大容量电容器概述

大容量电容器概述
大容量电容器概述

摘要

介绍了超级电容的机理与特点,概述了国内外超级电容在电动车中的应用研究现状,通过分析比较超级电容在电动车中应用的拓扑结构及控制策略,设计了一种新型的超级电容一蓄电池复合电源电动车控制系统验结果表明,该验结果表明,该复合电源电动车能兼顾蓄电池和超级电容的优点,可以更好地满足电动车启动和加速性能的要求,并能提高电动车制动能量回收的效率,增加续驶里程.以超级电容为惟一能源的电动车可以作为固定线路车使用,但配套设施还需要完善,所以发展趋势并不乐观。

关键词:蓄电池汽车启动超级电容器

基于51单片机的数字万年历的设计

Abstract

The mechanism and characteristic Of uhracapacitor are introduced.The ultracapacitorapplication status in electric vehicle(EV)at home and abroad is outlined.Analyzing the topologyand control strategy of uhracapacitor applied in EVs,a novel control system of ultracapacitor-bat—tery hybrid power EV is designed。The experimental results show that the hybrid power EV enables tOcombine the advantages of battery and uhracapacitor,enhance the start—up and accelerating per—formance of EV,improve the energy-regenerative efficiency,and increase the driving range.EVsemploying uhracapacitor as the only power may be used as fixed-line buses,but the basic facilitiesought to be imprared.

Keywords:electric vehicle;uhracapacitor;hybrid power

目录

摘要................................................................................................................................ I Abstract ......................................................................................................................... II 第一章超级电容 (1)

1.1超级电容的简介 (1)

1.2超级电容器的结构 (1)

1.3超级电容器的原理 (2)

1.4超级电容器的主要特点 (3)

1.5超级电容器的分类 (4)

1.6超级电容器的特性 (5)

1.7超级电容器的主要特征参数 (6)

第二章汽车启动系统 (9)

2.1汽车启动系统的组成 (9)

2.1.1蓄电池 (9)

2.1.2启动机 (9)

2.2汽车启动系统的原理 (11)

2.3影响启动机工作特性的因素 (12)

第三章设计要求 (13)

3.1发动机启动要求 (13)

3.1.1最低启动定义 (13)

3.1.2启动要求 (13)

3.2对超级电容的要求 (13)

3.2.1内阻要求 (13)

3.2.2漏电流/自放电 (13)

第四章超级电容在汽车启动系统中的应用 (15)

4.1传统蓄电池的缺陷 (15)

4.2超级电容与蓄电池并联 (16)

4.3电性能的改善 (20)

4.4蓄电池应用状态的改善 (21)

4.5启动性能的改善 (21)

4.6微型混合动力系统 (21)

第五章超级电容器的使用和前景 (24)

参考文献 (27)

致谢 (28)

第一章超级电容

1.1超级电容的简介

电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:Capacitor,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。在直流电路中,电容器是相当于断路的。在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过场的形式在电容器间通过的。充电和放电是电容器的基本功能。

超级电容器,如图1.1,亦称超大容量电容器,是上世纪七、八十年代发展起来的一种新型的储能装置。近年来,人们一直致力于开发高比功率和高比能量的超级电容器来作为电动汽车的混合动力系统。超级电容器可以用来满足汽车在加速、启动、爬坡时的高功率要求,以保护蓄电池系统,还可作为燃料电池的启动动力,做移动通讯和计算机的电力支持等。目前应用于超级电容器的材料主要有三种:碳基材料、金属氧化物及水合物材料和导电聚合物材料。超级电容器是一种电容量可达数千法拉的极大容量电容器。同传统的电容器和二次电池相比,超级电容器储存电荷的能力比普通电容器高,并具有充放电速度快、效率高、对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点。

图1.1 常用的超级电容器

1.2超级电容器的结构

图1.2为超级电容器的结构图,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定:

其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界面的表面面积。

图1.2超级电容器结构框图

由图可见,其多孔化电极是使用多孔性的活性炭有极大的表面积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。与电他相比较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式,也可以应用在传统电他不足之处与短时高峰值电流之中。这种超级电容器有几点比电池好的特色。

1.3超级电容器的原理

图1.3 双电层示意图

超级电容器是利用双电层原理的电容器,其原理示意图如图1.3,当外加电

压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的与利用化学反应的蓄电他是不同的。

1.4超级电容器的主要特点

由于超级电容器的结构及工作原理使其具有如下特点:

1. 电容量大。超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3—4个数量级,目前单体超级电容器的最大电容量可达5OOOF。

2. 放电寿命很长。可达500000次,或90000小时,而蓄电池的充放电寿命很难超过1000次。

3. 可以提供很高的放电电流。如270OF的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A,一般蓄电池通常不能有如此高的放电电流,一些高放电电流的蓄电池在如此高的放电电流下的使用寿命将大大缩短。

