始蒸发。

水分蒸发是通过给污泥提供热量,使水分分子的动力增加,从而跳出污泥颗粒之间的结合力,最终蒸发为水蒸汽。

其次,溶质传递是污泥干燥的另一个基本原理。

污泥中含有各种有机物、无机盐和重金属等溶质,当水分蒸发时,这些溶质会逐渐浓集在污泥颗粒中。

这是因为在污泥干燥过程中,水分蒸发速度较快,而溶质传递速度较慢。

溶质传递过程中,主要是通过水的传递和质量传递两种方式来实现。

一方面,水分的蒸发带走了一部分溶质;另一方面,溶质也可以通过迁移、扩散、对流等方式从污泥颗粒中传递出来。

在实际的污泥干燥过程中,为了高效地蒸发污泥中的水分,常常借助一些辅助设备和工艺。

常见的污泥干燥设备有滤板脱水机、离心脱水机、污泥干燥床等。

其中,滤板脱水机又称为压滤机,主要是通过过滤介质的作用将污泥中的自由水脱除;离心脱水机则是通过高速旋转离心力将污泥内外表面的水分分离;而污泥干燥床则是通过热风对污泥进行干燥,利用热风的传导和对流作用加速水分蒸发。

此外,在污泥干燥过程中,还可以通过调节干燥温度、气流速度和湿度等参数来控制干燥效果。

其中,干燥温度是影响污泥干燥速度的关键因素之一,通常情况下,提高干燥温度可以加快水分蒸发速度。

然而,过高的温度可能会导致溶质的挥发和有机物的分解,从而影响干燥后的污泥性质。

因此,合理控制干燥温度,使其既能满足干燥效果要求,又不会引起其他不良反应是非常重要的。

总之,污泥干燥的基本原理是通过提供热量驱动污泥中的水分蒸发,并通过溶质传递将污泥中的溶质浓缩。

污水处理技术之污泥干化技术

污水处理技术之污泥干化技术
3工作原理和工艺流程
3.1 直接加热转鼓干化技术
工作原理是:脱水后的污泥从污泥漏斗进入混合器,按比例充分混合部分已经被干化的污泥,使干湿混合污泥的含固率达50%~60%,然后经螺旋输送机运到三通道转鼓式干燥器中。
在转鼓内与同一端进入的流速为1.2-1.3m/s、温度为700℃左右的热气流接触混合集中加热,经25min左右的处理,烘干后的污泥被带计量装置的螺旋输送机送到分离器,在分离器中干燥器排出的湿热气体被收集进行热力回用,带污染的恶臭气体被送到生物过滤器处理达到符合环保要求的排放标准,从分离器中排出的干污泥其颗粒度可以被控制,再经过筛选器将满足要求的污泥颗粒送到贮藏仓等候处理。
干化后的污泥颗粒经气动方式以70℃的温度从干化机排出,并与湿废气一起进入旋流分离器进行分离。一部分湿废气进入洗涤塔,在洗涤塔中湿废气中的大部分水分被冷凝析出,净化后的废气以40℃的温度离开洗涤塔。
该干化系统的特点是:流程简单, 省去了污泥脱水机及从脱水机至干化机的存储、输送、运输装置。
3.4 间接式多盘干燥技术(珍珠工艺)
污水处理技术之污泥干化技术
1概述
污水在处理的过程中将大部分污染物均转化到了污泥里,因此污泥中含有覆盖面极广的各类污染物,包括各种重金属、微量高毒性有机物(PCBs、AOX等)、大量细菌、病毒体和寄生虫卵等致病微生物,如不妥善处理,将会引发环境卫生和污染问题,易造成二次污染,我国大规模建设污水水处理厂,但污泥处理处置一直被忽视,近年来污水干化技术发展迅速,下面就介绍几种重要的污泥干化技术。
通过与中央旋转主轴相连的耙臂上的耙子的作用,污泥颗粒在上层圆盘上作圆周运动。污泥颗粒从造粒机的上部圆盘由重力作用直至造粒机底部圆盘,颗粒在圆盘上运动时直接和加热表面接触干化。污泥颗粒逐渐增大,类似于蚌中珍珠的形成过程,最终形成坚实的颗粒故也叫珍珠工艺。

