数字示波器基础知识
示波器及探头使用

示波器及探头使用公司目前使用的示波器以数字示波器为主,分为两类,一类是福禄克(FLUKE)数字示波器,另一类是泰克(Tektronix ),另外还有一台建伍(KENWO0D)模拟示波器。
示波器在生产和研发中都是非常重要的一种仪器,而且也是非常昂贵的一种仪器,所以正确使用示波器不仅能提高工作效率,也能减小对示波器的不合理损耗。
一、示波器基础知识♦什么叫示波器?示波器本质上是一种图形显示设备,它描绘电信号的图形曲线。
在大多数应用中,呈现的图形能够表明信号随时间的变化过程:垂直(Y)轴表示电压,水平(X)轴表示时间。
有时称亮度为Z轴。
这一简单的图形能够说明信号的许多特性,例如:信号的时间和电压值振荡信号的频率信号所代表电路的“变化部分” 信号的特定部分相对于其他部分的发生频率是否存在故障部件使信号产生失真信号的直流值(DC)和交流值(AC)信号的噪声值和噪声是否随时间变化。
♦波形测量频率和周期不断重复的信号具有频率特性。
频率的单位是赫兹(Hz),表示一秒时间内信号重复的次数。
成为周期每秒。
重复信号也具有周期特性,即信号完成一个循环所需要的时间量。
周期和频率互为倒数关系,即1/ 周期等于频率,同理1/ 频率等于周期。
电压电压是电路两点间的电势能或信号强度。
有时把地线或零电压作为参考点。
如果测量的是波形从最高峰值到最低峰值的电压值,则称为电压的峰值- 峰值。
幅度幅度是指电路两点间电压量。
幅度通常指被测信号以地或零电压为参考时的最大电压。
其他有些示波器还提供了测量相位、占空比、延时、上升时间等的功能。
♦示波器的分类模拟示波器本质上,模拟示波器工作方式是直接测量信号电压,并通过从左到右穿过示波器屏幕的电子束在垂直方向描绘电压。
示波器屏幕通常是阴极射线管(CRT。
电子束投到荧幕的某处,屏幕后面总会有明亮的荧光物质。
当电子束水平扫过显示器时,信号的电压是电子束发生上下偏转,跟踪波形直接反映到屏幕上。
在屏幕同一位置电子束投射频度越大,显示得也越亮。
示波器使用基础知识

示波器使用基础知识示波器(Oscilloscope)是一种用于观测和测量电信号波形的仪器,是电子实验室和工程师常用的工具之一、它能够显示电压随时间变化的波形图,并可以用于分析信号的频率、幅度、相位等特性。
本文将介绍示波器的基础知识,包括工作原理、种类、操作方法等内容。
一、示波器的工作原理示波器的工作原理基于信号的采样和显示。
当被测信号通过示波器的输入通道时,示波器会对信号进行采样,并将采样结果通过电子束扫描的方式显示在屏幕上,形成波形图。
示波器的核心部件是电子束管,它是一种真空管,内部包含有阴极、聚焦剂、水平和垂直偏转板等。
当示波器接收到信号后,会对电子束施加水平和垂直的偏转电压,使电子束在屏幕上形成波形图。
二、示波器的种类示波器根据使用范围、性能特点等因素可以分为不同的种类。
常见的示波器包括:1.模拟示波器:采用电子束管显示波形图,具有较高的输入动态范围和带宽,适用于高频、高速的信号测量。
2.数字示波器:采用数字方式对信号进行采样和处理,并通过液晶显示屏显示波形图。
数字示波器可以对波形进行数学运算、存储、触发等操作,适用于对信号进行更复杂的分析和处理。
3.存储示波器:能够将波形数据存储在内部存储器中,并可以通过接口输出到计算机进行进一步分析和处理。
4.扫描示波器:通过扫描方式显示多个信号的波形图,适用于多通道信号的观测和比较。
三、示波器的操作方法1.连接电源和信号源:示波器通常需要连接外部电源,并通过输入通道接收被测信号。
在连接信号源时,需要注意信号源的适配性和匹配阻抗。
2.调节水平和垂直控制:示波器的水平和垂直控制可以调节波形图的位置和大小。
水平控制可以调整波形图的水平偏移和触发位置,垂直控制可以调整波形图的幅度和灵敏度。
3.设置触发模式:示波器可以设置触发模式以稳定地显示波形图。
触发模式可以根据信号的上升沿、下降沿、脉冲宽度等进行设置。
4.进行波形显示和分析:根据需要可以选择采样率和时间基准进行波形显示。
数字示波器基础知识

数字示波器基础知识耦合耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式.耦合控制可以有两种设置方式,即DC耦合和AC耦合。
DC耦合方式为信号提供直接的连接通路.因此信号提供直接的连接通路.因此信号的所有分量(AC和:DC)都会影响示波器的波形显示。
AC耦合方式则在BDC端和衰减器之间串联一个电容。
这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。
示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。
