电动汽车充换电服务信息交换第四部分

电动汽车充换电服务信息交换第四部分
电动汽车充换电服务信息交换第四部分

电动汽车充换电服务信息交换第四部分

标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

73T/CEC 中国电力企业联合会标准

T/CEC XXXXX—XXXX

电动汽车充换电服务信息交换

第4部分:数据传输与安全

Charging and battery swap service data interactive for electric vehicle

Part4:Data exchange and Security

XXXX - XX - XX发布XXXX - XX - XX实施

中国电力企业联合会标准

目??次

前??言

《电动汽车充换电服务信息交换》分为四个部分:

——第1部分:总则;

——第2部分:公共信息交换规范;

——第3部分:业务信息交换规范;

——第4部分:数据传输及安全;

本规范为第4部分。

本规范按照GB/T 给出的规则编写。

请注意本规范中的某些内容可能涉及专利。本规范的发布机构不承担识别这些专利的责任。

本规范由中国电力企业联合会提出。

本规范由能源行业电动汽车充电设施标准化技术委员会归口。

本规范主要起草单位:

本规范参加起草单位:

本规范主要起草人:

本标准为首次制定。

本标准在执行过程中的意见或建议反馈至中国电力企业联合会标准化中心(北京市白广路二条一号,100761)。

引??言

为加快电动汽车充电基础设施建设,促进不同充电服务平台互联互通,构建充电基础设施信息服务信息交换体系架构,统一信息接口通信协议,实现不同充电运营企业、不同区域的充电服务设施、第三方平台信息资源等互联和充分利用,实现充电设施网络服务平台间数据交换,充电系统服务功能跨平台信息交换服务,特制定本标准。

电动汽车充换电服务信息交换第4部分:数据传输与安全

1 范围

本部分规定了电动汽车充换电服务信息交换的数据传输规范和安全要求,包含充换电服务信息交换的平台认证规范、数据传输规范和数据传输安全要求。

本部分适用于归属不同运营商的电动汽车充换电运营服务平台之间的充换电服务信息交换,以及电动汽车充换电运营服务平台与其他第三方服务及管理平台之间的信息交换。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 19596-2004:电动汽车术语

GB/T 29317-2012:电动汽车充换电设施术语

GB/T 2260-2007 中华人民共和国行政区域代码

GB 11714-1997 全国组织机构代码编制规则

GB/T 31286-2014 全国组织机构代码与名称

GB/T 信息技术数据元的规范与标准化第1部分:数据元的规范与标准化框架

GB/T 信息技术开放系统互联基本参考模型第1部分:基本模型

GB/T 7408-2005 数据元和交换格式信息交换日期和时间表示法

GB/T 22239-2008 信息安全技术信息系统安全等级保护基本要求

GB/T 25070-2010 信息安全技术信息系统等级保护安全设计技术要求

GB/T 20271-2006 信息安全技术信息系统安全通用技术要求

GB/T 20988-2007 信息安全技术信息系统灾难恢复规范

GB/T 19596-2004 电动汽车术语

3 术语和定义

GB/T 19596、GB/T 29317、GB/Z 19027-2005以及《电动汽车充换电服务信息交换第1部分:总则》中定义的以及下列术语和定义适用于本文件。

4 数据传输体系

4.1 概述

数据传输体系要求了参与电动汽车充换电服务的各角色和实体之间应在正常、安全、有效的原则下通过规范的接口进行信息交换,相互协同地向电动汽车用户提供充换电服务。相关实体及其之间的信息交换接口参见《电动汽车充换电服务信息交换第1部分:总则》。

电动汽车充换电服务信息通过数据传输接口进行交换,数据传输接口众多,既存在于各个服务逻辑层之间,也存在于同一逻辑层的不同管理域之间,数据传输接口可通过

身份认证、访问控制、数据加密、数字签名等安全措施,保障数据传输过程中要保障所传输数据的机密性和安全性。

4.2 数据传输一般流程

电动汽车充换电服务信息交换一般需要经过平台认证、数据请求和数据返回3个步骤。

图1 电动汽车充换电服务信息交换流程

4.3 数据传输接口的基本要求

电动汽车充换电服务信息交换应根据国家信息安全等级保护相关要求。

运营商须提供严格的系统安全保密机制,保障信息交换接口安全、稳定、可靠地运行,包括信息的存取控制、应用系统操作的安全等。基本要求:

