杨氏双缝干涉实验讲义

合集下载

近代物理实验:杨氏双缝干涉实操指导手册

近代物理实验:杨氏双缝干涉实操指导手册

近代物理实验:杨氏双缝干涉实操指导手册一、实验目的本实验旨在通过杨氏双缝干涉的实际操作,帮助学生加深对波动光学基本原理的理解,并通过实验数据的收集和分析,进一步加深对干涉现象的认识。

二、实验原理1. 杨氏双缝干涉杨氏双缝干涉是一种经典的干涉实验。

当一束光通过两个间距较小的狭缝后,光波会发生干涉现象。

通过观察干涉条纹的位置和形态,可以推断出光波的波长和波速等物理量。

2. 干涉条纹在杨氏双缝干涉中,两个狭缝会形成一系列亮暗相间的干涉条纹。

其中,亮条纹表示光程差为整数倍波长,暗条纹表示光程差为半整数倍波长。

三、实验器材1.光源:稳定的单色光源2.双缝装置:包含两个相邻的狭缝3.屏幕:用于观察干涉条纹4.尺子和刻度尺:测量实验参数四、实验步骤1. 实验准备1.将双缝装置置于光源前方。

2.调整双缝装置,使两缝间距相等且与光源垂直。

3.将屏幕放置在较远的位置,以便观察干涉条纹。

2. 实验操作1.打开光源,使光线通过双缝产生干涉。

2.观察屏幕上的干涉条纹。

3.使用尺子和刻度尺测量干涉条纹间距等实验数据。

3. 数据处理1.根据实验数据计算出光波的波长和波速。

2.绘制出干涉条纹的图像,并分析其特征。

五、实验注意事项1.操作时要注意保持实验环境的稳定。

2.光线要足够强且单色,以获得清晰的干涉条纹。

3.实验结束后,注意关闭光源并整理实验器材。

六、实验结果与分析通过本次实验,我们成功观察到了杨氏双缝干涉产生的干涉条纹,并通过数据处理计算出了光波的波长和波速。

实验结果与理论值较为接近,说明本次实验取得了成功。

七、实验拓展学生可以尝试调整双缝间距、光源波长等参数,观察干涉条纹的变化,进一步了解杨氏双缝干涉的规律。

八、结论通过本次实验,学生对杨氏双缝干涉的原理和实际操作有了更深入的了解,进一步巩固了波动光学的知识。

希望同学们在实验中认真思考和实践,不断提升实验能力和科学素养。

参考文献1.Young, T. (1802).。

杨氏双缝干涉实验 ppt课件

杨氏双缝干涉实验  ppt课件
x明 k d
r1 r2
D
P
x O
E
P点为明条纹。
k=0, ±1, ±2, ±3...
MO虚线上方取“+”下方
取“-”,所以k有正负
之分 PPT课件
5
S1 So
x
P2
k=2
P1
k=1 x
O
k=0
S2
k= 0, x 0
k=-1
k=-2
H
中央明条纹或零级明纹
D
k=±1,
x 1
d
一级明条纹
D
P点的明暗决定于S1 S 2到P点 的相位差:
k
明纹


r 2
r 1

{

(2k

1)PPT课件
暗纹
2
P
x O
E
2(r2 r1 )
4
r2 r1 dsin
d tg xd
D
(1)明纹条件
xd k
D

S1 dM

s2
D
D
k=±2,
x 2 2
d
二级明条纹 PPT课件
明条纹之间间距
x D
d
6
(2)暗纹条件

xdຫໍສະໝຸດ (2k 1)
D
2
D
x (2k 1)

2d
k=0,1,2,3...
P点为暗条纹
PPT课件
7
S1 So
S2
x
P2 P1 O
H
k=1 x
k=0
k=0
k=-1
k= 0,
3、用微测目镜测出干涉条纹的间距 x ,双缝到 测微目镜焦平面上叉丝分化板的距离D。