示波器的低频截止频率主要决定于其输入耦合电容的数值。
和耦合控制机构有关的另一个功能是输入接地功能。
这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。
当选择接地时,在屏幕上将会看到一条位于0V电平的直线。
这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。
输入阻抗多数示波器的输入阻抗为1MΩ和大约25pF相关联。
这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。
有些信号来自50Ω输出阻抗的源。
为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。
这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。
某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能.为避免误操作,选择此功能时需经再次确认。
由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。
相加和反向简单的把两个信号相加起来似乎没有什么实际意义.然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。
这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。
从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。
由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。
RIGOL数字示波器【参考资料】

触发系统
持续时间触发
触发原理:在满足码型条件后的指定时间内触发 适合信号:数字信号
Page45
Restricted documents of RIGOL
触发系统
触发释抑:触发释抑指在前一次触发之后的一段时间
之内,示波器停止触发响应。
实际应用举例:复杂的脉冲串、调幅信号
释抑时间
触发系统
触发设置
可调触发灵敏度:有效滤除有可能叠加在触发信号上的 噪声,防止误触发 实际应用举例:
△t
Page20
Restricted documents of RIGOL
采样率
实时采样率:实时采样率是指示波器一次采集 (一次触发)采样间隔时间的倒数。 示波器所需实时采样率=被测信号最高频率分 量×5
①① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ①① ① ① ① ① ① ① ①①① ① ① ① ① ①①① ① ①① ① ① ①① ① ① ① ①
Restricted documents of RIGOL
触发系统
斜率触发
适合信号:三角波、锯齿波等
边沿触发
Page41
斜率触发
Restricted documents of RIGOL
触发系统
视频触发
触发原理:对标准视频信号进行任意行或场触发。 适合信号:视频信号
场触发
Page42
Page27
Restricted documents of RIGOL
采样率
波形漏失是指由于采样率低而造成的没有反映全部实 际信号的一种现象。
脉冲消失
Page28
Restricted documents of RIGOL
DSO基础知识介绍PPT课件

项目名称
项目类别
经费(万) 负责人 起止时间
高速数字采集与波形存储技术
总装预研
300
王厚军 2011-2015
大规模并行采样及宽带数字存储示波器 国家自然基金(重点)
110
王厚军 2008-2011
优利德系列化数字存储示波器 20G采样率宽带数字三维示波器
2.5G示波表 6G示波器
横向 军工型号 军工型号 军工型号
采样率对观察信号的影响
毛刺与窄脉冲精确捕获复现能力
.
25
采样率对观察信号的影响
对单次事件精确捕获复现能力
.
26
采样率对观察信号的影响
脉冲序列精确复现能力
.
27
采样率太低的后果——混叠
.
28
如何选择采样率
.
29
存储深度
表示示波器在最高实时采样率下连续采集并存储采 样点的能力,通常用采样点数(pts)表示。
.
7
示波器的类型及区别
模拟示波器:ART 数字存储示波器:DSO 数字荧光示波器:DPO 模拟数字混合示波器:MSO
.
8
示波器的类型及区别
.
9
示波器的类型及区别
.
10
DSO的典型构成
CH1
模拟通道1
CH2
模拟通道2
采样时钟电路 A/D
存储器 FPGA
触发电路
.