一种污泥干燥的方法

一种污泥干燥的方法

一种污泥干燥的方法引言污泥是指由废水处理厂或其他工业过程中产生的水中固体颗粒物与水混合而成的淤泥状物质。

由于污泥中含有大量有机物和水分,必须经过干燥处理才能减少体积,便于后续处理或处置。

本文将介绍一种高效、经济且环保的污泥干燥方法,以解决处理污泥所带来的问题。

方法概述该污泥干燥方法基于传统的热风干燥技术,在此基础上通过引入新型的热风循环系统,并结合化学药剂的添加,提高了污泥的干燥速度和干燥效果。

主要包括以下几个步骤:1. 污泥预处理:将污泥经过浓缩、去水处理等步骤提高固含量,降低水分含量。

这可以减少干燥设备的能耗和提高后续干燥效果。

2. 热风循环系统:利用高效的热风循环系统,将经过预处理的污泥通过输送带均匀分布在干燥机内。

热风从干燥机进口进入,通过内部的热交换,将热量传递给污泥,使其迅速蒸发。

3. 化学药剂的添加:根据污泥的特性和干燥过程中的需要,在干燥机中适量添加化学药剂。

这些药剂可以改变污泥的表面性质,促使水分更快地蒸发。

常见的化学药剂包括二氧化硅、偶氮二甲酰胺(DNDA)等。

4. 干燥后处理:经过干燥后,污泥被转化为干燥固体,可以使用机械设备进行后续的破碎、颗粒筛分等处理,以得到符合要求的干燥产物。

方法优势相比传统的污泥干燥方法,该方法具有以下优势:1. 高效节能:采用热风循环系统,使热风能够被充分利用,减少了能源的消耗。

同时,通过污泥预处理降低水分含量,减少了蒸发所需的热量。

2. 干燥效果好:通过添加化学药剂,改变了污泥的表面性质,加快了水分的蒸发速度,提高了干燥效果。

同时,该方法可以控制污泥的干燥时间和温度,以达到最佳干燥效果。

3. 环保可持续:该方法可以减少污泥的体积,有利于后续处理和处置。

同时,通过热风循环系统的运用,减少了废气和废水的排放,达到环保要求。

4. 适用性广:该方法不仅适用于废水处理厂的污泥干燥,还可以应用于其他工业过程中产生的污泥干燥。

无论是污水处理厂、纸浆造纸厂还是化工厂等,都可采用该方法进行处理。

几种国外城市污水处理厂污泥干化技术及设备介绍

几种国外城市污水处理厂污泥干化技术及设备介绍

几种国外城市污水处理厂污泥干化技术及设备介绍随着城市化进程的加剧,城市污水处理所产生的污泥问题也日益凸显。

传统的污泥处理方式如填埋和焚烧存在环境污染和资源浪费等问题,因此,寻找更加高效、环保的污泥处理技术和设备成为当前的探究热点。

国外各个国家和地区纷纷在污泥干化技术方面进行了探究和应用,并开发出多种不同类型的污泥干化技术和设备。

下面将介绍其中几种具有代表性的国外城市污水处理厂污泥干化技术和设备。

一、间接式干化技术和设备间接式污泥干化技术是指通过传热传质媒介来完成污泥干化的过程。

其中最常用的媒介是热风,通过干燥器将热风传入干化室,使污泥在高温下蒸发水分,同时将水分蒸发的蒸汽通过排气装置排出。

间接式干化技术具有热效率高、操作稳定、对环境污染小等优点。

常见的间接式污泥干化设备有:一种是旋转式干燥器,工作原理是通过对污泥进行旋转,将其与热风充分接触,达到干燥的效果;另一种是带式干燥器,污泥在蒸发水分的同时,通过传送带的运动完成干燥过程。

二、直接式干化技术和设备直接式污泥干化技术是指将污泥直接暴露在高温环境下,通过热风直接使污泥蒸发水分。

直接式污泥干化技术的工艺流程简易,但由于直接接触高温气流,容易导致污泥燃烧、气味扩散等问题。

常见的直接式污泥干化设备有:一种是流化床干燥器,其工作原理是将污泥在流化床中进行干燥,热风的流量和温度可以依据污泥的含水率进行自动控制;另一种是喷淋干燥塔,通过喷淋设备将热风和污泥进行接触,使其蒸发水分。

