fluent中燃烧模型分类
fluent燃烧简介

FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
FLUENT中组分输运及化学反应(燃烧)模拟

©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
燃烧模拟
广泛应用与均相和非均相燃 烧过程模拟
燃烧炉 锅炉 加热器 燃气轮机 火箭发动机 流场流动特性及其混合特 性 温度场 组分浓度场 颗粒和污染物排放
Temperature in a gas furnace
求解内容
缺点:
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
守恒标量 (混合物分数) 模型: PDF 模型
只适应用于非预混 (扩散) 火焰燃烧 假定化学反应过程受混合速率控制
满足局部化学平衡. 控制体(计算单元)组分、物性决定于燃料和氧化剂在该处的混合程 度. 用化学平衡计算来处理化学反应 (prePDF).
i i ( f , c ) Pf ( f ) Pc ( c )dc df
00
只适合绝热系统(FLUENT V5) Import strained flame calculations
prePDF or Sandia’s OPPDIF code
Single or multiple flamelets
f=1 f=0 f=1
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
系统化学平衡假设
化学反应很快到达平衡. 可以考虑中间组分.
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
PDF 模拟Turbulence-Chemistry相互作用
Fluctuating mixture fraction is completely defined by its probability density function (PDF).
第六章,FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
FLUENT中的燃烧模拟

第六章,FLUENT中的燃烧模拟6.1 燃烧模拟的重要性●面向实际装置(如锅炉、内燃机、火箭发动机、火灾等)●面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT燃烧模拟方法概要●FLUENT可以模拟宽广范围内的燃烧(反应流)问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在燃烧模拟中的应用可如下图所示:●气相燃烧模型一般的有限速率形式(Magnussen 模型)守恒标量的PDF模型(单或二组分混合物分数)层流火焰面模型(Laminar flamelet model)Zimont 模型●离散相模型煤燃烧与喷雾燃烧●热辐射模型DTRM, P-1, Rosseland 和Discrete Ordinates模型●污染物模型NO x 模型,烟(Soot)模型6.3 气相燃烧模型6.3.1 燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应,而且这些组分之间的反应时间尺度相差很大(10-9~102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:● 有限速率燃烧模型——>预混、部分预混和扩散燃烧● 混合物分数方法(平衡化学的PDF 模型和非平衡化学的层流火焰面模型)——>扩散燃烧● 反应进度方法(Zimont 模型)——>预混燃烧● 混合物分数和反应进度方法的结合——>部分预混燃烧6.3.2一般的有限速率模型● 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 ● 求解组分的输运方程,得到每种组分的时均质量分数值,如下:6-1其中组分j 的反应源项为所有K 个反应中,组分j 的净生成速率:6-2 式中,反应k 中的组分j 的反应速率可按照Arrhenius 公式、混合(mixing )速率或 “eddy breakup” 速率的方法求解。
fluent中燃烧模型分类

fluent中燃烧模型分类FLUENT燃烧模型化学反应模拟方法方法描述计算反应的选择有限速率模型需要求解组分质量分数的输运方程,化学反应机理由用户自己定义。
反应速率在组分输运方程中作为源项,并由阿累尼乌斯公式计算。
应用范围最广泛。
应用:模拟化学组分混合、输运和反应的问题;壁面或粒子表面反应问题层流有限速率模型使用Arrhenius公式计算化学源项,忽略湍流脉动的影响。
对于化学动力学控制的燃烧(如层流燃烧),或化学反应相对缓慢的湍流燃烧是准确的。
但对一般湍流火焰中Arrhenius化学动力学的高度非线性一般不精确;对于化学反应相对缓慢、湍流脉动较小的燃烧(如超音速火焰)可能可以接受。
漩涡破碎模型Eddy Dissipation大部分燃料快速燃烧,整体反应速率由湍流混合控制。
复杂且常是未知的化学反应动力学速率可以完全的被忽略掉。
化学反应速率由大尺度涡混合时间尺度k/ε控制。
只要k/ε(湍流)出现,燃烧即可进行,不需要点火源来启动燃烧。
(缺点:未能考虑分子输运和化学动力学因素的影响)适用条件:高雷诺数湍流预混燃烧过程。
EBU-Arrehenius模型EDC模型假定化学反应都发生在小涡中(精细涡),反应时间由小涡生存时间和化学反应本身需要的时间共同控制。
EDC模型能够在湍流反应中考虑详细的化学反应机理。
但是他们的数值积分计算开销很大。
使用条件:只有在快速化学反应假定无效的情况下才能使用这一模型(如快速熄灭火焰中缓慢的CO烧尽、选择性非催化还原中的NO转化问题)。
非预混燃烧模型不求解每个组分的质量分数输运方程,求解混合分数输运方程和一个或两个守恒标量的方程,然后从预测的混合分数公布推导出每一个组分的浓度。
通过概率密度函数或PDF来考虑湍流的影响。
应用:主要用于模拟湍流扩散火焰的反应系统。
这个系统要求接近化学平衡,氧化物和燃料以两个或者三个进口进入计算域。
预混燃烧模型主要用于单一、完全预先混合好的燃烧系统。
Fluent燃烧模型

