量子物理基础知识点复习复习过程
量子物理知识归纳总结高中

量子物理知识归纳总结高中量子物理是自然科学中一门基础且复杂的学科,它研究微观世界的行为和性质。
在高中物理学习过程中,学生通常会接触到一些基本的量子物理知识。
本文将对高中学习阶段中所学到的一些量子物理知识进行归纳总结。
一、光的粒子性与波动性1. 波粒二象性根据量子理论,光既可以表现出粒子性,也可以表现出波动性。
这一现象被称为波粒二象性。
在某些实验中,光会呈现出波动性,如干涉和衍射现象;而在其他实验中,光又会表现为光子,即粒子。
2. 光电效应光电效应是指当光照射到金属表面时,光子与金属表面的电子相互作用,使电子脱离金属表面并产生电流的现象。
根据经典物理的观点,预测的光电效应与实际观察到的现象不一致,而量子物理的波粒二象性解释了这一现象。
3. 康普顿散射康普顿散射是指光子与电子发生非弹性碰撞后散射的现象。
康普顿散射的结果表明,光子也具有粒子性,而电子的散射角度与入射光子的能量有关。
这一实验结果进一步验证了光的波粒二象性。
二、原子结构与波尔模型1. 波尔理论根据波尔的提议,原子是由带电粒子组成的。
这些带电粒子分别位于原子的核心和外层。
电子围绕着原子核做一个分立的、稳定的运动轨道,电子沿着这些轨道进行运动,并且只能在特定的轨道上存在。
2. 能级与光谱原子的电子在不同的能级上存在,而每个能级对应着不同的能量。
当电子从高能级跃迁至低能级时,会释放出能量。
这种电子跃迁所释放出的能量以光子的形式传播出去,形成光谱。
通过光谱的分析,可以了解到原子的能级结构和组成。
3. 不确定性原理不确定性原理是量子物理的基本原理之一,它指出了在某些实验条件下,无法同时确定一个粒子的位置和动量。
这表明在微观尺度下,我们不能精确地预测和测量粒子的行为,只能通过概率的方式来描述。
三、量子力学的基本概念与应用1. 波函数与概率密度在量子力学中,波函数是描述微观粒子所处状态的数学函数。
波函数的模的平方称为概率密度,它描述了在某一给定位置找到粒子的可能性。
第一章 量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。
1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。
黑色物体或开一小孔的空心金属球近似于黑体。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。
按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。
按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。
Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。
经典理论无论如何也得不出这种有极大值的曲线。
• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。
• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。
能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。
第一章量子力学基础知识总结

第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。
●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。
●不同金属的临阈频率不同。
●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。
●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。
Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。
如:sin,log等。
线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。
5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。
量子物理知识点总结

量子物理知识点总结一、量子物理的基本概念1. 量子的概念量子是指微观世界的基本粒子在能量、动量、角动量等物理量上的离散化。
按照量子理论的观点,能量、动量、角动量等物理量并不是连续的,而是以最小单位的量子数为单位进行变化,这个最小单位就称为量子。
在量子理论中,物质和辐射都具有波粒二象性,在某些场合下可以表现出波动性,在另一些场合下又可以表现出粒子性。
2. 波函数和波动方程在量子力学中,波函数是用来描述微观粒子的行为和性质的一种物理量。
波函数的数学表达形式是薛定谔方程,它描述了微观粒子在外场作用下的运动规律。
波函数不但可以给出微观粒子的位置、动量、能量等物理量,还可以用来解释微观世界中的诸多现象。
3. 不确定性原理不确定性原理是量子力学的基本原理之一,由海森堡提出。
它指出,对于一对共轭变量,如位置和动量、能量和时间等,不可能同时精确地确定它们的数值。
也就是说,我们不能同时确定一个微观粒子的位置和动量,或者同时确定它的能量和时间。
这一原理对于我们理解微观世界的自然规律有着深远的影响。
二、量子力学1. 粒子的波函数和哈密顿量在量子力学中,粒子的波函数是描述粒子状态的重要物理量。
它满足薛定谔方程,在外场作用下会发生演化。
哈密顿量则是用来描述物质在外场作用下的总能量,包括动能和势能等。
2. 角动量和自旋在量子力学中,角动量和自旋是微观粒子的两个重要性质。
它们满足一系列的代数关系,如角动量算符与角动量本征态的关系等,对于理解微观粒子的行为和性质有着重要的作用。
3. 平移不变性和动量平移不变性是指在空间中进行平移操作后,物理规律不发生改变。
在量子力学中,平移不变性导致了动量的守恒定律,即粒子在外场作用下的动量是守恒的。
4. 动力学和量子力学中的测量问题在量子力学中,测量是一个非常重要的问题。
在经典物理学中,我们可以通过测量来准确地确定物体的位置、速度等物理量,但在量子力学中,由于不确定性原理的存在,我们不能够同时确定一对共轭变量,因此在测量过程中会对微观粒子的状态产生影响。
考研物理学量子力学基础知识总结

