5.信号抽样及抽样定理
信号抽样的名词解释

信号抽样的名词解释信号抽样是指通过在一个连续的信号中定期选择一些特定时刻的值,以形成一个离散的序列,从而对信号进行数字化处理。
在信号处理领域中,抽样是基本的操作之一,它为我们从连续信号中提取和表示有限数量的样本数据提供了有效的方法。
1. 什么是信号抽样信号抽样是指信号通过取样频率对连续信号进行离散化处理的过程。
在这个过程中,我们在连续信号的特定时刻上获取样本,并将其转换为离散的数字信号。
根据抽样定理,只要抽样频率高于信号的最高频率的两倍,我们就可以完整地捕捉到原始信号中的全部信息。
2. 为什么需要信号抽样信号抽样的主要目的是将连续信号转化为数字信号,以便进行更方便、精确的数字处理。
连续信号的处理比较复杂,而数字信号在计算机和其他数字设备中更容易存储、传输和处理。
通过信号抽样,我们可以更好地理解和分析信号,并在数字世界中进行更深入的研究和应用。
3. 抽样定理的意义和应用抽样定理,也称为奈奎斯特定理,是信号抽样理论的基石。
它表明,在进行信号抽样时,必须选择足够高的抽样频率,以捕捉原始信号中的所有信息。
如果抽样频率低于信号的最高频率的两倍,就会发生混叠现象,导致信息丧失和失真。
抽样定理的应用非常广泛。
在音频处理中,通过按照一定的抽样频率获取音频信号的样本值,我们可以将其转换为数字音频,从而实现音频的存储和处理。
在通信领域,通过对模拟信号进行抽样,可以将其转化为数字信号进行传输和编码。
在图像处理和视频压缩中,信号抽样也是非常重要的一步,通过对图像的像素进行抽样,可以将其转换为数字图像,以方便存储和传输。
4. 抽样频率的选择在进行信号抽样时,抽样频率的选择非常关键。
如果抽样频率过低,会导致混叠现象的发生,信号信息无法完整重构。
而如果抽样频率过高,会造成计算和存储的浪费。
因此,我们需要根据信号的频率范围和特性选择一个合适的抽样频率。
在实际应用中,通常使用奈奎斯特频率的两倍作为抽样频率,以确保信号的完整采样。
信号抽样与抽样定理

− nω
s
)
F (ω − n ω
)
矩形脉冲抽样——频谱结构 二. 矩形脉冲抽样 频谱结构
转 化
f (t )
FT
乘
0
1
0
.exe .exe
t
P (t )
τ
FT
− 2π
P (ω ) Eτω s
τ
2π
ω
卷
0
Ts
t
FT
−ωs
0
f s (t )
Fs (ω )
Eτ Ts
ωs
τ
ω
t
0
−
2π
2π
τ
−ωs
)
三.冲激抽样——频谱结构 冲激抽样 频谱结构
f (t )
0
FT
P (t )
∞
1
0
p (ω ) = ω s
∞
F (ω )
t
n=−∞
(1)
0
δT (t) = ∑δ (t − nTs )
FT
(ω s )
−ωs
0
n = −∞
∑ δ (ω − nω
ω
s
)
Ts
t
相 乘 相 卷
FT
ω ω
s
f s (t )
1 Ts
1 Ts
0
抽样频率
F1 (ω )
ωs<2 ωm
f (t)
0
− ωs
0
1 Ts
ω ωs F1 (ω )
ωs=2 ωm
Ts
t
ω s = 2ω m
− ωs
0
ωs ω
Nyquist,美国物理学家 , 1889 , 美国物理学家, 年出生在瑞典。 年在Texas 年出生在瑞典 。 1976年在 Texas 逝 年在 Texas逝 他对信息论做出了重大贡献。 世。他对信息论做出了重大贡献。 1907年移民到美国并于 年移民到美国并于1912年进入 年移民到美国并于 年进入 北达克塔大学学习。 北达克塔大学学习。1917年在耶鲁 年在耶鲁 要想抽样后能够不失真的还原出原信号,则抽 ~ 大学获得物理学博士学位。 大学获得物理学博士学位。1917~ 1934年在 年在AT&T公司工作 公司工作, 年在 公司工作 样频率必须大于两倍信号谱的最高频率。,后转入 Bell电话实验室工作 电话实验室工作。 Bell电话实验室工作。
抽样定理及FIR