Rosseland模型是最为简化的辐射模型,只能应用于大尺度辐射计算。其优点是速度最快,需要内存最少。
Discrete Ordinates (DO) Model
DO模型是所有四种模型是最为复杂的辐射模型,从小尺度到大尺度辐射计算都适用,且可计算非-灰度辐射和散射效应,但需要较大计算量。
三、污染模型
NOx模拟
Fluent软件提供了三种NOx形成的模型:Thermal NOx、Prompt NOx和Fuel NOx形成模型。从而可以模拟绝大多数情况下的NOx生成问题。
烟尘模型(Soot Model)
Fluent软件可以考虑单步和两步的烟尘生成问题。烟尘的燃烧由有限速率模型模拟,并考虑了烟尘对辐射吸收的影响。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型
层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。
FLUENT软件的燃烧模型介绍
Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍:
二、分散相燃烧模型
除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型:
第六章,FLUENT中的燃烧模拟

6.1燃烧模拟的重要性面向实际装置(如锅炉、内燃机、火箭发动机、火灾等) 面向实际现象(如点火、熄火、燃烧污染物生成等)6.2 FLUENT 燃烧模拟方法概要FLUENT 可以模拟宽广范围内的燃烧(反应流)问题。
保证你所使用的物理模型要适合你所研究的问题 下图所示:气相燃烧模型一般的有限速率形式(Mag nu ssen 模型) 守恒标量的PDF 模型(单或二组分混合物分数) 层流火焰面模型(Laminar flamelet model )Zimont 模型离散相模型 煤燃烧与喷雾燃烧 热辐射模型DTRM, P-1, Rosseland 和 Discrete Ordinates 模型污染物模型NOx 模型,烟(Soot )模型第六章,FLUENT中的燃烧模拟然而,需要注意的是:你必须FLUENT 在燃烧模拟中的应用可如6.3气相燃烧模型 6.3.1燃烧的化学动力学模拟实际中的燃烧过程是湍流和化学反应相互作用的结果,燃烧的化学反应速率是强非线性和强刚性的。
通常的化学反应机理包含了几十种组分和几百个基元反应, 而且这些组分之间的反应时间尺度相差很大 (10— 9〜102秒),因此在实际问题的求解过程中计算量和存储量极大,目前应用尚不现实。
在FLUENT 中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计 算成本,如下: 有限速率燃烧模型一一 > 预混、部分预混和扩散燃烧 混合物分数方法(平衡化学的 PDF 模型和非平衡化学的层流火焰面模型)烧反应进度方法(Zimont 模型)一一 >预混燃烧 混合物分数和反应进度方法的结合一一>部分预混燃烧6.3.2 一般的有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述 求解组分的输运方程,得到每种组分的时均质量分数值,如下:鲁的)+ ▽■阿)=-v-Ji+fli+Si其中组分j 的反应源项为所有 K 个反应中,组分j 的净生成速率:R jR jkk6式中,反应k 中的组分j 的反应速率可按照 Arrhenius 公式、混合(mixing )速率或 breakup ”速率的方法求解。
第五章 fluent预混燃烧模型解析