三、微波干化技术和设备微波干化技术是近年来进步起来的一种新型污泥干化技术。

其工作原理是通过微波场的作用,使污泥分子产生高速运动和摩擦产热,从而使污泥内部的水分蒸发。

微波干化技术具有干燥速度快、能耗低、对环境污染小等优点。

常见的微波干化设备有:一种是微波振荡干燥器,通过微波产生器产生微波场,使污泥在其内部进行干燥;另一种是微波连续干燥器,将微波传送到干燥室中,使污泥在高温下蒸发水分。

污泥干化技术总结

污泥干化技术总结

工业污泥干化
工业污泥干化是指对工业生产过程中产生的污泥进行干化的过程。由于工业污泥中含有大量的重金属 、有毒有害物质和放射性物质,需要进行特殊的处理和处置。
工业污泥干化的方法主要有高温干化和低温干化两种。高温干化可以将污泥中的水分迅速蒸发,同时 还可以杀灭病菌和寄生虫卵。低温干化则是利用低温空气进行自然风干,这种方法比较经济,但干化 速度较慢。
资源化利用
干化后的污泥可作为肥料 、建筑材料等资源进行再 利用,实现资源循环利用 。
污泥干化技术的发展历程
自然干化阶段
早期的污泥干化主要采用自然 晾晒的方式,但效率低下,占
地面积大。
机械干化阶段
随着技术的发展,出现了各种 机械式干化设备,如带式干化 、转鼓干化等,提高了干化效 率。
热能干化阶段
利用外部热源提供热量进行干 化,具有更高的能量利用效率 和更低的能耗。
资源化利用
污泥干化后的产物可以作为肥料、 土壤改良剂、建材原料等,实现资 源化利用,减少对环境的压力。
智能化控制
随着物联网、大数据等技术的发展 ,污泥干化技术将逐步实现智能化 控制,提高生产效率和稳定性。
市场发展前景
市场需求增长
01
随着城市化进程的加速和污水处理量的增加,污泥干化技术的
市场需求将不断增长。
竞争格局变化
02
随着技术的进步和市场需求的增加,污泥干化技术的竞争格局
将发生变化,部分技术落后、服务不佳的企业将被淘汰。
跨国合作与交流
03
随着全球环境治理术发展的重要趋势。
技术创新与政策支持
技术创新
鼓励企业加大研发投入,推动污泥干化技术的创新发展,提高技术水平和市场竞 争力。
环保监管

污泥干化处理技术的现状及未来发展

污泥干化处理技术的现状及未来发展

政策推动与市场驱动
政策扶持
政府加大对污泥干化处理产业的 扶持力度,提供税收优惠、资金 支持等政策,推动产业发展。
市场驱动
扩大市场需求,鼓励企业投资研 发,推动技术进步和产业升级。
国际合作与交流的加强
国际合作
加强与国际先进技术机构和企业的合 作,引进先进技术和管理经验,提高 我国污泥干化处理技术的国际竞争力 。
03
污泥干化处理技术的影响因素 及优化策略
影响因素分析
污泥性质
污泥的含水率、有机物含量、 重金属浓度等物理化学性质对
干化效果产生显著影响。
干化温度与湿度
干化过程中的温度和湿度条件 对污泥的干燥速度和干化质量 具有接影响污泥 的干燥效果和能耗。
设备配置与维护
设备配置的合理性、性能及维 护状况对污泥的干化效果和运
污泥干化处理技术通常分为自然干化 和热干化两种,自然干化利用自然环 境中的太阳能进行干燥,热干化则利 用蒸汽、导热油等热源进行干燥。
污泥干化处理技术的意义
污泥干化处理技术可以显著减少 污泥体积,便于后续处置和资源
化利用。
污泥干化处理技术可以消除污泥 中的有害物质,减少对环境和人
类健康的危害。
污泥干化处理技术可以提高污泥 的资源价值,实现污泥的资源化
行成本产生影响。
优化策略探讨
预处理技术
采用超声波、化学絮凝 等预处理方法改善污泥 的物理化学性质,提高
干化效率。
热能利用
优化热能回收系统,提 高热能利用率,降低干
化成本。
干燥工艺改进
研究新型干燥工艺,如 气流干燥、振动干燥等 ,提高干燥效果和效率