4. 可以数十秒到数分钟内快速充电,而蓄电池在如此短的时间内充满电将是极危险的或几乎不可能。

5. 可以在很宽的温度范围内正常工作(-40℃—+70℃),而蓄电池很难在高温特别是低温环境下工作。

6. 超级电容器用的材料是安全的和无毒的,而铅酸蓄电池、镍锅蓄电池均具有毒性。

7. 等效串联电阻ESR相对常规电容器大(1OF/2.5V的ESB为11OmΩ)。

8. 可以任意并联使用一增加电容量,如采取均压后,还可以串联使用。

虽然,目前全球已有许多家超级电容器生产商,可以提供许多种类的超级电容器产品,但大部分产品都是基于一种相似的双电层结构,超级电容器在结构上

与电解电容器非常相似,它们的主要区别在于电极材料,如图所示:

图1.4

图1.4 在结构上,超级电容器和电池或电解电容器的主要区别是电极材料早期的超级电容器的电极采用碳,碳电极材料的表面积很大,电容的大小取决于表面积和电极的距离,这种碳电极的大表面积再加上很小的电极距离,使超级电容器的容值可以非常大,大多数超级电容器可以做到法拉级,一般容值范围为1~5000F。

1.5超级电容器的分类

1.根据使用目的不同可分为:

(1)启动型超级电容,即轻型超级电容,可以输出几秒钟到几十秒钟的瞬间大电流,承担设备启动所需要的大功率电能,常用于各类汽车和重型机械设备中,单体容量50F以上,5000F以下,可以几个到几百个串联使用,组件电压12VDC 到700VDC以上。

(2)牵引型超级电容,即重型超级电容,可以连续输出几分钟到几十分钟的较高强度的电流,在许多场合可以替代传统的蓄电池承担设备驱动所需的电能供应工作,常用于各类电动汽车,机械设备,太阳能系统和电子电器中,单体容量最高可达100000F以上,可以几个到几百个串联使用,组件电压12VDC到800VDC以上。

2.根据储能方式分为:

(1)双电层超级电容器,以活性炭为正、负电极,俗称碳-碳超级电容。

(2)金属氧化物超级电容, 在电极表面和体相发生氧化还原反应而产生可逆化学吸附的法拉第电容,被称为假电容。

(3)高分子聚合物超级电容,使用导电聚合物作为电极的电容器。

双电层电容充放电纯属于物理过程,循环次数高,充电过程快,但所存储的能量较小;而后两种超级电容的产生机理中伴随电荷传递过程的发生,比能量明

显高于双电层电容,有点类似于二次电池的性质.兼顾各类电容的特点,将双电层电容和法拉第电容结合,制成不对称电极的混和超级电容。车用的超级电容器主要是这种电容器。

1.6超级电容器的特性

1.额定容量

单位:法[拉](F),规定的恒定电流(如1OOOF 以上的超级电容器规定的充电电流为100A,20OF 以下的为3A)充电到额定电压后保持2-3分钟,在规定的恒定电流放电条件下放电到端电压为零所需的时间与电流的乘积再除以额定电压值,即:

I t c V

?= 由于等效串联电阻(ESR)比普通电容器大,因而充放电时ESR 产生的电压降不可忽略,如2.7V/5OOOF 超级电容器的ESR 为0.4m Ω,在100A 电流放电时的ESR 电压降为40mV 占额定电压的1.5%,在950A 电流放电时的ESR 电压降为380mV 占额定电压的14%,表明在额定电流下放电容量将为额定容量减小88.5%,这一特性将在图2.5中看到。

2.额定电压

即可以使用的最高安全端电压(如2.3V,2.5V,2.7V ,3V),除此之外还有浪涌电压,实际上超级电容的击穿电压远高于额定电压(约为额定电压的1.5倍左右,与普通电容器额定电压/击穿电压比值差不多。

3.额定电流

5秒内放电到额定电压一半的电流,除此之外还有最大电流(脉冲峰值电流)。

图1.5 2.7V/270OF 超级电容器放电特性曲线

4.最大存储能f

在额定电压放电到零所释放的能量,以焦(J)或瓦·时(W·h)为单位。

5.储能f密度

最大存储能量除以超级电容器的重量或体积(W·h/kg 或W·h/I)。

6.功率密度

在匹配的负载下,超级电容器产生电热效应各半时的放电功率,用kW/吨或kW/t表示。

7.等效串联电阻

测试条件:规定的恒定电流(如1OOOF以上的超级电容器规定的充电电流为100A,20OF以下的为3A)和规定的频率(DC和大容量为100Hz或小容量的为KHz)下的等效申联电阻。通常交流ESP比直流ESR小,随温度上升而减小。

8.工作与存储温度

通常为-40℃至+60℃或7090,存储温度还可以高一些。

9.漏电流

一般为lOμA/F。

10.寿命

在25℃环境温度下的寿命通常在90000小时,在60℃的环境温度下为4000小时,与铝电解电容器的温度寿命关系相似寿命随环境温上升度缩短的原因是电解液的蒸发程度损失随温度上升。寿命终了的标准为:电容量变化大于20%,ESR 增大到额定值的1.5倍。

11.循环寿命

20秒充电到额定电压,恒压充电10秒,10秒放电到额定电压的一半,间歇时间10秒为一个循环.一般可达500000次.寿命终了的标准为:电容量变化大于20%,ESR增大到额定值的1.5倍。

1.7超级电容器的主要特征参数

把超级电容等效为一个理想电容器C;与一个较小阻值的电阻(等效串联阻抗,Res串联,同时与一个较大阻值的电阻(等效并联阻抗,Rep相并联的结构。其原理如图1.6所示:

图1.6 理想超级电容器

超级电容在使用过程中会涉及到几个基本的参数:本征容量C ,最高电压max U ,最低工作电压min U ,放电效率η.本征容量和最高最低电压决定了超级电

容能够存储的有效容量.超级电容的有效储存能量用公式表示为:

22max min 1()2

w C U U =- 设min U =q max U 则

221(1)2

w CU q =- q 表征了超级电容的放电深度。在蓄电池中,过大的放电深度对蓄电池的寿命会有较大影响。而在超级电容中由于超级电容充放电主要是物理过程,因此它对超级电容的寿命基本上没有什么影响。不过在实际使用过程中,由于在电压很低时超级电容剩余能量比较少,而且在低电压时电效率比较低,所以要剩余一部分能量,一般取q=1/2。由于L R 一般比较大,可达数十千欧姆,可认为是断路。

超级电容的充电效率定义为:

12max 122max 01212t s CU CU i R dt η=

+?

超级电容放电效率定义为: 222max 022max 1212

t s CU i R dt CU η-=?

充放电效率为:

2122max 01222max 0122

t s t s CU i R dt CU i R dt ηηη-==+?? 这只是从理论上推导的充放电的效率。实际上在充放电过程中,超级电容内阻和电容值都是动态变化的,受充放电电流和温度等因素的影响,都不是定值.而且超级电容一般漏电流自放电现象比较严重,比如某50000F 超级电容漏电流为7~12 A ,在平衡点上下波动,平均漏电流约为10A 。如果该超级电容不能在短

期内放电做功,他可能由于长时问的搁置而能量内耗掉,实际上就是放电效率严重下降.因此为了准确的得出放电效率需要根据不同的超级电容在不同放电状态(此放电状态应该跟工作状态相似)进行试验。在实际过程中由于受试验条件等受

限,可以根据厂家提供的数据进行初步设计,在实践中进行改进。

超级电容器综述

题目超级电容器技术综述 学号 班级_____________ 学生 _______________ 扌旨导教师_______ 杨莺_________________ ______ 2014 _______ 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白, 能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命, 同时还具有比二次电池耐温和免维护的 优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract :In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application 。But the standard design ability of the current battery have already canned not satisfy people's request gradually ,The super capacitor emerges with the tide of the times 。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words :super capacitor; The energy storage mechanism; active carbon; development trend; Application trend . 引言近几年出现的超级电容器,它兼有物理电容和电池的特性,是人们未来探索的确定方向。超级电容器是比物理电容器更好的储能元件。目前,用于超级电容器的电极材料主要是炭材料,由于一些炭材料比如氧化锰低价高能,所以受到很多科学家的青睐。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。就目前的国际形势来看,超级电容器有着很大的应用前景。 1 超级电容器概述 1.1超级电容器的定义及特点

电容的分类、作用及图解

1.瓷介电容器(CC)结构:用陶瓷材料作介质,在陶瓷表面涂覆一层金属(银)薄膜,再经高温烧结后作为电极而成。瓷介电容器又分 1 类电介质(NPO、CCG) );2 类电介质(X7R、2X1)和 3 类电介质(Y5V、2F4)瓷介电容器。 用途:主要应用于高频电路中。 2.涤纶电容器 (CL) 结构:涤纶电容器,是用有极性聚脂薄膜为介质制 成的具有正温度系数(即温度升高时,电容量变大) 的无极性电容。 用途:一般应用于中、低频电路中。 常用的型号有CL11、CL21等系列。

3.聚苯乙烯电容 器(CB) 结构:有箔式和金属化式两种类型。 用途:一般应用于中、高频电路中。 常用的型号有CB10、CB11(非密封箔式)、CB14~16 (精密型)、CB24、CB25(非密封型金属化)、CB80 (高压型)、CB40 (密封型金属化)等系列。 4.聚丙烯电容器(CBB)结构:用无极性聚丙烯薄膜为介质制成的一种负温度系数无极性电容。有非密封式(常用有色树脂漆封装)和密封式(用金属或塑料外壳封装)两种类型。 用途:一般应用于中、低频电子电路或作为电动机的启动电容。常用的箔式聚丙烯电容:CBB10、CBB11、CBB60、CBB61 等;金属化式聚丙烯电容:CBB20、CBB21、CBB401 等系列。

5.独石电容器结构:独石电容器是用钛酸钡为主的陶瓷材料烧结制成的多层叠片状超小型电容器。 用途:广泛应用于谐振、旁路、耦合、滤波等。 常用的有CT4 (低频)、CT42(低频);CC4(高频)、CC42(高频)等系列。 6.云母电容器(CY)结构:云母电容器是采用云母作为介质,在云母表面喷一层金属膜(银)作为电极,按需要的容量叠片后经浸渍压塑在胶木壳(或陶瓷、塑料外壳)内构成。 用途:一般在高频电路中作信号耦合、旁路、调谐等使用。常用的有CY、CYZ、CYRX等系列。