3、FLUENT相关设置
1、选择预混模型
2、确定绝热或非绝热
(如果有fluent材料库 中的模型,可以首先选 择一种)
FLUENT相关设置
2、定义材料属性 • 绝热
未燃反应物密度 未燃反应物温度 绝热燃烧产物温度 动力黏度 热扩散系数 层流火焰传播速度 临界变化率(火焰拉伸)
FLUENT相关设置
预混模型总结
• 适用条件
湍流 快速化学反应 只有预混合
• 限制条件
不能模拟运动学细节中的实际现象 (如点燃、熄灭和低Da数)。
实例演练四:预混燃烧
混合燃料入口2
混合燃料入口1
烟气出口
Ypad :完全绝热燃烧后产物的质量分数;• 标量c的输运方程:
Sct:施密特数,Sc为反应进程源项: Ut:湍流火焰速度,求解的关键。
湍流火焰速度
• 受两个因素影响:层流火焰速度;涡流引 起的火焰前锋的折皱、拉伸和加厚。
化学反应时间尺度。
• 求解湍流火焰传播速度Ut时考虑:
(1)预混燃料当量比 (2)湍流引起的火焰前锋皱折和增厚 (3)湍流拉伸引起的火焰前锋淬熄 (4)分子扩散
2、定义材料属性 • 非绝热
未燃反应物密度 未燃反应物温度 比热 导热率 动力黏度 热扩散系数 层流火焰传播速度 临界变化率(火焰拉伸) 燃烧热 未燃物质量分数
FLUENT相关设置
3、设置边界条件 (关键在于设置反应
进程量C的值)
C=0:未燃混合物 C=1:燃烧后的混合物
FLUENT相关设置
• 计算后处理
反应进程源项:
Hcomb:每1kg燃料产生的热量,Yfuel:未燃混合物中燃料的质量分数。
密度的计算
• 绝热火焰
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EDC 模型
假定化学反应都发生在小涡中(精细涡),反应时间由小涡生存时间和化学反应本身需要的时间共 同控制。EDC 模型能够在湍流反应中考虑详细的化学反应机理。但是他们的数值积分计算开销很大。 使用条件:只有在快速化学反应假定无效的情况下才能使用这一模型(如快速熄灭火焰中缓慢的
CO 烧尽、选择性非催化还原中的 NO 转化问题)。
热辐 射模 型
求解反应物和生成物输运组分方程,用户自己定义化学反应机理。反应率作为源项在组分输运方程中通过阿雷纽斯方程或涡耗散模 有限速率模型
型。适用条件:预混燃烧、局部预混燃烧、费预混燃烧。
PDF 模型 非平衡反应模型
不求解单个组分输运方程,求解混合组分分布输运方程。组分浓度由混合组分分布求得。用概率密度函数 PDF 考虑湍流效应,通过 火焰面方法(即混即燃模型)或化学平衡计算来处理。适用条件:湍流扩散火焰的模拟和类似的反应过程。 应用:非预混燃烧(湍流扩散火焰),计算航空发动机环形燃烧室中的燃烧问题,液体/固体火箭发动机中的复杂燃烧问题。 层流火焰模型是混合组分/PDF 模型的进一步发展,模拟非平衡火焰燃烧,模拟富油侧时,典型平衡火焰假设师兄啊。可模拟形成 NOx 的中间产物。 应用:模拟火箭发动机的燃烧问题和 RAMJET 及 SCRAMJET 的燃烧问题。
焰速度计算。
描述非预混燃烧完全预混燃烧相结合的系统。结合混合分数方程和反应物发展变量来分别确定组分浓度和火焰前沿位置。适用于计算域内具有变化
等值比率的预混火焰情况。通过求解混合分数方程和反应过程参数来确定火焰峰面的位置。
结合 CHEMKIN 可以考虑详细的化学反应机理,高度的非线性化学反应项是精确模拟,无须封闭模型,可以合理的模拟湍流和详细化学反应动力
追踪粒子平均轨道的粒子云的形 成和演化的统计过程。粒子云浓 度通过粒子平均轨迹的概率密度 函数来表示。
需定义油滴在初始状态的 位置、速度、尺寸和温度分 布及油滴的物性,根据这些 设置计算粒子的轨迹和传 热/传质,并可以计算粒子 与连续相的相互影响。