设备升级与维护
加强设备性能升级、定 期维护和故障排查,保 障设备稳定运行,降低

污泥干燥工艺五大原则

污泥干燥工艺五大原则

污泥干燥工艺五大原则
污泥干燥是处理污水处理厂污泥的关键环节之一,它能够将污泥中的
水分蒸发掉,减小体积,便于后续处理或处置。

在进行污泥干燥过程中,
需要遵循以下五大原则,以确保工艺的高效性和经济性。

原则一:能量效率原则
污泥干燥过程需要大量的能量,如热能和电能。

为了提高能源利用率,减少能源消耗,应该采用适宜的干燥设备,如带热泵的热泵干燥机等。

此外,还可以通过热回收、余热利用等方式进一步提高能源利用效率。

原则二:设备可靠性原则
原则三:产品质量原则
干燥后的污泥产品需要满足一定的质量要求,如水分含量、颗粒度等。

为了保证产品质量,应当选择适宜的干燥方式和工艺参数,如干燥温度、
干燥时间等,并进行合理的产品质量监测和控制。

原则四:环境保护原则
污泥干燥过程中会产生一定的废气和废液,可能含有有害物质和臭味,对环境造成污染。

为了保护环境,应该采取适当的废气处理和废液处理措施,如使用除臭装置和净化设备,合理回收和处理废气和废液。

原则五:经济性原则
总结而言,污泥干燥工艺的五大原则是能量效率原则、设备可靠性原则、产品质量原则、环境保护原则和经济性原则。

在进行污泥干燥过程中,应该充分考虑这些原则,选择适宜的设备和工艺参数,确保工艺的高效性
和经济性,同时保护环境和提高产品质量。

污泥干化详细方案

污泥干化详细方案

污泥干化详细方案为了解决污泥处理和处置的问题,许多地方采用了干化工艺。

干化是一种将污泥中的水分去除的方法,通过降低污泥湿度,减少处理和处置的成本。

本文将介绍污泥干化的详细方案,并探讨其实施效果和应用前景。

一、污泥干化的基本原理污泥干化是一种通过加热和蒸发的方式将污泥中的水分去除的技术。

其基本原理是利用热能将污泥中的水分转化为蒸汽,从而实现污泥的干燥。

在干化过程中,需要控制温度和湿度,以确保污泥能够均匀受热,水分能够有效地挥发出去。

二、污泥干化的工艺流程1. 污泥收集和输送:首先,需要对产生的污泥进行收集,并通过输送设备将污泥送至干化设备。

2. 混合和预处理:接下来,将污泥与其他辅助材料进行混合,以提高污泥的干化效果。

预处理工艺可以包括破碎、除杂和消毒等步骤,以减少污泥中的异物和有机物含量。

3. 干化设备:污泥干化设备需要具备较高的热能传输效率和废气处理能力。

常见的干化设备包括滚筒干燥机、带式干燥机和闪蒸干燥机等。

通过对污泥的加热和搅拌,设备可以实现污泥的干燥和脱水。

4. 除尘和废气处理:在干化过程中,会产生大量的废气和粉尘。

为了保护环境和人体健康,需要对废气进行除尘和处理。

常见的废气处理技术包括活性炭吸附、湿式除尘和热解等。

5. 干燥后处理:在污泥干化后,需要对产生的干泥进行处理。

通常情况下,可以将干泥进行粉碎和烘干,以提高其可处理性和利用价值。

三、污泥干化的实施效果污泥干化工艺具有较高的处理效率和处理能力。

通过干化,能够将污泥中的水分降低到一定的程度,提高污泥的稳定性和可处理性。

另外,干化后的污泥还可以作为肥料、填埋覆盖物或能源利用等方面进行综合利用,最大限度地实现资源化和环境保护。

四、污泥干化的应用前景随着环境保护意识的增强和污泥处理需求的增加,污泥干化工艺将越来越广泛地应用于各个领域。

特别是在城市污水处理厂和工业废水处理厂等场所,污泥干化工艺可以有效解决污泥处理和处置的问题,降低运营成本和环境风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界上最早将热干燥技术用于污泥处理的是英国的Bradford公司。