光的干涉 和杨氏双缝干涉实验.完整版ppt资料

光的干涉 和杨氏双缝干涉实验.完整版ppt资料

三、实验步骤 :1、把直径约为10cm,长约为1m的遮光筒水平放在光具座上, 筒的一端装有双缝,另一端装有毛玻璃屏; 2、取下双缝,翻开光源,调节光源的高度,使它发出的一束光 能够沿着遮光筒的轴线把屏照亮;
3、放好单缝和双缝,单缝和双缝间的距离约为5—10cm,使缝相 互平行,中心大致位于遮光筒的轴线上,这时在屏上就会看到 白光的双缝干预图样;
S2
例题1:在双缝干预实验中,以白光为光源,在屏上观
察到彩色干预条纹,假设在双缝中的一缝前放一红色滤
光用只能透过红光〕,另一缝前放一绿色滤光片〔只能
两次读数之差就表示这两条纹间的距离。
透过绿光〕,这时 C( 第四节 实验:双缝干预测光的波长
〔 n=0,1,2,3…〕
)
n2、=1观:察1级白A亮光条及、纹单色只光的有双缝干红预图色样。和绿色的干预条纹,其它颜色的双缝干
相邻明条纹间距: Δx=xn-xn-1= NLλ/d-(N-1) Lλ/d= Lλ/d ; 相邻暗条纹间距: Δx=xn-xn-1= L〔2N+1/2〕λ/d- L〔2N-1/2〕λ/d= Lλ/d
实验:用双缝干预测量光的波长
一、实验目的 :
二、实验原理 :
1、了解光波产生稳定干预现象的条件。 2、观察白光及单色光的双缝干预图样。 3、测定单色光的波长。
X = L d
2 在单色光的双缝干预实验中 〔 BC〕 A.两列光波波谷和波谷重叠处出现暗条纹 B.两列光波波峰和波峰重叠处出现亮条纹 C.从两个狭缝到达屏上的路程差是波长的整数倍时,出 现亮条纹
D.从两个狭缝到达屏上的路程差是波长的奇数倍时,出 现暗条纹
第四节 实验:双缝干预测光的波长
像屏

Δr= d x L

物理光学实验1

物理光学实验1

物理光学实验讲义武汉纺织大学实验一 杨氏双缝干涉实验一、 引言杨氏干涉实验是用分波前法产生干涉的最著名实验。

通过对杨氏干涉实验光路的搭建、调节和使用,可以提高学生调节光路的能力,并且初步了解分波前干涉的原理和特点。

二、 涉及内容波动光学、光学测量、光学衍射三、 实验原理接收屏MX 正方向 Pr 1S 1 r 2Z 正方向S 2 D图1 杨氏双缝干涉原理图考察屏M 上某点P 出的强度分布。

由于S 1,S 2对称设置,且大小相等,可以认为由S 1,S 2发出的两光波在P 点光强度相等,即I 1=I 2=I 0,则P 点的干涉条纹强度分布为:2cos 4cos 2202121δδI I I I I I =++=用∆=-=k r r k )(12δ带入,得: ])([cos 41220λπr r I I -= 表明P 点得光强I 取决于两光波在该点的光程差)(12r r -=∆相位差δ。

设P 点坐标(x ,y ,D ),则 22211)2(D y d x P S r ++-==,22222)2(D y d x P S r +++==, 式中,d 是两相干点光源S 1,S 2间的距离,D 是两相干光源到观察屏(干涉场)M 的距离。

由上面两式可得xd r r 21122=-,于是 12122r r xd r r +=-=∆,实际情况中,d<<D ,若同时x ,y<<D ,则D r r 221≈+,故Dxd r r ≈-=∆12 于是有 ][cos 420D xd I I λπ=, 上式表明,x 相同的点具有相同的强度,形成同一条干涉条纹。

当dD m x λ= ,,,210(±±=m …) 时,屏M 上有最大光强04I I =,为亮纹;当dD m x λ)21(+= ,,,210(±±=m …) 时,屏M 上光强极小为0=I 得暗纹。