应用领域: 拉格朗日坐标系啊模拟分散相在瞬态和稳态下的运动 轨迹;多种球形和非球形粒子的曳力规律;线性分布 或 Rosin-rammler 方程的粒子大小分布;连续相的湍流 效应对粒子传播的影响;分散相的加热/冷却;液滴的 汽化和蒸发;燃烧粒子,包括油滴的挥发过程和焦炭 的燃烧;连续相与分散相的耦合。
使用 Arrhenius 公式计算化学源项,忽略湍流脉动的影响。对于化学动力学控制的燃烧(如层流燃 烧),或化学反应相对缓慢的湍流燃烧是准确的。但对一般湍流火焰中 Arrhenius 化学动力学的高度 非线性一般不精确;对于化学反应相对缓慢、湍流脉动较小的燃烧(如超音速火焰)可能可以接受。 大部分燃料快速燃烧,整体反应速率由湍流混合控制。复杂且常是未知的化学反应动力学速率可以
FLUENT 燃烧模型
化学反应 模拟方法
有限速 率模型
非预混燃 烧模型 预混燃 烧模型
部分预混 燃烧模型 PDF 输运 方程模型
方法描述
计算反应的选择
需要求解组分质量分数的 输运方程,化学反应机理 由用户自己定义。反应速 率在组分输运方程中作为 源项,并由阿累尼乌斯公
层流有限 速率模型
漩涡破碎模型 Eddy Dissipation
NOx 模拟 烟尘模型 (soot model)
三种 NOx 形成的模型:Thermal NOx、Prompt NOx、Fuel NOx 形成模型。 可以考虑单步和两步的烟尘生成问题。烟尘燃烧由有限速率模型模拟,并考虑烟尘对辐射吸收的影响。
DTRM 模型 P-没有包含散射和不能计算非灰辐射。提高射线数量可提高该模型精度,但计算量明显增加。 是 P-N 模型的简化,适用大尺度辐射计算。计算量小,含散射效应。计算域尺寸较大时模型非常有效,可用在较复杂计算域中。
专用于燃烧系统或纯预混的反应系统。充分混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量预测火焰面位置。湍流
预混燃烧模型 效应可通过层流和湍流火焰速度的关系来考虑。
应用:模拟飞机加力燃烧室中的复杂流场模拟、汽轮机、天然气燃烧
液体燃料燃烧 喷射燃烧
固体颗粒燃烧
随机轨道模型 粒子云模型
利用离散的随机跟踪法模拟瞬态 湍流速度脉动对粒子轨迹的影响
The Rosseland 模型
最简化的辐射模型,只能应用于大尺度辐射计算。速度最快,需要内存最小。
Discrete ordinates(DO)模型
最复杂辐射模型,大小尺度辐射计算都适用,可计算非-灰度辐射和散射效应,计算量大。
完全的被忽略掉。化学反应速率由大尺度涡混合时间尺度 k/ 控制。只要 k/ (湍流)出现,燃烧
即可进行,不需要点火源来启动燃烧。(缺点:未能考虑分子输运和化学动力学因素的影响) 适用条件:高雷诺数湍流预混燃烧过程。
式计算。应用范围最广泛。 EBU-Arrehenius
应用:模拟化学组分混合、
模型
输运和反应的问题;壁面 或粒子表面反应问题
学之间的相互作用,是模拟湍流燃烧的精确模拟方法。但计算量特别大。
优点:可以计算中间组分;考虑分裂影响;考虑湍流-化学反应之间的作用;无需求解组分输运方程
缺点:系统须满足(靠近)局部平衡;不能用于可压缩或非湍流流动;不能用于预混燃烧。
FLUENT 各种燃烧模型
气相 燃烧 模型
分散 相燃 烧模 型
污染 模型
不求解每个组分的质量分数输运方程,求解混合分数输运方程和一个或两个守恒标量的方程,然后从预测的混合分数公布推导出每一个组分的浓度。
通过概率密度函数或 PDF 来考虑湍流的影响。
应用:主要用于模拟湍流扩散火焰的反应系统。这个系统要求接近化学平衡,氧化物和燃料以两个或者三个进口进入计算域。
主要用于单一、完全预先混合好的燃烧系统。反应物和燃烧产物被火焰前沿分开。求解出反应发展变量来预测前沿的位置。湍流的影响通过湍流火