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

电容品牌大全

电容品牌大全(转) 电容品牌大全 主板厂商惯用电容品牌 富士康Rubycon Sanyo 华擎KZG KZE 升技Rubycon 技嘉Rubycon KZG OST 磐正Sanyo OST GSC 微星KZG OST 华硕Nichicon KZG 硕泰克Sanyo Sacon 捷波GSC 七彩虹Taicon 按照Intel主板技术白皮书的介绍,主板CPU插槽附近的滤波电容单个容量最低要求为1000μF。大部分主板上常见电容的容量为2200μF,好的主板采用3500μF甚至更高容量的电容。而在Intel的原装主板上,一般单个电容容量都在3300μF以上,这就是Intel主板极其稳定的重要原因之一。可见“电容决定主板质量”这话一点不假。下面是主要电容品牌的体系图,都是从电容厂商的网站上DOWN下来的,买电容的时候可以参考一下: 目前只找到SANYO、nichicon的体系图,其它厂商只提供PDF文档,有兴趣的可以去看: SANYO: www.secc.co.jp/english/index.html nichicon: https://www.360docs.net/doc/7a5497645.html, chemicon: https://www.360docs.net/doc/7a5497645.html, rubycon: https://www.360docs.net/doc/7a5497645.html, teapo: https://www.360docs.net/doc/7a5497645.html,

OST: https://www.360docs.net/doc/7a5497645.html, 总结一下,比较适合主板使用的电容必须是\"Low Impedance & ESR\"、\"Very Low Impedance & ESR\"、\"Ultra Low Impedance & ESR\" 且温度为105C的,Ultra的最好 SANYO:MV-WG、MV-WX、MV-SWG、MB-UWG、MB-EXR等系列 nichicon: H开头的系列,P开头的系列 chemicon: KZE、KZG系列 rubycon: YXF、YXG、ZL、ZLH、MBZ、MCZ系列 teapo: SC、SM、SZ系列 OST: RLP、RLZ系列 系列太多了,列举不完。在可选的系列中,再根据PDF的资料,选择寿命比较长的就好了,一般PC 只需在2000小时以上就差不多了,5000小时以上的一是难买,二是贵。 还有,就是不要迷信什么音响发烧电容、拆机电容等。这些电容,有的是85C的,有的不是LOW ESR 的,拆机电容有的生产日期距今已有十多年,就算再好也不能用。 一句话,适合的才是最好的。 电容厂商电容品牌 日系名厂Nichicon Rubycon KZG Sanyo KZE Panasonic 二线厂商OST Jackcon Nippon Teapo Taicon 其他厂商Sacon GSC Chocon Fcon 一线电容: Sanyo----三洋电容 Rubycon---红宝石 Nichicon --日系电容 KZG-------日系电容日本化工,Nippon Chemi-con

超级电容器综述解析

电子技术查新训练文献综述报告 题目超级电容器技术综述 学号3130434055 班级微电132 学生赵思哲 指导教师杨莺 2014 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白,能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命,同时还具有比二次电池耐温和免维护的优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract:In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application。But the standard design ability of the current battery have already canned not satisfy people's request gradually,The super capacitor emerges with the tide of the times。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words:super capacitor; The energy storage mechanism; active carbon; development trend; Application trend .

电容大小识别大全

电容大小识别 上图举出了一些例子。其中,电解电容有正负之分,其他都没有。 电容的容量单位为:法(F)、微法(uf),皮法(pf)。一般我们不用法做单位,因为它太大了。各单位之间的换算关系为: 1F =1000mF=1000×1000uF 1uF=1000nF =1000×1000pF 电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。 容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量) 电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 电容的使用,都应该在指定的耐压下工作。现在的好多质量不高的产品,就因为使用了耐压不足的电容而引起故障(常见电容爆裂)。 电容的容量标识的几种方法: 一、直接标识:如上图的电解电容,容量47uf,电容耐压25v。 二、使用单位nF: 如上图的涤纶电容,标称4n7=4.7nF=4700pF。 还有的例如:10n=0.01uF;33n=0.033uF。后面的63是指电容耐压63v. 三、数学计数法: 如上图瓷介电容,标值104,容量就是:10X10000pF=0.1uF. 如果标值473,即为47X1000pF=0.047uF。(后面的4、3,都表示10的多少次方)。 又如:332=33X100pF=3300pF 102=10×102pF=1000pF 224=22×104pF=0.22 uF 四、电容容量误差表: 符号 F G J K L M

超级电容器研究综述

一、超级电容器的发展与进步 (一)概述 在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。然而这一效应的缘由直到18世纪中叶方被人们理解。140年后,人们开始对电有了分子原子级的了解。早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。 电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。 超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。 超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。 (二)超级电容器的原理 超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。一方面,与传统电容器相比,超级电容器的电极材料往往选用高比表面积材料,如活性碳,通过静电作用在固/液界面形成对峙的双电层存储电荷,因此超级电容器拥有比传统电容器高的能量密度,静电容量能够达到千法拉至万法拉级;另一方面,与电池能量存储机理类似,超级电容器可以通过法拉第氧化还原反应完成电荷存储和释放,由于主要依靠电极表面或近表面的活性材料存储电荷,超级电容器与电池相比,能量密度较低,但是具有高的功率密度和循环稳定性。 1 传统电容器 传统的平行板电容器是所有静电电容器储能的基础,传统电容器电能的储存来源于电荷在两极板上聚集而产生电场。平行板电容器的静电电容的计算公式为: r是两极板材料的相对介电常数,0是真空介电常数,A是电极板的正对面积,d 是两极板的距离。 2 双电层超级电容器 双电层电容器是通过静电电荷分离,依靠固/液界面的双电层效应完成能量的存储和转化。电解液离子分布可为两个区域——紧密层和扩散层。其双电层电容可视为由紧密层电容和扩散层电容串联而成。双电层电容器正是基于上述理论发展起来的。充电时,电子经外电