考研物理学量子力学基础知识总结量子力学是现代物理学中的一门基础学科,它研究微观领域中物质和能量的行为。
考研中的物理学科通常包括量子力学的基础知识,下面是对考研物理学量子力学基础知识的总结。
一、波粒二象性量子力学中最基本的概念之一是波粒二象性。
它表明微观粒子既可以表现为粒子,有时又可以表现为波动。
根据不同实验条件下的观测结果,物理学家引入了波函数来描述粒子的行为。
二、波函数和薛定谔方程波函数是用来描述量子体系的数学函数,它可以通过薛定谔方程来求解。
薛定谔方程是量子力学的核心方程之一,它描述了量子体系中粒子的运动和演化。
三、量子力学的不确定性原理量子力学的不确定性原理是由海森堡提出的。
它指出,在量子体系中,不能同时准确测量粒子的位置和动量,以及能量和时间。
这意味着在微观尺度下,对粒子的测量是具有一定的不确定性的。
四、量子力学的态和算符在量子力学中,态是用来描述物理体系的状态的概念。
态矢量可以用来表示具体的态。
算符则是量子力学中非常重要的概念,它用来描述物理量的操作和测量。
五、量子力学中的量子数和量子态量子力学中的量子数是用来描述量子体系性质和状态的数字。
电子的自旋、原子的能级等都可以用量子数来描述。
量子态是由一系列量子数确定的。
六、量子力学的叠加态和纠缠态量子力学中的叠加态是多个量子态的线性组合,这意味着量子体系可以同时处于多种状态之间。
纠缠态则是指两个或多个粒子之间存在特殊的量子关联,纠缠态的测量结果是彼此相关的。
七、量子力学的量子力学动力学量子力学动力学用来描述量子体系的时间演化。
在量子力学动力学中,态矢量的演化是由薛定谔方程和哈密顿算符确定的。
八、量子力学中的定态和本征态在量子力学中,定态是永不改变的态,本征态是表示具有确定取值的物理量的态。
本征态对应的物理量取值就是相应的本征值。
九、量子力学中的量子隧穿和量子纠缠量子隧穿是指粒子在能量低于势垒的情况下仍然能够穿过势垒。
量子纠缠是指两个或多个粒子之间存在特殊的量子关联,纠缠态的测量结果是彼此相关的。
量子力学基础 知识点

量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。
*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。
大学物理 量子物理基础知识点总结

大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。
4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。
5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。
(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。
(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。
第1章 量子力学基础知识