1)采用身份认证、访问控制、数据加密、数字签名等安全措施;

2)采用安全可靠并且普遍使用的加密算法;

3)密钥的存贮和交易信息的加密/解密需要在安全的环境中;

4)遵循数据安全保密的国家和行业标准;

5)定期更换密钥;

6)具备对报文做来源正确性鉴别的机制(HMAC)。

5 平台认证方式及规则

5.1 概述

电动汽车充换电服务信息交换应具备平台认证服务提供平台之间的鉴权认证功能。平台之间在信息交换前,需完成平台认证,获得平台交换能力。

5.2 平台认证模式

平台认证支持分布式认证模式和中心交换认证模式。

分布式认证模式由运营商之间进行鉴权认证,运营商之间确定运营商标识(OperatorID)、运营商密钥(Operator_Secret)和消息密钥(Data_Secret),具体认证方式可由运营商协商确定。

中心交换认证模式由统一的认证服务方提供鉴权认证服务,运营商与中心认证服务方确定运营商标识(OperatorID)、运营商密钥(Operator_Secret)和消息密钥

(Data_Secret),具体认证方式由各运营商和认证服务方共同确定。

图2 分布式认证模式

图3 中心交换认证模式

5.3 平台认证方法

平台认证宜采取身份认证和访问控制相结合的方式进行。

身份认证可采取用户名/口令认证、密钥认证或数字证书认证等方式进行;访问控制可采取IP访问控制、时间访问控制等多种手段结合。

用户身份认证成功后授予Token,每次向服务端请求资源的时候需要带着服务端签发的Token,服务端验证Token成功后,才返回请求的数据。Token的有效期不宜大于7天,Token丢失或失效后需要再次发起认证服务。

图4 平台认证方式

6 数据传输方式及规则

6.1 数据传输接口规则

所有数据传输接口均采用HTTP(S)接口,每个接口的URL均采用如下格式定义:

http(s)://[域名]/evcs/v[版本号]/[接口名称]

1)域名:各接入运营商所属域名。

2)版本号:代表接口版本号,不同的版本地址对应相应版本代码。系统升级期间,新旧版本可同时存在,待所有接入方都切换到新接口,旧接口即可下线。从而达到平滑升级的目的。

3)接口名称:所请求/调用接口的名称,具体接口名称见《电动汽车充换电服务信息交换第2部分:公共信息交换规范》和《电动汽车充换电服务信息交换第3部分:业务信息交换规范》。

为保证各接口的功能明确清晰,每个URL只允许对应一种功能。其中测试例分类:

6.2 接口调用方式

所有接口均使用HTTP(S)/POST方式传输参数,传输过程中应包含消息头和消息主体两部分。

6.3 消息头规范

消息头一般需包含内容类型,内容类型(Content-Type)字段用于标识请求中的消息主体的编码方式,本标准中所规范的信息交换内容均采用JSON的方式,参数信息采用

utf-8编码,因此需要配置消息头中的Content-Type 为application/json;charset=utf-8。

6.4 消息主体规范

6.4.1 消息主体的组成

消息主体是信息交换过程中的具体内容,一般由运营商标识(OperatorID)、凭证(Token)、参数内容(Data)、时间戳(TimeStamp)和数字签名(Sig)组成。

表1 消息主体内容表

6.4.2 参数签名规则

参数签名采用HMAC-MD5算法,采用MD5作为散列函数,通过密钥(Operator_Secret)对整个消息主体进行加密,然后采用Md5信息摘要的方式形成新的密文。

(1)HMAC-MD5算法

HMAC(K,M)=H(K⊕opad∣H(K⊕ipad∣M))

其中:K是密钥(Operator_Secret),长度可为64字节,若小于该长度,在密钥后面用“0”补齐。

M是消息内容;

H是散列函数;

opad和Ipad分别是由若干个0x5c和0x36组成的字符串;

⊕表示异或运算;

∣表示连接操作。

(2)HMAC-MD5流程

1)在密钥(Operator_Secret)后面添加0来创建一个长为64字节的字符串(str);

2)将上一步生成的字符串(str)与ipad(0x36)做异或运算,形成结果字符串(istr);