超级电容器综述

超级电容器综述 超级电容器又称电化学电容器或双电层电容器,是一种新型储能器件,它利用电极/电解质交界面上的双电层或在电极界面上发生快速、可逆的氧化还原反应来储存能量。 超级电容器采用活性碳材料制作成多孔碳电极,同时在相对的多孔电极之间充填电解质溶液,当在两端施加电压时,相对的多孔电极上分别*正负电子,而电解质溶液中的正负离子将由于电场作用分别*到与正负极板相对的界面上,从而形成两个集电层。 由于活性碳材料具有≥1200m2/g的超高比表面积(即获得了极大的电极面积),而且电解质与多孔电极间的界面距离不到1nm(即获得了极小的介质厚度),所以这种双电层结构的超级电容器比传统的物理电容的容值要大很多,比容量可以提高100倍以上,从而使利用电容器进行大电量的储能成为可能。 目前国际上研究与发展的超级电容器可归为以下几类: ●双层电容器(Double layer capacitor) 由高表面碳电极在水溶液电解质(如硫酸等)或有机电解质溶液中形成的双电层电容,如图6-12.1所示。该图还表示出一个典型双电层的形成原理,显然双电层是在电极材料(包括其空隙中)与电解质交界面两侧形成的,双电层电容量的大小取决于双电层上分离电荷的数量,因此电极材料和电解质对电容量的影响最大。一般都采用多孔高表面积碳作为双层电容器电极材料,其比表面积可达1000-3000m2/g,比电容可达280F/g。 ●赝电容器(Pseudo-capacitor)

由电极表面上或者体相中的二维或准二维空间上发生活性材料的欠电位沉积,形成高度可逆的化学吸附/脱附或氧化/还原反应产生和电极充电电位有关的电容,又称法拉第准电容;典型的赝电容器是由金属氧化物,如氧化钌构成的,其比电容高达760F/g。但由于氧化钌太贵,现已开始采用氧化钴、氧化镍和二氧化锰来取代; ●混合电容器(Hybrid capacitor) 由半个形成双层电容的碳电极与半个导电聚合物或其他无机化合物的表面反应或电极嵌入反应电极等构成。目前在水溶液电解质体系中,已有碳/氧化镍混合电容器产品,同时正在发展有机电解质体系的碳/碳(锂离子嵌入反应碳材料)、碳/二氧化锰等混合电容器。 此外,若按照电容器采用的电极材料分类,则可分为碳基型、氧化物型和导电聚合物型;而按采用的电解质类型分类,则又分为水溶液电解质型和非水电解质型(主要为有机电解质型)。在有机电解质溶液中,电容器的工作电压可提高至2.5V以上。 超级电容器的性能特点 超级电容器是介于电容器和电池之间的储能器件,它既具有电容器可以快速充放电的特点,又具有电化学电池的储能机理,性能比较详见下表。 超级电容器作为一种新型能源器件,具有以下主要优点: (1)功率密度高 超级电容器的内阻很小,且在电极/溶液界面和电极材料本体内部均能够实现电荷的快速贮存和释放,因此它的输出功率密度高达数千瓦/千克,是任何一种化学电源都无法比拟的,是一般技术'>蓄电池的数十倍。

(完整word版)电解电容封装规格表

康富松电解电容全系列封装规格: 产品名称:康富松电解电容ME系列 型式:导针型 特性:耐高温,标准品,通过无铅认证 使用温度范围:-40 ~ +105℃(6.3 ~ 400V) -25 ~ +105℃(450V) 额定工作电压范围:6.3 ~ 450V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.03CV or 4μA 寿命(H):2000 产品名称:康富松电解电容RC系列 型式:导针型 特性:耐高温,低阻抗,通过无铅认证 使用温度范围:-55 ~ +105℃(6.3 ~ 100V) -40 ~ +105℃(160 ~ 400V) -25 ~ +105℃(450V) 额定工作电压范围:6.3 ~ 450V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.03CV or 4μA 寿命(H):3000~5000 产品名称:康富松电解电容RD系列 型式:导针型 特性:耐高温,通过无铅认证 使用温度范围:-55 ~ +105℃(6.3 ~ 100V) -40 ~ +105℃(160 ~ 400V) -25 ~ +105℃(450V) 额定工作电压范围:6.3 ~ 450V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.03CV or 4μA 寿命(H):2000~8000 产品名称:康富松电解电容RG系列 型式:导针型 特性:耐高温,低阻抗,长寿命,通过无铅认证 使用温度范围:-40 ~ +105℃ 额定工作电压范围:6.3 ~ 50V 电容量允许偏差:±20%(M) (at 20℃,120Hz) 漏电流:0.01CV or 3μA 寿命(H):4000~10000