SDRAM,FLASH等系统组件 DSP
6G数字示波器 数字三维示波器
推出的6GSPS数字存储示波器,采样 率指标居国内最高水平。
国内首家推出号称第三代示波器技 术的——数字三维示波器,核心指 标性能同国外主流产品相当。
数字示波器实验报告

数字示波器实验报告引言:数字示波器是现代电子学、通信工程等领域不可或缺的一种测试仪器。
它以数字信号处理技术为基础,能够准确地显示和分析电路中的信号波形和频谱等特性。
本实验旨在通过对数字示波器的实际操作和原理了解,掌握其使用方法和应用场景。
一、实验目的本次实验的主要目的是:1. 理解数字示波器的基本工作原理和结构;2. 学会使用数字示波器进行信号波形和频谱分析;3. 掌握数字示波器在电路实验中的应用。
二、实验装置与方法1. 实验装置:本次实验所使用的装置包括:数字示波器、信号发生器和待测电路。
2. 实验步骤:(1)连接实验装置:按照实验指导书的要求,正确地连接示波器、信号发生器和待测电路。
(2)设置示波器参数:根据实验要求,调整示波器参数,包括时间和电压的量程、触发模式、采样频率等。
(3)观察波形图:通过调整示波器的触发方式和水平时间基准,观察待测电路产生的波形图,并记录相关数据。
(4)进行频谱分析:通过设置示波器的频谱分析功能,对待测电路产生的信号进行频谱分析,并记录结果。
三、实验结果与分析通过实验操作,观察了示波器显示的不同波形图,并进行了频谱分析。
根据实际测量数据,得出以下结论:1. 波形图分析:通过示波器的触发功能,我们可以观察到电路中的信号波形,包括正弦波、方波等。
根据示波器的缩放和触发设置,我们可以调整波形的幅度和相位,并进行相应的测量与分析。
2. 频谱分析:示波器的频谱分析功能可以帮助我们了解信号的频域特性。
通过选择适当的分辨率和窗口函数,我们可以获取电路产生的信号的频谱图,并进一步分析信号的频谱分布和频率成分。
四、实验总结本次实验通过实际操作和观察,深入了解了数字示波器的基本原理和使用方法,并在实验中掌握了数字示波器的应用技巧。
通过对信号波形和频谱的观察和分析,我们可以更好地理解和评估电路的性能和特性。
数字示波器作为一种重要的测试仪器,在电子学和通信工程等领域具有广泛的应用前景。
通过对数字示波器的学习和实验,我们可以更好地应用该仪器解决实际问题,提高电路设计和调试的效率与精度。
数字示波器原理、基本特性和应用

数字示波器原理、基本特性和应用周恩宜【摘要】现在,电子测量示波器已经成为测量频域、时域的重要手段,能够对脉冲进行测试,能够对双时基进行观察,从而能够获取准确的测试结果,能够对数据进行运算和存储,而且能够测量电力系统的物理和化学量,现在所使用的示波器一般都是数字化的示波器,在专用集成电路和超大规模集成电路中使用比较广泛,本文主要探讨了数字测量示波器的结构和基本特性,分析了数字示波器的参数,在测试的过程中方便对数字示波器的型号进行选择,而且能够运用有效的方法进行维护.【期刊名称】《电子制作》【年(卷),期】2015(000)018【总页数】1页(P6)【关键词】数字示波器;模拟示波器;光标【作者】周恩宜【作者单位】中船重工第七一0研究所湖北宜昌 443000【正文语种】中文现在,数字示波器虽然已经开始广泛使用,但是,其价格却比较贵,而且其电路结构比较复杂,当出现故障时就要进行全面地维护,在使用过程中流程比较复杂,而且,人们长时间的使用传统的CRT荧光屏去观察线路问题,在使用新型的数字示波器时会感到不习惯,而且,在使用新型的数字示波器时要运用很多知识,如软件技术、微电子技术等,这给数字示波器的应用人员带来了很大的挑战,所以,对数字示波器的原理和特点进行了解是很有必要的。
现在,数字示波器主要有三种类型,第一种是UP参与型的示波器,能够对运算的数据进行存储,第二种是UP观测示波器,这类示波器主要起到的是观测的作用,能够实现对信号的测量,并且能偶与字符进行控制,但是不能显示波形,不能实现信号的转换,要不能对信号进行数据处理,第三中是实时与存储示波器,这类示波器能够实现对数据的显示,而且能够及时对数据存储。
上述的三种数字示波器中,第一种示波器具有强大的数据存储功能,能够对数据进行读取,这类示波器具有横向和纵向的双向数据通道,当两个通道输入和输出数据的时候,都需要对数据进行转换,转换成统一格式的数据才能输入和输出,能够对数据进行数字化的处理,并且能够对波形观测,这类示波器的波形总线和处理器的总线是用收发器连接在一起的。
示波器探头基础知识培训

TekProbeTM 探头接口
TekProbeTM 探头接口
基于BNC的探头接口形式 泰克在80年代中期发明 提供有源探头的供电 提供探头倍率的自动识别 提供探头类型的自动识别 提供工程单位的显示 理论上最好的BNC系统的带宽是4GHz
C2 = low frequency compensation. Scope input C varies.