1910年,该公司首次开发了转窑式污泥干化机并将其应用于污泥干化实践,进入80年代末期,污泥干化技术逐渐为人们所重视,污泥干燥技术的应用和推广,促进了污泥处理处置手段的改变,这种改变主要体现在:污泥填埋处置前,要将污泥进行干燥处理;污泥焚烧处置比例得到了较大提高;干污泥产品作为土地回用的肥源出售,产业规模不断扩大等。

如今,污泥干化处理也得到了越来越多包括发展中国家环境工程界的重视。

在我国,随着国家经济实力的增强,国民环保意识的提高,城市污水处理行业得到迅速发展,城市污泥的产量与日俱增,污泥的处置和开发利用问题日益为人们所关注。

污泥的干化处理,使污泥农用、作为燃料使用、焚烧乃至为减少填埋场地等处理方法成为可能。

污泥干燥技术的完善与革新,直接推动了污泥处置手段的发展,拓展了污泥处置手段的选择范围,使之在安全性、可靠性、可持续性等方面得到越来越可靠的保证。

随着国内污泥处理市场的启动,各种污泥干燥设备应运而生,但污泥的干化处理需要消耗大量的热源,提高了污泥的处置成本。

各种污泥干燥设备特性如何,处理规模与污泥干燥设备选型的关系,如何得到一套技术成熟、投资与操作费用最佳组合的干燥系统,是本文要探讨的关键点。

1、带有内破碎装置的回转圆筒干燥机
该烘干机采用直接干燥技术,将烟道气与污泥直接进行接触混合,使污泥中的水分得以蒸发并最终得到干污泥产品。

该机的主体部分为:与水平线略呈倾斜的旋转圆筒,烘干方式采用顺流式烘干。

物料经供料装置从回转式转筒的上端送入,在转筒内抄板的翻动下(5~8r/min)与同一端进入的流速为1.2~1.3m/s、温度为700℃的热气流接触混合,滚筒中部设旋转的破碎搅拌翼,能使进入烘干机内的物料迅速被打碎,特别是有一定粘性的大块物料,可碎成小块,以便和热风充分接触,提高干燥效率,小块物料进一步碎成粒状,经20~60min的处理,干污泥经出料口输送出来。

最终得到含水率低于14%的干污泥产品。

1.1 设备特点
通过破碎搅拌装置和圆筒回转的复合效果,使总传热系数提高至普通回转干燥机的2~3倍,可达300~500Kcal/m3·n·℃。

破碎搅拌装置破碎物料,物料和热风的接触面积增大,同时亦防止了热风的短路,使热风的热量得到充分利用。

由于城市污水厂的污泥在脱水的过程中投加了絮凝剂,使污泥粘性增大,在烘干过程中容易结块,既影响了烘干的效果,又增加了利用的难度(需上一套泥块破碎设备)。

在本干燥设备中,通过搅拌破碎装置和筒内的窑式活动板作用,使泥块结硬之前就被破碎,最终的出料为粉粒状产品,使污泥的后续处理或利用工序更加简便。

1.2 该设备缺点
污泥刚进入干燥机时,含湿量很大,一般在80%左右,此时应是蒸发量最大,干燥效率最高点。

但由于此时无法破碎,污泥与热空气弥散接触度很低,蒸发效率很低。

待破碎机发挥作用时,物料水分一般在40%以下,这时物料已运行到回转圆筒的半程以上,导致有效空间不能充分发挥作用。

对于出机水分要求较高的场合(如50%),干燥效率就更低,一般都会过干而造成浪费。

与污泥进行过热交换的废气,一般在100度左右排入大气,浪费了大量热源,增大了操作成本,还导致了大气的污染。

1.3 适应规模
带内破碎装置的回转圆筒干燥机,设备一次性投资适中,土建投资较高,能耗较大,适用于单机处理能力在5吨/小时以下,终水分要求较低(小于20%)的污泥干燥项目中。