上述结果表明,屏幕上z 轴附近的干涉图样由一系列平行等距的明暗直条纹组成,条纹的分布呈余弦平方变化规律,条纹的走向垂直于S 1,S 2连线(x 轴)方向。

杨氏双缝干涉实验全版.ppt

杨氏双缝干涉实验全版.ppt

解 白光经蓝绿色滤光片后,只有蓝绿光。
波长范围21 100 nm
平均波长 1 2 490nm
2
1 440 nm 2 540 nm
2 1 100 2 1 980
条纹开始重叠时有 k2 ( k 1)1
k 1 1
0
2 1
k=4,从第五级开始无法分.辨.。...
例7 单色光照射到相距为0.2mm的双缝上,双缝与屏幕的垂直距离为1m。 求(1)从第一条明纹到同侧旁第四明纹间的距离为7.5mm,求单色光的波长;
(2)若入射光的波长为600nm,求相邻两明纹的距离。
解(1)根据双缝干涉明纹分布条件: x k D
d
明纹间距:
x1、4
x4
x1
D
d
(k4
k1)
k 0,1,2,
得: dx1、4
D(k4 k1)
将 d=0.2mm,x1,4 =7.5mm,D =1000mm 代入
上式
0.2 7.5
5104 mm 500nm
1、 杨氏双缝干涉实验装置
光程差
2a
x D
k
干涉加强
2、干涉条纹
明纹公式 x k D
2a
暗纹公式 x (2k 1) D
..。..
4a
k 0,1,2,
3 干涉条纹形状及间距
明纹条件 暗纹条件
x k D
x
2a (2k 1)
D
4a
k 0,1,2,
相邻两条明纹或暗纹的距离:
x
观察屏 暗纹 +2级 +1级 0级亮纹
1000 (4 1)
(2)由
x D
d
x D 1000 6104 3.0mm

《大学物理实验课件:双缝干涉与杨氏实验》

《大学物理实验课件:双缝干涉与杨氏实验》

Use a ruler or caliper to measure the distances involved in the experiment.
Take photos of the interference pattern to aid in data analysis and presentation.
Understand the concept of path difference and its effect on interference fringes.Leabharlann 3 Interference
Equation
Derive the equation for calculating the position of interference fringes.
Wavefront Engineering
Learn how double slit interference is used in various applications, such as wavefront engineering for optics.
Optical Interferometry
Experimental Setup
Understand the components and arrangement required to observe double slit interference.
Observing Interference
Discover how the pattern of bright and dark fringes is formed on a screen.
distance to optimize the
interference pattern.

第十章 第一讲 相干光 杨氏双缝干涉

第十章 第一讲 相干光 杨氏双缝干涉

mm, 现要能用肉眼观察干涉条纹, 双缝的最大间距是多少?
解: (1) 相邻两明纹的间距公式为 D x = ① d d=2mm时, x =0.295mm
d=10mm时,
x =0.059mm
(2) 如果仅能分辨x =0.15mm, 则由①知:此时双缝间距为 D d = 4mm x 双缝间距大于4mm,肉眼无法分辨.
L2
注意: 各波列的 E , 可能各不相同
E3
结论: 同一原子先后发出的光及同一
时刻不同原子发出的光的频率 、振 动方向、初相、发光的时间均是随机 的. 各光波列互不相干!
3
E2 E1
一、普通光源的发光机制和特点 1.普通光源 ——由原子自发辐射发出光. 各光波列互不相干!
各光波列相干! 2.激光光源 ——由受激辐射产生光.(§ 13-10) 二、相干光的获得
d
r2
x
O
d tan S2 D x = d (D ~ 1m .d~1mm) 很小 d << D x << D D x k k 0,1,2, 干涉加强 出现明纹 d D (2k 1) k 0 , 1 , 2 , 干涉减弱 出现暗纹 2
条纹位置:
观察、实验: 光的直线传播、反射和折射, 形成了“光线”的概念
发明: 透镜、凹面镜、望远镜.
二).几何光学时期 (11~18世纪末) 实验: 建立了反射和折射定律.
发现: 光的“色散”现象、红外线、紫外线.
理论: 开始思考光的本性是什么? (1) 牛顿的机械微粒说: 光是按照惯性定律沿直线飞行的微粒流. (2)惠更斯的机械波动说: 光是在特殊媒质“以太”中传播的机械波.
2 1

波动光学第1讲——光的干涉 杨氏双缝干涉.ppt

波动光学第1讲——光的干涉 杨氏双缝干涉.ppt
三棱镜 滤光片 激光器件
三. 光的相干性
光的干涉现象:
当两列相干光相遇时,在相遇空间出现明暗稳定 分布的现象
1、原子的发光机理
E
0
E 3
1.5eV
E 2
3.4eV
E 1
13.6eV
波列
E
E 3
波列长L =
E
c (E E )/h
2
2
1
E
1
● ●


