高中物理临界问题总结

合集下载

临界问题分析法

临界问题分析法

临界问题分析法临界问题的分析方法孟德飞纵观近年来各省高考物理试题,不难发现,各省都越来越重视考查学生对解决物理问题方法的掌握情况。

例如,物理模型法、整体法与隔离法、等效法、图像法、临界问题分析法等。

在问题练习中,同学们要重视解题过程的思维方法训练。

如果同学们能够熟练掌握各种解题方法的特点和技巧,对物理学习就起到事半功倍的效果。

透析近年的高考考题,本文就解决常见的临界问题解题方法进行分析和总结。

临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点。

临界问题的分析对象正是临界状态。

与临界状态相关的物理条件则称为临界条件。

临界条件是解决临界问题的突破点,在物理解题中起着举足轻重的作用,解答临界问题的关键是找准临界条件。

临界条件一般是隐藏着的,需要同学们仔细分析题目才能找出来。

但它也有一定规律:题干含有“恰好”、“刚好”、“最小”、“最大”、“至少”、“最多”的词语认真分析找等词语时,该问题一般是临界问题。

审题时,要抓住这些关键出临界条件。

临界问题一般解题模式为:1.找出临界状态及临界条件;2.列出临界点的规3.解出临界量;4.分析临界量列出公式。

律;下面就一些典型试题进行分析总结:一、动力学中的临界问题分析方法动力学中的临界问题比较普遍,例如“物体恰好离开地面”、“物体速度达到最大值时”、“绳刚好碰到钉子”、“物体刚好通过最高点”、“两物体刚好不相撞”、“物体刚好滑出小车”等就是一些题目中常见的临界状态。

相对应的临界条件应该为:临界状态临界条件物体恰好离开(不离开)地面物体不受地面的支持力物体速度达到最大值时物体所受合力为零绳刚好碰到钉子(绳拉物体做圆周运动) 半径突然变小物体刚好通过最高点只有重力提供向心力两物体刚好不相撞两物体接触时速度相等或者最终速度相等物体刚好滑出小车物体滑到小车一端时与车的速度刚好相等例题1. 一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。

高中物理必修一 第四章 专题强化 动力学临界问题

高中物理必修一 第四章 专题强化 动力学临界问题
12345678
当汽车向右匀减速行驶时,设小球所受车后壁弹力为0时(临界状态) 的加速度为a0,受力分析如图甲所示. 由牛顿第二定律和平衡条件得: Tsin 37°=ma0, Tcos 37°=mg, 联立并代入数据得: a0=7.5 m/s2.
12345678
当汽车以加速度a1=2 m/s2<a0向右匀减速行驶时,小球受力分析如图 乙所示. 由牛顿第二定律和平衡条件得: T1sin 37°-FN1=ma1, T1cos 37°=mg, 联立并代入数据得: T1=50 N,FN1=22 N, 由牛顿第三定律知,小球对车后壁的压力大小为22 N.
4.解答临界问题的三种方法 (1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而 找出临界条件. (2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即 假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再 根据实际情况处理. (3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角 函数等,然后根据数学中求极值的方法,求出临界条件.
A.g2
m k
C.g
2m k
√B.g
m 2k
D.2g
m k
12345678
静止时弹簧压缩量 x1=2mk g,分离时 A、B 之间的压 力恰好为零,设此时弹簧的压缩量为 x2,对 B:kx2- mg=ma,得 x2=32mkg,物块 B 的位移 x=x1-x2=m2kg, 由 v2=2ax 得:v=g 2mk,B 正确.
第四章
专题强化
探究重点 提升素养 / 专题强化练
动力学临界问题
学习目标
1.掌握动力学临界问题的分析方法. 2.会分析几种典型临界问题的临界条件.

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

高中物理--约束问题与临界值doc

高中物理--约束问题与临界值doc

2010物理学科高考总复习----约束问题与临界值问题专题现行高中物理教材的各种版本中,都未曾提及约束问题。

然而,有关约束问题的习题却不少,就是在高考中也常出现这类题型。

至于中学物理竞赛试题中更是屡见不鲜,并常以拔高题出现。

下面拟就中学物理中有关约束问题,作一浅析。

1.有关约束问题的基本概念如果某一物体被限制在某一曲面或曲线上运动,我们就说该物体的运动受到约束。

那么该曲线或曲面就称为约束。

例如图1中单摆小球被限制在圆弧上运动;图2中物体m沿(光滑或粗糙的)斜面下滑,物体m被限制在斜面上运动;图3中导体ab被限制在导电滑轨M N上运动等等,都属于约束问题。