超级电容器电极材料综述

超级电容器电极材料综述 原创:jqzhu 本文对超级电容器的背景,电极材料的储能原理、性能评价和电容器的制备方法,以及国内外报道的超级电容器电极材料做了详细的归纳和总结。可作为超级电容器研究的入门资料。原创作品,学术不端检索比例小于3%,可以作为本科,硕士,博士论文中第一章文献综述的重要参考资料。(全文5万余字,参考文献齐全)。值得拥有。 目 录 超级电容器综述 (2) 1.1 引言 (2) 1.2 电化学电容器的理论基础与应用 (4) 1.2.1 电双电层电容器和法拉第赝电容器 (4) 1.2.2比电容,电压,功率和能量密度 (7) 1.2.3电解液 (10) 1.2.4电化学电容器的制备 (13) 1.2.5 电极材料的评价方法 (15) 1.2. 6 电化学电容器的优点、挑战以及应用 (18) 1.3电极材料 (25) 1.3.1 碳材料 (27) 1.3.2 导电聚合物(CPs) (30)

1.3.3 非贵金属氧化物/氢氧化物 (36) 1.3.4 贵金属氧化钌电极材料 (52) 1.4 多元活性氧化物材料的结构特点及制备技术 (65) 1.4.1 多元氧化物的结构和性能特点 (65) 1.4.2 多元氧化物的制备技术 (67) 参考文献 (71)

超级电容器综述 1.1 引言 随着经济和科学技术的发展,人类对能源的需求逐年递增,导致不可再生的石化能源储量逐年减少,而排放的有害气体,温室气体却与日俱增,环境污染日趋严重。因此,当前世界各国都在致力于开发清洁、高效的可再生能源,以及能源储存和转换的新技术和新设备。 在大多数应用领域,最为有效的和实用的能量储存与转换的技术包括蓄电池、燃料电池、以及电化学超级电容器(ES)。最近的十几年里,由于具有高功率密度、长循环寿命等性能优点,超级电容器越来越受到广泛的重视。超级电容器的性能介于传统介电容器(超高功率/低能量密度)和蓄电池/燃料电池(高能量密度/低功率密度)之间,刚好填补它们的性能间隙[1, 2],因此有着广泛的应用的前景。 最早的电化学电容专利申请于1957年。然而,直到20世纪90年代,电化学电容器才真正进入人们的视野,逐渐受到少数行业的重视,例如混合电动交通工具开发领域[3, 4]。此时电化学电容器的作用是提升电池/燃料电池的性能,在汽车启动、加速或刹车瞬间提供充足的动力[5, 6]。在随后发展过程中,人们才逐渐意识到,电化学电容器还有一个非常重要的作用,即作为电池和燃料电池的能量补充,在电池或燃料电池出现瞬间断电时提供备用电能[7]。鉴于此,美国能源总署认定在未来能源储存系统中电化学电容器和电池/燃料

电容容值表全系列

电容容值表 一、瓷片SMD电容(非正负极): 5PF 100PF(101)1000PF/1nF(102)10nF/0.01uF(103) 10PF 120PF(121)1500PF/1.5nF(152)15nF/0.015uF(153) 12PF 150PF(151)1800PF/1.8nF(182)20nF/0.02uF(203) 15PF 220PF(221)2000PF/2nF(202)22nF/0.022uF(223) 18PF 330PF(331)2200PF/2.2nF(222)33nF/0.033uF(333) 20PF 470PF(471)2700PF/2.7nF(272)40nF/0.04uF(403) 22PF 560PF(561)3300PF/3.3nF(332)47nF/0.047uF(473) 27PF 680PF(681)4700PF/4.7nF(472)82nF/0.082uF(823) 30PF 820PF(821)5600PF/5.6nF(562)100nF/0.1uF(104) 33PF 6800PF/6.8nF(682) 39PF 47PF 50PF 68PF 82PF 二、独石电容DIP(非正负极): 100PF(101)1000PF/1nF(102)10nF/0.01uF(103)100nF/0.1uF(104)1uF(105)470PF(471)220nF/0.22uF(224) 2.2uF(225) 470nF/0.47uF(474) 三、涤纶电容DIP(非正负极): 1000PF/1nF(102)10nF/0.01uF(103)100nF/0.1uF(104) 1500PF/1.5nF(152)15nF/0.015uF(153)220nF/0.22uF(224) 2200PF/2.2nF(222)22nF/0.022uF(223)470nF/0.47uF(474) 2700PF/2.7nF(272)27nF/0.027uF(273 3300PF/3.3nF(332)33nF/0.033uF(333) 4700PF/4.7nF(472)47nF/0.047uF(473) 5600PF/5.6nF(562)56nF/0.056uF(563) 6800PF/6.8nF(682) 四、电解电容DIP(正负极): 0.1uF/50uF 1uF/50uF 100uF/25uF 1000uF/16uF 0.22uF/50uF 2.2uF/50uF 100uF/35uF 1000uF/25uF 0.33uF/50uF 3.3uF/50uF 100uF/50uF 1000uF/50uF 0.47uF/50uF 4.7uF/50uF 220uF/25uF 2200uF/6.3uF 10uF/50uF 330uF/35uF 2200uF/25uF 22uF/50uF 470uF/25uF 2200uF/50uF 33uF/16uF 470uF/50uF 3300uF/25uF 47uF/25uF 680uF/16uF 3300uF/35uF 47uF/50uF 680uF/25uF 3300uF/50uF 4700uF/25uF 不懂可以询Q:928972556 4700uF/50uF