0 1.5eV 3.4eV
d
(n 1)d 3.5
S1
r1
d 3.5
n 1
a
S2
r2 D
o
3.5 632 .8 10 9 1.4 1
5.5 10 -6 m
作 业 题:习题16.12、16.14、16.15; 预习内容:§16.4-16.5 复习内容: 本讲
2、相干光的获得
利用普通光源获得相干光的方法的基本原理是把由 光源同一点发出的光设法分成两部分,然后再使这两部分
叠加起来。
分波阵面法
在同一波面上两固定点光源,发出的光 产生干涉的方法为分波面法。如杨氏双 缝干涉实验(图1)
分振幅法
一束光线经过介质薄膜的反射与折射, 形成的两束光线产生干涉的方法为分振 幅法。如薄膜干涉(图2)。
讨论
以中央明条纹为中心、两侧对称分布的、 平行等距的明暗相间的直条纹
三.菲涅耳双棱镜干涉
P
S: 线光源 B: 障碍物
B
P: 屏
S
:M1、M2:平面镜
A: 镜交线 镜面夹角
S1M21
S2
A M2
O
r : S与A距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杨氏双缝干涉
一、实验目的
1、理解干涉的原理;
2、掌握分波阵面法干涉的方法;
3、掌握干涉的测量,并且利用干涉法测光的波长。

二、实验原理
图1 杨氏双缝干涉原理图
杨氏双缝干涉原理如图1所示,其中S为单缝,S1和S2为双缝,P为观察屏。

如果S 在S1和S2的中线上,则可以证明双缝干涉的光程差为
式中,d为双缝间距,θ是衍射角,l是双缝至观察屏的间距。


由干涉原理可得,相邻明纹或相邻暗纹的间距可以证明是相等的,为
,因此,用厘米尺测出l,用测微目镜测双缝间距d和相邻条纹的间距Δx,计算可得光波的波长。

三、实验仪器
1:钠灯(加圆孔光阑);2:透镜L1(f’=50mm);3:二维架(SZ-07);4:可调狭缝(SZ-27);5:透镜架(SZ-08);6:透镜L2(f’=150mm);7:双棱镜调节架(SZ-41);8:双缝;9:延伸架(SZ-09);10:测微目镜架(SZ-36);11:测微目镜(SZ-03)12、13、15:二维平移底座(SZ-02);14、16:升降调节座(SZ-03)
图2 实验装置图
四、实验内容及步骤
1、参考图2安排实验光路,狭缝要铅直,并与双缝和测微目镜分划版的毫尺刻线平行。

双缝与目镜距离适当,以获得适于观测的干涉条纹。

2、调单缝、双缝,测微目镜平行且共轴,调节单缝的宽度,三者之间的间距,以便在目镜中能看到干涉条纹。

3、用测微目镜测量干涉条纹的间距△x以及双缝的间距d,用米尺测量双缝至目镜焦面的距离l,计算钠黄光的波长λ,并记录结果。

4、观察单缝宽度改变,三者间距改变时干涉条纹的变化,分析变化的原因。

五、实验数据及结果
1
次数△x(mm)d(mm)l(mm)
(nm) 1
2
3
4
5
注意:为减小测量误差,不直接测相邻条纹的间距△x,而要测n个条纹的间距再取平均值;另外由于测微目镜放大倍率为15倍,所以相邻条纹间距以及双缝间距的实际值应该为读数除以15。

2、测得钠光波长平均值:λ¯=
钠黄光波长公认值(或称标准值):589.44nm
3、绝对误差△λ=|589.44-λ¯|=
4、相对误差=(△λ/589.44)×100%=
六、注意事项
1、单缝、双缝、必须平行,且单缝在双缝的中线上。

2、单缝的宽度要恰当。

3、测微目镜测量时,不能回转,防止回转误差。

七、思考题
1、若狭缝宽度变宽,条纹如何变化?
2、若双缝与屏幕间距变小,条纹如何变化?
3、在做实验时,若按要求安装好实验装置后,在光屏上却观察不到干涉图样,可能的原因是什么?。

相关文档
最新文档