图1中的摆线,图2中的斜面,图3中的滑轨等都叫约束。

由此可以看出,约束既是实在的物体,又是某些物体对别的物体运动限制作用的抽象。

约束的分类随依据不同而异。

按约束随时间改变与否,可分为稳定约束与不稳定约束。

例如图2中,如果斜面体是固定的,则称为稳定约束,如果斜面体是放在光滑的水平面上,当m下滑时,斜面体本身也作加速运动,则称为不稳定约束。

按其约束的方向来分,可分为单向约束和多向约束。

如图1中,小球每时刻都只在沿绳伸长的方向受限制,则称为单向约束;图4中,带电小圆环沿绝缘杆在电磁场中下滑时,除沿杆的方向以外,其他方向都受到限制,称为多向约束。

从约束的光滑情况来分,又可分为光滑约束和有摩擦约束。

力学中把约束对物体的作用力,称为约束反力。

例如图1中绳子对小球的拉力,图2中斜面对物体的支持力等等都叫做约束反力。

由上述定义可以看出,约束反力是因其起源和作用而得名,在含意上有其狭义的规定性,就性质而言都属于弹力,且都是约束对研究物体的作用力。

2.约束反力的求解约束反力的大小及其变化情况,往往不能预先知道,也不是都能由平衡条件计算出来的,而需要根据物体的运动被限制在约束上这一条件,运用牛顿运动定律列方程求解。

[例1]一质量为m的小球,与长为l的细绳组成一单摆。

现将此单摆拉到与竖直线成α角的位置,由静止释放,在摆动途中,摆绳被一钉子A所阻,钉子与摆的悬挂点o相距r,两者连线与竖直线成β角。

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。

如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。

2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。

(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。

a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。

例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。

当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。

解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。

(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。

临界态是怎么一回事?

临界态是怎么一回事?

临界态是怎么一回事?在学习高中物理的时候往往会遇到很多关于物理问题,上课觉着什幺都懂了,可等到做题目时又无从下手。

以至于对于一些意志薄弱、学习方法不对的同学就很难再坚持下来。

过早的对物理没了兴趣,伤害了到高中的学习信心。

收集整理下面的这几个问题,是一些同学们的学习疑问,小编做一个统一的回复,有同样问题的同学,可以仔细看一下。

【问:临界态是怎幺一回事?】答:物体的运动轨道、速度、受力、能量、动量等物理量发生重大改变的状态(一般是对应着某个时间点)。

给同学们举个例子,原来某个质点在做加速直线运动,某一时间加速度变为零,此时刻后其加速度开始反向,即开始做减速运动,物体在这一点所对应的状态就是临界态,也叫做临界点。

当然,临界态并非仅在力学领域,还包括光学研究的全反射对应的临界角、极限频率等所对应的状态。

【问:自感现象是怎幺回事?】答:流过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,而产生的自感电动势,这个电动势总是阻碍线圈中原来电流的变化。

具体而言,当原来电流在增大时,自感电动势与原来电流方向相反;当原来电流减小时,自感电动势与原来电流方向相同。

【问:波动图像与振动图像有何区别?】答:波动图像(x-y)是某时刻介质上所有质点的位移情况。

比如,绳子上传递的一列横波,你在某个时间拍一张照片,照片记录了此时不同质点的不同位移,这就是其波动图像。

振动图像(t-y)是某一质点在不同时间的运动轨迹(位移大小),本质上就是x-t(位移-时间)图像,只不过这个质点是周期性往复运动的情况,比如单摆或弹簧振子。

【问:电流表改装电压表的步骤?】答:有两大步。

第一步是利用半偏法测电流表内电阻rg,第二步是给电流表串联一个适当的定值电阻。

其中第一步中包括两次操作,首先调整滑动变阻器,使电表满偏,。

第四章 运动和力的关系 临界(极值)问题(课件)高中物理课件(人教版2019必修第一册)

第四章  运动和力的关系  临界(极值)问题(课件)高中物理课件(人教版2019必修第一册)

θ
G
【例题】在水平向右运动的小车上,有一倾角θ=370的光滑斜面,质量为m的小球被平行
于斜面的细绳系住而静止于斜面上,如图所示。当小车分别以a1=g和a2=2g 的加速度水平
a
向右运动时,绳对小球的拉力及斜面对小球的弹力各为多大?
FT
解:小球即将脱离斜面支持力FN =0
对小球进行受力分析,得合力:
必须大于或等于1 N.
当F较大时,在A到达B的右端之前,就与B具有相同的速度,之后A必须相对于B
静止,才不会从B的左端滑落.对A、B整体和A分别应用牛顿第二定律
得F=(m+M)a,μMg=Ma 解得F=3 N.
若F大于3 N,A就会相对于B向左滑下
综合得出力F应满足的条件是1 N≤F≤3 N.
【例题】如图甲所示,物体P置于光滑的水平面上,用轻细线跨过质量不计的光滑
沿y轴方向
FNcosθ + FTsinθ=mg
将 a=g 代入