Fs/2
抽样定理及FIR
函数的抽样
• 最简单的抽样方法是用二维梳状函数与被抽样的函数相乘
• 如果被抽样的函数为gx,y ,抽样函数可表示为 gsx,y gsx,yco m X x cbo m Y y gb x,y
• 梳状函数是函数的集合,它与任何函数的乘积就是无数分布在平
面 x, y上在 x,y两方向上间距为 X 和 Y 的 函数 与该函数
若从fs(t) 恢复f(t),可用一个理想低通滤波器实现,滤波器增益为Ts,截
止频率:
m
c
s
2
抽样定理及FIR
六、抽样定理意义
1、实现连续信号离散化,为信 号的数字处理奠定基础; 2、实现信号的时分复用,为多 路信号传输提供理论基础。
抽样定理及FIR
抽样定理的意义
• 抽样定理公式就是由抽样点函数值计算在抽样点之间所不知道的非抽 样点函数值,在数学上就是插值公式
当s >2m时,Fs(j )含有F(j )完整频谱
信号f(t)的恢复实现:理想低通滤波器 (Ideal Lowpass Filters)
要求理想低通滤波器:m
c
s
2
理想冲激序列抽样: A Ts
抽样定理及FIR
五、时域抽样定(理t-domain Sampling theorem)
一个最高频率为m的有限带宽信号f(t),可用均匀抽样间隔 的抽样值fs(t)唯一确定。
响应分解
y(t) f ()h(t )d
域 频率变量
e-j t H(j)
f (t) 1 F ( j)e jtd 2
y(t) 1 Y ( j)e jtd 2
系统分析
突出信号与系统的时间特性 突出信号与系统的频率特性
信号与系统PPT 第五章 连续时间信号的抽样与量化

pt
他抽样方式,如零阶抽样
1
保持。
O Ts
t
M1
fs0 t
f t
M2
fs0 t
1
O Ts
t
p1 t
1.零阶抽样信号的频谱
设零阶抽样信号fs0t Fs0
fs t f t t nTs
n
Fs
1 Ts
n
F
ns
此线性系统必须 具有如下的单位 冲激响应
fs (t) 保 持得到fso (t).
f (t)
F
1
0 f (t)
t
s 2m
m m
1 Fs
Ts
0
TS f (t)
t
s m
m
s
s 2m
1 Fs
Ts
0
t
s m m s
TS
采样频率不同时的频谱
5.2.2 时域抽样定理 (1)时域抽样定理
一个频带受限的信号f (t),若频谱只占据 m ~ m
的范围,则信号f t可用等间隔的抽样值来惟一地表示。
即: fs (t) f (t) p(t)
设连续信号 抽样脉冲信号 抽样后信号
f t F (m m)
pt P , fst Fs
复习
周期信号的傅里叶变换
令周期信号f(t)的周期为T1,角频率为1=2f1
f t F 2π Fn1 n1
n
其中:
F n1
1 T1
T1
2 T1
F (
s
)
S a0F ( )
S a
s
2
F (
s
)
设: 1,
Ts 2
s
《通信原理抽样定理》课件