2、设有内件的流化床
该机采用热风直接加热与内件传导加热的复合加热方式,对污泥进行连续干燥,在固定流化床内装有布局各异的换热管束,管束内通入锅炉蒸汽,锅炉蒸汽是加热介质。

空气经过设置在流化床外部的蒸汽加热器加热后进入流化床,在床内吹动加入的污泥,使之与内件换热、碰撞、粉碎。

达到水分与粒度要求得物料被热风带出干燥机,经旋风与袋式除尘器收集。

未达要求的物料在干燥机内循环干燥。

2.1 设备特点
内件起到破碎与传导换热的作用,使得原本没法干燥污泥的流化床可以用来干燥污泥,发挥了流化床处理量大的特点,传导加热内件起到了一定的节能作用。

干燥强度得到了提高。

2.2 设备缺点
污泥颗粒长时间与内件碰撞摩擦,缩短了内件寿命。

有热风介入,带走热量,加大了能耗,增加了操作成本。

2.3 适应规模
设备一次性是投资适中,土建投资费用较高,能耗偏大。

适于单机污泥处理量在8吨/小时,终含湿量低的项目中。

3、楔型空心桨叶干燥机
W系列污泥干燥机由互相啮合的二根桨叶轴、带有夹套的W形壳体、机座以及传动部分组成,污泥的整个干燥过程在封闭状态下进行,有机挥发气体及异味气体在密闭氛围下送至尾气处理装置,避免环境污染。

干燥机以蒸汽,热水或导热油作为加热介质,轴端装有热介质导入导出的旋转接头。

加热介质分为两路,分别进入干燥机壳体夹套和桨叶轴内腔,将器身和桨叶轴同时加热,以传导加热的方式对污泥进行加热干燥。

被干燥的污泥由螺旋送料机定量地连续送入干燥机的加料口,污泥进入器身后,通过桨叶的转动使污泥翻转、搅拌,不断更新加热介面,与器身和桨叶接触,被充分加热,使污泥所含的表面水分蒸发。

同时,污泥随桨叶轴的旋转成螺旋轨迹向出料口方向输送,在输送中继续搅拌,使污泥中渗出的水分继续蒸发。

最后,干燥均匀的合格产品由出料口排出。

3.1设备特点
a.设备结构紧凑,装置占地面积小。

由设备结构可知,干燥所需热量主要是由排列于空心轴上的空心桨叶壁面提供,而夹套壁面的传热量只占少部分。

所以单位体积设备的传热面大,可节省设备占地面积,减少基建投资。

b.热量利用率高。

污泥干燥机采用传导加热方式进行加热,所有传热面均被物料覆盖,减少了热量损
失;没有热空气带走热量,热量利用率可达90%以上。

c.楔形桨叶具有自净能力,可提高桨叶传热作用。

旋转桨叶的倾斜面和颗粒或粉末层的联合运动所产生的分散力,使附着于加热斜面上的污泥自动地清除,桨叶保持着高效的传热功能。

另外,由于两轴桨叶反向旋转,交替地分段压缩(在两轴桨叶面相距最近时)和膨胀(在两轴桨叶面相距离最远时)搅拌功能,传热均匀,提高了传热效果。

d.由于不需用气体来加热,就没用气体介入,干燥器内气体流速低,被气体挟带出的粉尘少,干燥后系统的气体粉尘回收方便,尾气处理装置等规模都可缩小,节省设备投资。

e、污泥含水率适应性广,产品干燥均匀性高。

干燥器内设溢流堰,可根据污泥性质和干燥条件,调节污泥在干燥器内的停留时间,以适应污泥含水率变化的要求。

此外,还可调节加料速度、轴的转速和热载体温度等,在几分钟与几小时之间任意选定停留时间。

因此对污泥含水率变化的适应性非常广泛。

3.2设备缺点
设备传热面均有钢板加工焊接而成,用水蒸气做热介质时,设备还为一类压力容器,设备重量较大,设备一次性投资较高。

3.3适应规模
设备一次性投资较高,土建投资低,操作成本只有热风直接型干燥机的三分之一。

适于各种终湿含量要求的项目中。

相关文档
最新文档