系统的带宽
系统的上升时间 tr(10%~90%) tr(System)=√tr(scope)2+tr(probe)2
系统的带宽
BW(-3dB)
1
BW(SYSTEM)=
√(1
)2 + ( 1
f0 =
1
2 p (RC||RP)(CC+CP)
NOTE: Vcc is an AC Ground
探头对被测点的影响
例如:Rc=10K Re=10 Cc= 100pF
Rp=1M Cp=20pF
原电路增益和截止频率: 增益= 1000 截止频率 = 1/2 *p*10k *100pF=160KHz
等效阻抗
标准附件
与各种电路连接的附件
探头附件
泰克的无源探头家族
1X无源探头 - P6101B 通用无源探头-10X,1 MΩ 输入阻抗
P3010 • P6103B • P6109B • P6111B • P6112 • P6114B • P6117 高性能无源探头- 10X读出,10 MΩ 输入阻抗
探测小尺寸电路
当今的小 尺寸/表面 贴封电路 已经非常 普及
各种探头附件应 对小尺寸电路
各种探头附件应对小尺寸电路
无源探头选型考虑的因素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲消失
实例:利用示波器进行点火系统波形分析
现代汽车直接点火系统的检查中,常规的断缸 测试已经无法精确判断系统是否正常,而示波 器由于其具有实时性、不间断性、直观性,越 来越得到广泛的应用。
实例:利用示波器进行点火系统波形分析
触发:只有稳定的触发才能有稳定的显示 自动触发:不论是否满足触发条件都有波形显示 普通触发:不满足触发条件就不显示波形 单次触发:满足触发条件后显示波形,每次触发仅刷
新一次,直到下一次触发开始
触发系统
正确理解触发的概念
State1:无信号输入(可 见水平线);
State2:一通道输入方波 ,仪器未触发,观察到晃 动的波形;
定 化常变机沿 态
时复发触波 据
信 信 信 信 毛 信 重复信 测 单 功 发 器 处
号 号息号刺号 号
量次能
带理
示波器类别
信
宽
号
模拟示波器 好 好 差 差 差 差 好 CRT显示技术
差不边不低 不
能沿能
能
DSO示波器 好 差 差 好 差 好 差 等效采样技术
好差多能高 能 种
DSO示波器 好 好 好 好 好 好 差 实时采样技术
1.0 0.707
BW
带宽
示波器带宽的经验公式:BW = 0.35 / △ t( 保证信号的上升时间足够快)
90%
△t
10%
带宽
带宽不够通常会产生什么明显后果?