d 8 m E 2 2 dx h
2 2
8 m E 8 m E c1 cos( ) x c2 sin( ) x 2 2 h h
2 1 2 2 1 2
边界条件: x 0 , 0
2
x l , 2 0
8 m E 8 m E c1 cos( ) x c sin( ) x 2 h2 h2
1927年,美国, C. J. Davisson L. H. Germer 单晶 体电子衍射实验 G.P.Thomson 多晶金属箔电子衍射实验 质子、中子、氦原子、氢原子等粒子流也同样观 察到衍射现象,充分证实了实物微粒具有波动性, 而不限于电子。
22
氧化锆晶体的X射线衍射图
金晶体的电子衍射图
23
n h E 2 8m l
2
n 1,2,3,
nx ( x) c2 sin( ) l
nx ( x) c2 sin( ) l
nx c sin ( )dx 1 l 0
l 2 2 2
* d 1
nx 2 c sin ( ) 1 l 0
l 2 2 2
2 c2 l
25
波粒两相性是微观粒子运动 的本质特性,为微观世界的 普遍现象。
26
-1.1.4- 不确定关系(测不准原理)
x D A e O P
y
Q
A
O C
P psin
电子单缝衍射实验示意图
单 缝 衍 射
1.2 量子力学基本假设
量子力学是描述微观粒子运动规律 的科学。 电子和微观粒子不仅表现出粒性, 而且表现出波性,它不服从经典力 学的规律。
31
-1- 波函数和微观粒子的运动状态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mec2 h 0 mc 2 h
Ek mc 2 mec2 h 0 h
h 0 h cos pcos
c
c
散射光子 静止电子
入射光子
反冲电子
(6)
例7:如图, 某金属M 的红限波长为 0=260nm , 今用单色
(11)
例11:如果一个粒子沿x轴运动,其位置的不确定量等于
该粒子的德布罗意波长,则同时确定这个粒子的速度不
确定量与速度的比值 _______(用ΔxΔpx h /(2 ) )
xpx
h
2
px mvx
x h h
p vx 1
mvx
vx 2
例12:波长 500nm 的光沿x轴正方向传播,光的波长不 确定量 Δ 104nm , 则利用不确定关系式 xpx h ,
(2)由爱因斯坦方程 hc / hc / 0 mev2 / 2
1
1
0 me v 20
163[nm]
2 hc
(7)
三、粒子的波动性
E mc2
德布罗意公式: h h
h h
p mv
例8:若
粒子(q
=2e)在磁感应强度为
B
的匀强磁场
中沿半径为R的圆周运动,则其德布罗意波长为
____________。
v 3 c 2
h h 1 h
p mv 3 mec
(10)
四、不确定关系
1. 位置和动量的不确定关系:微观粒子在某个方向上 的坐标和动量不能同时准确地确定,其中一个不确定 量越小,另一个不确定量就越大。
xp
x
2
yp
y
2
2. 能量和时间的不确定关系
zpz
2
ΔE
Δt
2
要求:会简单估算,采用试卷中给出的公式。
第12章 量子物理基础知识点复习
一、光电效应 所有细节均要求,包括实验曲线
i
im 2 im1
I2 I1
Uc(V) Uc K-U0
2.0
Cs Na Ca
1.0
I2>I1
1014(Hz)
0.0
-Uc 0
U
4.0 6.0 8.0 10.0
截止电压:使光电流为零的反向电压
1 2
m
vm2
eUc
红限频率:使截止电压为零的最大频率
的概率,即概率密度。
2dV :粒子在t时刻,在(x, y, z)处dV体积元内出
现的概率。
b. 波函数的归一化条件:
2
dV 1
c. 波函数的标准化条件:单值、连续和有限 (13)
六、薛定谔方程
2 2m
2 x 2
U( x) ( x)
E ( x)
一维定态薛定谔方程
1. 注意一维无限深方势阱与势垒穿透结论中量子物理 与经典物理不同的地方。
紫外线照射该金属, 发现有光电子放出, 其中最大的光
电子可以匀速直线地穿过互相垂直的均匀电场(场强为
E=5103V/m)和均匀磁场 (B=0.005T)区域; 求: (1)光电子的最大速度v
(2)单色紫外线的波长
M
BE
解: (1)由题意知: 电子所受静电力与洛仑兹力相等
eE evB,v E / B 106[m/s ]
子的动能从0到 4.01019 J 。在上述实验中截止电压
Uc ________V,此金属红限频率 0 ________。
Uc
1 2
m
vm2
e
4.0 1019 1.6 1019
2.5V
0
A h
hc
1 2
mvm2
h
4.01014 Hz
例6: 如图, 设入射光频率为0, 散射光频率为, 反冲电子
0
U0 K
(1)
二、光的二象性 光子
h
1. 光子的能量和动量 p h
光子的静止质量: m0 0
光子的质量:
m
h
c2
h
c
2. 光的能流密度(即光强):I Nh
N:单位时间内通过单位面积的光子数。
3. 爱因斯坦光电效应方程:
4. 红限频率
1
2
0
mvm2 A
h
h
A A:逸出功 5.普朗克常数: h
I
I
U
U
I
I
U
U
(4)
例3:以波长 0.207μm的紫外光照射金属钯表面产生
光电效应。已知钯的红限频率为 0 1.211015 Hz ,则
截止电压 Uc _____________。
解: A h 0
1 2
m
vm2
eUc
h
1 2
m
vm2
A
hc
eUc
h 0
Uc
hc (
e
0 ) 0.99V
例4: 分别以频率为 1和 2 的单色光照射某一光电管。
所以氢原子的动能为
EH
3 kT 2
p 2mEH 3mkT
h h
p 3mkT
(9)
例10:当电子(me为电子的静止质量)的动能等于它的静
止能量时, 它的德布罗意波长是=____________。
解: E Ek E0 2E0 mc 2 2mec2,m 2me
m me / 1 v2 / c2
可得光子的x坐标的不确定量至少为__________。
xpx h
px
h
px
h
2
h 2
Δx 250cm
取等号
Δpx Δ
(12)
五、波函数
1. 德布罗意波:概率波 i Et
2. 波函数:复数 ( x, y, z, t) ( x, :粒子在t时刻,在(x, y, z)处单位体积内出现
解: m v2 2eBv
p mv 2eBR
R h h
p 2eBR
(8)
例9: 设氢原子的动能等于氢原子处于温度为T的热平 衡状态时的平均动能。氢原子质量为m,那么此氢原 子的德布罗意波长为_________。
h 3mkT
h 5mkT
3mkT h
5mkT h
解: 氢原子的自由度为3, 每个自由度上的能量为kT/2,
eK
6.康普顿散射:Δ
0
h m0c
(1
cos
)
2csin
2
2
(2)
例1: 以一定频率的单色光照射在金属上,测出其电流 在图中用实线表示。然后增大照射光强度,测出其光 电流曲线在图中用虚线表示,满足题意是
I
I
U
U
I
I
U
U
(3)
例2: 以一定频率的单色光照射在金属上,测出其电流 在图中用实线表示。然后在光强度不变的条件下增大 照射光的频率,测出其光电流曲线在图中用虚线表示, 满足题意是
1 2 (均大于红限频率 0);则当两种频率的入射光的
光强相等时,所产生的光电子的最大初动能 E1 _>__ E2 ; 为阻止光电子到达阳极, 所加的遏止电压 Uc1 _>__ Uc2 ; 所产生的饱和光电流 im1 __<__ im2 。(填>或<或=) (5)
例5:当波长为 300nm 的光照射在某金属表面时,光电