超级电容器综述-1

材料科学导论 课程论文 题目: 院(系): 专业: 姓名: 学号: E–mail:

超级电容器的研究综述 摘要:超级电容器具有储存能量大、比功率大、耐低温、免维护、低污染等突出优点,广泛地应用在启动、牵引动力、脉冲放电和备用电源等领域。综述了超级电容器的发展和超级电容器的研究进展,认为要想更大地提高超级电容器的比容量和储能密度等,需要进一步对电极材料、电解质材料、加工工艺、结构设计等方面进行研究。 关键词:超级电容器;电极材料;电解质材料 Research summary of supercapacitor Abstract: Supercapacitor could be used in start, traction, pulse-discharge and standby power with the advantages of high energy, high specific power, low temperature tolerance, maintenance free and low pollution. The research progress of supercapacitor and the development of super- capacitor were reviewed. It was concluded that in order to increase the specific capacity and energy density of supercapacitor, it was necessary to research the electrode materials, electrolyte material ,processing technology and structure design further. Key words: supercapacitor;electrode material;electrolyte material

最全电容容值表

电容容值表 一、瓷片电容(非正负极): 5PF100PF(101)1000PF/1nF(102)10nF/0.01uF(103) 10PF120PF(121)1500PF/1.5nF(152)15nF/0.015uF(153) 12PF150PF(151)1800PF/1.8nF(182)20nF/0.02uF(203) 15PF220PF(221)2000PF/2nF(202)22nF/0.022uF(223) 18PF330PF(331)2200PF/2.2nF(222)33nF/0.033uF(333) 20PF470PF(471)2700PF/2.7nF(272)40nF/0.04uF(403) 22PF560PF(561)3300PF/3.3nF(332)47nF/0.047uF(473) 27PF680PF(681)4700PF/4.7nF(472)82nF/0.082uF(823) 30PF820PF(821)5600PF/5.6nF(562)100nF/0.1uF(104) 33PF6800PF/6.8nF(682) 39PF 47PF 50PF 68PF 82PF 二、独石电容(非正负极): 100PF(101)1000PF/1nF(102)10nF/0.01uF(103)100nF/0.1uF(104)1uF(105)470PF(471)220nF/0.22uF(224) 2.2uF(225) 470nF/0.47uF(474) 三、涤纶电容(非正负极): 1000PF/1nF(102)10nF/0.01uF(103)100nF/0.1uF(104) 1500PF/1.5nF(152)15nF/0.015uF(153)220nF/0.22uF(224) 2200PF/2.2nF(222)22nF/0.022uF(223)470nF/0.47uF(474) 2700PF/2.7nF(272)27nF/0.027uF(273 3300PF/3.3nF(332)33nF/0.033uF(333) 4700PF/4.7nF(472)47nF/0.047uF(473) 5600PF/5.6nF(562)56nF/0.056uF(563) 6800PF/6.8nF(682) 四、电解电容(正负极): 0.1uF/50uF1uF/50uF100uF/25uF1000uF/16uF 0.22uF/50uF 2.2uF/50uF100uF/35uF1000uF/25uF 0.33uF/50uF 3.3uF/50uF100uF/50uF1000uF/50uF 0.47uF/50uF 4.7uF/50uF220uF/25uF2200uF/6.3uF 10uF/50uF330uF/35uF2200uF/25uF 22uF/50uF470uF/25uF2200uF/50uF 33uF/16uF470uF/50uF3300uF/25uF 47uF/25uF680uF/16uF3300uF/35uF 47uF/50uF680uF/25uF3300uF/50uF 4700uF/25uF 4700uF/50uF

超级电容器电极材料综述

超级电容器电极材料 超级电容器,作为当下储能研究的一大热点,普遍具有以下优势: 1、快速的充放电特性 2、很高的功率密度 3、优良的循环特性 然而,它的不足完全制约了它的实际应用——能量密度很低。目前,商用的超级电容器可以提供10WhKg-1,而相比之下,锂离子电池的能力密度高达18010WhKg-1。因此,如何能提高超级电容器的能量密度,称为眼下超级电容器研究领域亟待解决的首要问题。学术圈致力于通过开发新的电极材料、电解质、独创的器件设计方案等方法,来实现这一问题的突破。 想要通过更好的电极材料(同时需要价格低廉,环境友好)来实现在超级电容器性能上的重大的进展,需要对电荷储存机理,离子电子的传输路径,电化学活性位点有全面、深远的认识。由此,纳米材料因为其可控的离子扩散距离、电化学活性位点数量的扩大等特点成为研究热门。 根据储能机理的不同,超级电容器可以分为:双电层电容器EDLC,赝电容。EDLC通过物理方法储存电荷——在电解质、电极材料界面上发生可逆的离子吸附。而赝电容通过化学方法储存电荷——在电极表面(几纳米深)发生氧化还原反应。通常,EDLC的电极材料为碳材料,包括活性炭,碳纳米管,石墨烯等。然而赝电容的电极材料包括:金属氧化物(RuO2, MnO2, CoOx, NiO,Fe2O3),导电高分子(PPy,