奈奎斯特频率
定义奈奎斯特频率,它是信号 采样频率的两倍。
采样定理
给出抽样定理的数学表达式: 采样频率 ≥ 2 × 信号最高频率
重建滤波器
引入重建滤波器,用于恢复原 始信号。
抽样定理的应用举例
1
图像压缩
2
介绍抽样定理在图像压缩算法明抽样定理在无线通信中的应用,如 蜂窝网络和卫星通信。
音频编码
说明抽样定理在音频编码中的应用,例 如MP3。
视频传输
解释抽样定理在视频传输中的重要性, 包括流媒体和视频会议。
抽样定理的适用范围和限制
1 频域限制
解释抽样定理在频域上的限制,包括信号频谱的最高频率。
2 信噪比要求
说明抽样定理对信噪比有要求,高信噪比可放宽抽样定理的限制。
3 采样定理的实现
通信系统中的抽样问题
说明在通信系统中抽样的重要性和挑战。
直观实例
通过直观的实例帮助听众理解抽样定理。
抽样定理的定义和原理
抽样定义
解释抽样是什么,包括对连续信 号进行离散化的过程。
别名现象
说明抽样频率不足会引发别名现 象。
奈奎斯特准则
介绍奈奎斯特准则,它是抽样定 理的核心原理。
抽样定理的数学表达式
介绍实际系统中如何满足抽样定理的要求。
抽样定理的实际意义
数据传输
说明抽样定理如何保证数据在信 号传输中的可靠性。
信号处理
介绍抽样定理在信号处理中的重 要性,如滤波和解调。
通信技术发展
解释抽样定理对通信技术发展的 推动作用。
总结和应用建议
总结
总结抽样定理的重要性和应用。
应用建议
提供一些建议,如如何避免抽样问题,优化信号采 样。
信号抽样与抽样定理

(1)信号在时域周期化,周期为 T ,则频谱离散化,
抽样间隔为 ω0=2π/T。 (2)信号在时域抽样,抽样间隔为 TS ,则频谱周期化,
重复周期为 ωS=2π/TS 。
四、频域抽样与频域抽样定理
矩形单脉冲信号的频谱 F ( ) E Sa 0
2
m0 Sa 2 m
( ns m0 )
四、频域抽样与频域抽样定理
f 0 t
E
F0 ( )
E
2
0
a
E
2
t
2
0
2
f1 t
b
F1
E 0
T 0
2
T
c
E
2
t
2
0
2
d
f s t
E 0 Ts
T
Fs
二、时域抽样定理
时域抽样定理:一个频谱受限的信号 f (t) ,如果频谱只占据 , m m
的范围,则信号 f (t)可以用等间隔的抽样值
样间隔 Ts 不大于 2f
1
m
f (nTs ) 唯一地表示,只要抽
,其中 f m为信号的最高频率,
或者说,抽样频率 f s 满足条件
通常把满足抽样定理要求的最低抽样频率 f s 2 f m 称为奈奎斯特频率, 1 1 把最大允许的抽样间隔 Ts 称为奈奎斯特间隔 。 fs 2 fm
如何从抽样信号中恢复原连续信号,以及在什么条件下才可以无失
真地由抽样信号恢复原连续信号。著名的抽样定理对此作了明确而精 辟的回答。
抽样定理在通信系统、信息传输理论、数字信号处理等方面占有十 分重要的地位,该定理在连续时间信号与系统和离散时间信号与系统、 数字信号与系统之间架起了一座桥梁。该定理从理论上回答了为什么 可以用数字信号处理手段解决连续时间信号与系统问题。
实验四抽样定理