3)将消息内容data附加到第二步的结果字符串(istr)的末尾;

4)做md5运算于第三步生成的数据流(istr);

5)将第一步生成的字符串(str)与opad(0x5c)做异或运算,形成结果字符串(ostr);

6)再将第四步的结果(istr)附加到第五步的结果字符串(ostr)的末尾;

7)做md5运算于第六步生成的数据流(ostr),输出最终结果(out)。

6.4.3 参数传递要求

参数传递过程中的所有参数都要先进行urlencode转义,然后再按照key=value格式使用&连接在一起。

6.5 批量数据传输

数据传输接口中的Data字段可为数组型的JSON格式,数据发送方可通过该字段实现批量数据的传输。

6.6 返回参数规则

数据传输接口的返回参数包括两个部分:ret, msg。

1)ret:必填字段,返回编码参考下表。

2)msg:可选字段,当ret!=0是存在,表示具体错误信息。

3)采用utf-8编码,JSON格式。

4)举例:

‘ret’ : 401,

‘msg’ : ‘Invalid signature’,}

表2 返回参数编码表

7 密钥的使用及管理

各运营商系统间在消息传递时,需要保障传输和接收数据的安全和完整。

7.1 基本安全要求

运营商必须满足数据安全传输控制方面的要求。

运营商必须提供严格的系统安全保密机制,保障信息交换接口安全、稳定、可靠地运行,包括信息的存取控制、应用系统操作的安全等。

7.2 密钥的安全要求

密码算法用于密钥的产生、分发、HMAC以及加密等安全功能,相关的算法模块在其生命周期内不能被修改、导出至安全环境外部。

指定功能的密钥仅能做指定功能使用,不能被其他任何功能使用。

电动汽车充换电站投资主体及运营模式分析

一、电动汽车充换电站建设模式 (一)政府主导模式 即政府作为电动汽车充电站的投资主体,负责电动汽车充电站的建设与运营。按照政府建设与运营方式不同,此种模式可以有两种具体操作方式:一是直接主导方式,即由政府直接出资建设电动汽车充电站,建成后由政府相关部门负责经营管理;二是间接主导方式,即由政府出资建设电动汽车充电站,建成后移交给国有企业经营管理,或者委托专业机构经营管理。 政府主导模式的优点:引领和推动电动汽车及其充电站建设有序发展;实现电动汽车充电站的统一规划和集约化发展。 政府主导模式的缺点:增加政府财政压力;运营效率低下;不利于电动汽车充电站大规模集约化建设与运营。 (二)企业主导模式 即由作为市场主体的企业投资与运营电动汽车充电站。 企业主导模式的优点:能保证电动汽车充电站建设所需的资金投入;可以有效提高充电站的经营效率和管理水平。 企业主导模式的缺点:容易导致充电站建设的无序发展;影响或制约电动汽车产业发展;与相关领域的协调性不足。 (三)用户主导模式 即电动汽车用户为满足自身车辆运行需要,投资建设电动汽车充电站。电动汽车用户投资充电站,是将其视为电动汽车的一项配套设施,避免受制于外部充电站以及由此给电动汽车运行带来不利和不便影响。 该模式的优点是电动汽车用户可以根据自身需要建设充电设施,实现充电设施与其自身的电动汽车有效衔接,其缺点是电动汽车用户不仅要承担高额的充电设施建设和运行费用,更为重要的是会导致充电设施利用率低和造成重复建设。 二、电动汽车充换电站投资主体