高频信号幅度下降 信号高频成分消失(也有好处,抑制噪声)
采样率
指示波器按照一定的时间间隔将模拟信号转换为数 据,并且顺序存储的过程。
采样率 = 1 / △t
△t
采样率
实时采样率:实时采样率是指示波器一次采集 (一次触发)采样间隔时间的倒数。
示波器所需实时采样率=被测信号最高频率分 量×5
①①①
①①
①①
①① ① ①
① ① ① ①
① ①
① ①
① ① ①①①①①①①①①①①①
①①①①①①①①①①①①①①①
采样率
等效采样率
等效采样即重复采样, 指的是示波器把多次采集(触发)到的波形拼凑成一个波形 两次采集触发点有一定的偏移,最后形成的两个点间的最小采
始创于二十世纪四十年代 最早应用于雷达和电视的开发 泰克成功开发带宽10MHz的同步示波器,这是近代示
波器的基础
示波器发展史
中期数字示波器独领风骚 (DSO)
始创于二十世纪九十年代, 数字示波器提高带宽到1GHz以上,全面性能超越模
拟示波器。
模拟和数字示波器的比较
简单重复信号
非
波形显示 稳 变 异 缓 随 快 复杂动 定 重 触 预 示 数
微伏每格 用以测量和显示一般示
波器不能观察到的各种 微弱的电信号
示波器发展史
虚拟示波器
利用计算机资源做数 据处理和显示
体积小巧 可通过互联网进行远
程控制
讲座内容
1 示波器发展 2 示波器基本概念及原理 3 RIGOL示波器
波的组成
正弦波是波形的基本组成,任何非正弦波都可 视成是基波和无数不同频率的谐波分量组成。
例如:方波是由基波以及3,5,7,9……次 谐波分量递加而成。
1次(基波) 3次 5次 7次 方波(2500次)
波的基本参数
波的基本参数
模拟示波器
DSO串行处理
带宽
带宽
称为模拟带宽,指示波器系统的带宽。 定义为在幅频特性曲线中,随正弦波频率的增加,信号的幅度
下降到3dB(70.7%),此时的频率点称为示波器的带宽。
样间隔的倒数称为等效采样速率。
采样率
平均采样 :指将多次普通采样的波形进行算术 平均,多用于信号本身噪声比较大时。
采样率
峰值检测:指通过采集采样间隔信号的最大值 和最小值,获取信号的包络或可能丢失的窄脉 冲。
100ms
要求观察整个周期,当使用普通 采样方式时,采样率为10K,如前面 描述存在波形漏失现象,无法捕获完 整信号。使用峰值检测,采样率为1G, 获取间隔最大最小值,就可以获取完 10ns 整的周期信号。
采样率
示波器采样率高低对波形构建的真实性有直接 影响(采样率高的好处)。
采样率低会对波形产生哪些影响:
波形失真 波形混淆 波形漏失
采样率
波形失真是由于某些原因导致示波器采样显示的波形 与实际信号存在较大的差异。
采样率
波形混淆是指由于采样率低于实际信号频率的2倍(奈 奎斯特频率)时,对采样数据进行重新构建时出现的 波形的频率小于实际信号频率的一种现象。
State3:“按下快门” ( 选择上升沿触发,将触发 电平调整到波形内) ,将 仪器触发;
State4:信号稳定显示, 获取稳定的图像,并可以 保存。
触发系统
的概率。
波形n
死区时间 波形n+1 死区时间 波形n+2
波形刷新率
高波刷新获率的好处:
对于示波器来说,波形刷新率高,就能够组 织更大数据量的波形质量信息,尤其是在动 态复杂信号和隐藏在正常信号下的异常波形 的捕获方面,有着特别的作用。
触发系统
触发系统
对于数字示波器,工作时都是在不断地采集波形不论 仪器是否稳定触发
好好多能高 能 种
示波器发展史
数字示波器——模拟效果(荧光效果DPO)
实时显示、存贮和分析复杂信号的三维信号信息: 幅度、时间和整个时间的幅度分布。
如TEK所说的数字荧光(DPO)、安捷伦的MageZoom 技术。
示波器发展史
高灵敏度示波器
带宽很低,1MHz左右 灵敏度很高,可到几十
汽车点火波形
U-次级:汽缸1
充磁开始 E
F
击穿电压 B
燃烧时间 D
C
A 燃烧电压
燃烧震荡波
存储深度
存储深度:指在波形存储器中存储波形样本的数量。
波形存储时间=存储深度/采样率
示波器的存储深度将决定能采集信号的时间以及能用
到的最大采样速率。
触发点
预采样
延迟采样 存储深度
波形刷新率
刷新率是指1秒内示波器捕获波形的次数 刷新率的高低直接影响波形捕获偶然事件发生
数字示波器基础知识
讲座内容
1 示波器发展 2 示波器基本概念及原理 3 RIGOL示波器
什么是示波器
概念
幅度随时间变化的波形显示仪器 相当于一个时域上的万用表
示波器发展史
示波器类型
模拟示波器 数字示波器 取样示波器 高灵敏度示波器 虚拟示波器
示波器发展史
初期主要是模拟示波器(CRT)