PANI,Pedot)。 设计一款高性能的超级电容的标准是: 1、很高的比容量 (单位质量的比容量,单位体积的比容量,或者是活性物质的面积) 2、很高的倍率性能 在高的扫速下200mV/s或电流密度下,容量的保持率。 3、很长的循环寿命 另外,活性材料的价格与毒性也需要计入考量。 为了制备高容量的电极材料,上述因素需要进一步讨论。 1、表面积:因为电荷是储存在电容器电极的表面,具有更高表面积的电极可以提高比容量。纳米结构的电极可以很好的提高电极的表面积。 2、电子和离子的导电性:因为比容量、倍率性能是由电子、离子的导电性共同决定,高的离子、电子电导将会很好的维持CV曲线中的矩形图线,以及GCD中充放电曲线的对称性。 同时,这也将减少充电电流增大后的比容量损失。 典型的增加电子电导的方法有: (1)Binder-free electrode design 不实用粘结剂 (2)纳米结构集流体设计——这可以为电子传输的提供高效途径 增加离子电导的方法:

超级电容器的研究进展

超级电容器的研究进展

超级电容器的研究进展 摘要:超级电容器是一种新型储能装置,它具有功率密度高、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。近年来,各种新兴材料 的发展,为超级电容器电极材料的选取提供了更多的选择条件,促进了超级电 容器的快速发展。本文总结了超级电容器的特点,重点介绍了超级电容器的工 作原理、分类以及超级电容器的材料。并简要展望了超级电容器电极材料的发 展方向和前景。 关键词:超级电容器碳电极贵金属氧化物导电聚合物 Abstract: Super capacitor is a new type of energy storage device. It has the characteristics of high power density, short charging time, long service life, good temperature characteristics, energy saving and green environmental protection. In recent years, the development of a variety of new materials, for the selection of the super capacitor electrode materials to provide more options to promote the rapid development of the super capacitor. This paper summarizes the characteristics of the super capacitor, and introduces the working principle of the super capacitor, classification and the material of the super capacitor. And briefly discussed the developing direction of super capacitor electrode materials and prospect. Key words: Super capacitor Carbon electrode Precious metal oxide Conducting polymer 一、引言 超级电容器是建立在德国物理学家亥姆霍兹(1821~1894)提出的界面双 电层理论基础上的一种全新的电容器,又叫电化学电容器(Electrochemcial Capacitor, EC)、黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电

超级电容器的关键材料

超级电容器的关键材料 超级电容器的关键材料包括电极材料?电解质?隔膜和集电材料等? (一)电极材料 电极材料是决定电容器电容量大小的主要因素,对电极材料的要求是电导率较高且不与电解质发生化学反应,表面积尽可能大,价格便宜,制备过程中易于成形? 目前,超级电容器电极材料的代表是RuO2·nH2O,比电容已达到720F/g,但Ru资源稀缺且价格昂贵?而成本较低的?比表面积较高的多孔碳电极材料,其比电容只能达到200F/g左右? (二)电解质 在电化学超级电容器中,电解质也是关键的组成部分,它不仅在电容器的性能上起着许多决定性的作用,还在相当大程度上决定着电容器实用的可靠性?现在应用和研究的电解质大致可分为固态和液态两种,液态电解质又包含水溶液和有机溶液两类? 1.水系电解质 在使用活性炭作为电极的EDLC中,H2SO4由于具有较低的凝固点,而且不存在KOH所具有的沉积结晶现象而被广泛应用?考虑到电

导率等因素,研究者们认为30%是最佳浓度?相对于H2SO4溶液而言,KOH水溶液导电性稍差,但腐蚀性弱于H2SO4,集电极可采用高导电的金属材料,因而被人们采用?其他水溶液电解质,如HCl?H3PO4?HNO3及HClO4等,也被尝试作为EDLC的电解质,但效果不佳? 2.有机电解质 有机电解质的一个重要研究内容是支持有机溶剂的电解质盐的开发和选用?应用于EDLC的支持电解质种类不多,目前使用的阳离子主要是季铵盐(R4N+)和锂盐(Li+),此外季磷盐(R4P+)和芳香咪唑盐(EMI)也有报道;阴离子主要有ClO4-?BF4-?PF6-?AsF6-和(CF3SO2)2N-等?在各种电解质盐中,Et4NBF由于具有良好的综合性能,因而在EDLC中得到了广泛的应用? 3.固体电解质 固体电解质由于良好的可靠性?无电解质泄漏?可薄型化和可延长寿命等优点而备受青睐,也实现了全固态EDLC?运用于EDLC的固体电解质分为无机固体电解质和有机固体电解质? 1)无机固体电解质 无机固体电解质本身具有良好的导电性,人们对其用做EDLC的可能性进行了大量研究,尝试使用Rb2Cu8I3C17?β-Al2O3?HUO2PO4·H2O 和RbAg4I4等固态电解质作为EDLC的电解质,其中RbAg4I4最受人

相关文档
最新文档