FT=-0.2mg
FN=1.4mg
FT的负号表示绳已松弛,故FT=0
a
y
FN
FT
x
θ
G
【拓展】上述问题中,若小车向左加速运动 ,试求加速度a=g时的绳中张力。
解:绳子即将变柔软时拉力FT =0
a
对小球进行受力分析,得合力:
FN
F=mgtanθ =ma
M
fm
则两者保持相对静止的最大加速度为
am=fm/M= µmg/M=3m/s2
再取整体为研究对象受力如图
得:Fm=(M+m) am=30N
m
而 F=25N <Fm
M
Fm
木块与小车保持相对静止一起加速

高中物理中说的临界态指的是什么?

高中物理中说的临界态指的是什么?

高中物理中说的临界态指的是什么?在学习高中物理的时候往往会遇到很多关于物理问题,上课觉着什幺都懂了,可等到做题目时又无从下手。

以至于对于一些意志薄弱、学习方法不对的同学就很难再坚持下来。

过早的对物理没了兴趣,伤害了到高中的学习信心。

收集整理下面的这几个问题,是一些同学们的学习疑问,小编做一个统一的回复,有同样问题的同学,可以仔细看一下。

【问:高中物理中说的临界态指的是什幺?】答:物体的运动轨道、速度、受力、能量、动量等物理量发生重大改变的状态(一般是对应着某个时间点)。

给同学们举个例子,原来某个质点在做加速直线运动,某一时间加速度变为零,此时刻后其加速度开始反向(开始减速运动),我们就认为这一点所对应的状态点就是一个临界态。

临界态并无非常严谨的定义,但却是我们分析物理问题的一个很关键的要素。

当然,临界态并非仅在力学领域,还包括光学研究的全反射对应的临界角、光电效应研究的极限频率等等,所对应的状态。

【问:平抛运动怎幺分解?】答:平抛运动是下面两个运动的合运动:(1)物体在水平方向上不受外力,由于惯性而做初速度不变的匀速直线运动;(2)竖直方向上初速度为零,重力作用做自由落体运动。

这两个分运动各自独立,又是同时进行,具有分运动的独立性和等时性。

【问:爱因斯坦光电效应方程是什幺?】答:爱因斯坦的光电效应是:hv=w0+ek,含义是光子照射到金属板表面,自身的能量,除了克服逸出功后,转化为了电子逃逸出来的能量(动能)。

光电效应用波动理论(普朗克常量),解释了光的粒子属性。

【如何求解电势能的变化?】答:电势能比较抽象难懂,遇到这类考题很多学生没有什幺思路,从宏观上看,总是从两个方面来求解,1是根据电势能变化量与电场力做功大小的对应关系求,2是借助能量守恒来用其他能量变化来求解。

动能定理研究的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理临界问题总结
物理常见临界条件有哪些呢?正在备考的同学们赶紧来看看高中物理知识点物理常见临界条件汇总。

下面是小编为您整理的作文,希望对您有所帮助。

高中物理临界问题总结 1.演绎法:以原理、定理和定律为依据,先找出所研究问题的一般规律和一般解,然后分析讨论其特殊规律和特殊解,即采用从一般到特殊的推理方法。

2.临界法:以原理、定理或定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊解,以此对一般情况进行分析讨论和推理,即采用林特殊到一般的推理方法。

由于临界状态比一般状态简单,故解决临界问题时用临界法比演绎法简捷。

在找临界状态和临界量时,常常用到极限分析法:即通过恰当地选取某个物理量(临界物理量)推向极端(“极大”和“极小”,“极左”和“极右”等),从而把隐蔵的临界现象(或“各种可能性”)暴露出来,找到解决问题的“突破口”。

因此,先分析临界条件
物理学中临界问题题1 如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。

现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是
A.处为拉力,为拉力
B.处为拉力,为推力
C.处为推力,为拉力
D.处为推力,为推力
解析因为圆周运动的物体,向心力指向圆心,小球在最低点时所需向心力沿杆由a指向O,向心力是杆对小球的拉力与小球重力的合力,而重力方向向下,故杆必定给球向上的拉力,小球在最高点时若杆恰好对球没有作用力,即小球的重力恰好对球没有作用力,即小球的重力恰好提供向心力,设此时小球速度为vb,则:mg = m vb =
当小球在最高点的速度vvb时,所需的向心力Fmg,杆对小球有向下的拉力;若小球的速度vvb时,杆对小球有向上推力,故选A、B正确
评析本题关键是明确越过临界状态vb = 时,杆对球的作用力方向将发生变化。

相关文档
最新文档