如果满足抽样定理,那么,我们就可以唯一地由已抽样信号 x[n] 恢复出原连续时间信 号 x(t)。在理想情况下,可以将离散时间序列通过一个理想低通滤波器,图 4.6 给出了理想 情况下信号重建的原理示意图。
⊗ x(t)
x p (t) Ideal Lowpass
Filter
p(t)
xr (t)
X = X + x*exp(-j*t'*(w-k*ws))*dt; end subplot(222)
plot(w,abs(Xa)) title('Magnitude spectrum of x(t)'), grid on axis([-60,60,0,1.8*max(abs(Xa))]) subplot(224) plot(w,abs(X)) title('Magnitude spectrum of x[n]'), xlabel('Frequency in radians/s'),grid on axis([-60,60,0,1.8*max(abs(Xa))]) 本程序可以用来观察在不同的抽样频率条件下,已抽样信号的频谱的混叠程度,从而更 加牢固地理解抽样定理。但是,提请注意的是,在 for 循环程序段中,计算已抽样信号的频 谱 X 时,没有乘以系数 1/Ts,是为了便于比较 X 与 Xa 之间的区别,从而方便观察频谱的 混叠程度。另外,程序中的时间步长 dt 的选择应该与抽样周期 Ts 保持一定的比例关系,建 议 Ts 不应小于 10dt,否则,计算得到的已抽样信号的频谱将出现错误。
−∞
显然,已抽样信号 xs(t) 也是一个冲激串,只是这个冲激串的冲激强度被 x(nTs) 加权了。 从频域上来看,p(t) 的频谱也是冲激序列,且为:
《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。
s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。
图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。
平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。
当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是f s 2,其中f s为抽样频率,为原信号占有的频带宽度。
而f min=2 为最低抽样频率又称“柰奎斯特抽样率”。
当f s<2 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2 ,恢复后的信号失真还是难免的。
图5-2画出了当抽样频率f s>2 (不混叠时)f s<2 (混叠时)两种情况下冲激抽样信号的频谱。
t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2 、f s =2 、f s <2 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、结合抽样定理,利用MATLAB编程实现信号经过冲激脉冲抽样后得到的抽样信号及其频谱,并利用构建信号,并计算重建信号与原升余弦信号的误差。
解:
wm=2;
wc=1.2*wm;
Ts=1;
dt=0.1;
t1=-10:dt:10;
ft=sinc(t1/pi);
N=5000;
k=-N:N;
W=2*pi*k/((2*N+1)*dt);
n=-100:100;
nTs=n*Ts;
fst=sinc(nTs/pi);
subplot(221);
plot(t1,ft,':'),hold on;
stem(nTs,fst),grid on;
axis([-10,10,-0.4,1.1]);
xlabel('Time(sec)'),ylabel('fs(t)');
title('Sa(t)抽样后信号'),hold off,
Fsw=Ts*fst*exp(-j*nTs'*W);
subplot(222);
plot(W,abs(Fsw)),grid on;
axis([-20 20 0 4]);
xlabel('\omega'),ylabel('Fs(w)');
title('Sa(t)抽样信号频谱');
t=-10:dt:10;
f=fst*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); subplot(223);
plot(t,f),grid on;
axis([-10 10 -0.4 1.1]);
xlabel('t'),ylabel('f(t)');
title('重建新号');
error=abs(f-ft);
subplot(224);
plot(t,error),grid on
xlabel('t'),ylabel('error(t)');
title('误差');
2、结合抽样定理,利用MATLAB编程实现升余弦信号
经过冲激脉冲抽样后得到的抽样信号及其频谱,并利用构建升余弦信号,并计算重建信号与原升余弦信号的误差。
解:
wm=2;
wc=1.2*wm;
Ts=1;
dt=0.1;
t1=-10:dt:10;
ft=((1+cos(t1))/2).*(heaviside(t1+pi)-heaviside(t1-pi));
N=5000;
k=-N:N;
W=2*pi*k/((2*N+1)*dt);
n=-100:100;
nTs=n*Ts;
fst=((1+cos(nTs))/2).*(heaviside(nTs+pi)-heaviside(nTs-pi));
subplot(221);
plot(t1,ft,':'),hold on;
stem(nTs,fst),grid on;
axis([-10,10,-0.4,1.1]);
xlabel('Time(sec)'),ylabel('fs(t)');
title('Sa(t)抽样后信号'),hold off,
Fsw=Ts*fst*exp(-j*nTs'*W);
subplot(222);
plot(W,abs(Fsw)),grid on;
axis([-20 20 0 4]);
xlabel('\omega'),ylabel('Fs(w)');
title('Sa(t)抽样信号频谱');
t=-10:dt:10;
f=fst*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); subplot(223);
plot(t,f),grid on;
axis([-10 10 -0.4 1.1]);
xlabel('t'),ylabel('f(t)');
title('重建新号');
error=abs(f-ft);
subplot(224);
plot(t,error),grid on
xlabel('t'),ylabel('error(t)');
title('误差');。