目前我国充电站市场是由具有行业优势的几家大型企业首先涉入而发展起来的,拥有电源和输配电优势的电网企业开始自建自己的大型充电站;拥有网络优势的石油巨头,利用现有的加油、加气站,改建成加油充电综合服务站,并计划将这一种综合运营模式扩展至全国各地区;掌握土地资源的大型房地产开发商也利用占地优势与电力公司合作,开展充电桩布局。目前,四大运营商已经成为新能源汽车充电站投资的大军,引导着我国充电站行业的快速发展。随着2013年充电站市场政策放开,国家电网逐渐开放充电站和充电桩市场运营,充电站和充电桩市场将更加市场化,美国电动汽车巨头特斯拉的进入,也将激活国内充电站市场。 电网公司:探索中定位发展方式与布局重点 我国电网公司拥有电源和输配电优势,较早在充电站市场上开始试点工作。国家电网和南方电网作为两大电网集团,在国内具备了建设充电站的先发优势,在行业标准制定上也存在一定的优势。在新能源汽车亟需政策拉动的背景下,政策支持将是决定新能源汽车及其相关产业的重要推动力,拥有政策支持优势的电网集团将是充电站行业竞争的两大主体。然而经过几年的探索运营,2014年南方电网的投资计划中已不再包括对电动汽车充电站的投资,这意味着南方电网将退出充电站竞争市场,仅作为充电站市场的电力提供商。国家电网则重新确立了充电为主的模式,从而实现了纠偏改向,也符合当前国际上的主要趋势。 能源公司:致力于成为综合能源供给基地 对于中石化等能源企业,在快速直充的电力安全控制方面有着先天性不足,必须要与电力公司合作才能顺利完成充电站的建设,其发展和获利能力必然受制于上游的电力供应商。但借助其原有的加油站网络布局优势,在加油站附近设置快速充电电源系统,进行“充电服务”的实证试验,是未来实现电动汽车商业化的真正探索者,采用共站的方式,未来加油站会转换为综合能源供给基地,能够综合为传统汽车、混合电动汽车以及纯电动汽车提供动力,是未来充电站市场主要的运营商。 在运营模式上,能源企业将与电网公司互相合作,能源企业最大的优势是省去了圈地布局的麻烦,而且在下游市场的相关渠道、服务等方面更加成熟,而电网公司最大的优势是对电网的控制权,这也是能源企业建设充电站所不可缺少的。据统计,2011年,中石化分别在北京、深圳建设2座充电站,在上海、安徽有6座加油站示范点,主要是加油站与充电一体站。截至2013年中石化已在上海、武汉、河南等地展开了基于加油站网络充电桩约500个,对上述地区原有加油站网络的覆盖率亦超过了三地加油站总保有量的3%。 商业地产:联手电动汽车企业进入充电市场 目前比亚迪已经取得万科旗下所有物业支持安装个人充电桩的许可,并正在试图与万达、恒大这些大型商业地产合作建充电桩。宝马也与万达、万科达成合作。

电动汽车充换电设施接入电网典型模式

电动汽车充换电设施接入电网典型模式 发表时间:2017-12-30T21:09:28.923Z 来源:《电力设备》2017年第25期作者:吴华[导读] 摘要:随着电动汽车保有量的快速增长,政府和市场的关注焦点逐步从车辆的续航能力、安全水平向充换电的使用便捷、服务便利转移。 (云南电网有限责任公司昆明供电局云南昆明 650011)摘要:随着电动汽车保有量的快速增长,政府和市场的关注焦点逐步从车辆的续航能力、安全水平向充换电的使用便捷、服务便利转移。本文主要分析充换电设施接入配电网的技术原则和典型接入模式。关键词:电动汽车;充换电设施;配电网;典型模式电动汽车(electric vehicle,EV)是清洁能源替代传统能源的革命性技术,在全球范围内受到持续关注。美国、日本等国家先后启动能源战略发展计划,将电动汽车发展作为重要的基础技术予以强力推动。中国电动汽车也在迅速增长。随着电动汽车保有量的快速增长,政府和市场的关注焦点逐步从车辆的续航能力、安全水平向充换电的使用便捷、服务便利转移。本文结合当前电动汽车及充换电设施的发 展情况,分析充换电设施接入配电网面临的问题,给出充换电设施接入配电网的技术原则和典型接入模式。 一、充换电设施接入电网的技术原则(一)电压等级选择 按照 GB /T 18487.3《电动车辆传导充电系统电动车辆交流直流充电机》的有关规定,充电机的额定交流电压输入为单相 220 V 或三相 380 V,额定输入电流为 16,32,63,125,250 A。目前市场上部分电动汽车的额定输入电流已经突破 GB /T 18487 的要求,如特斯拉 Model S 的超级充电,充电功率高达120 kW,是现有乘用车中充电功率最高的车型;重庆恒通 12 m 长纯电动公交车的 15 min 快速充电,充电功率高达 450 kW,是现有商用车中充电功率最高的车型。因此,充换电设施的接入首先应结合充电负荷需求,经过技术经济比较后确定其供电电压等级,同时符合 GB /T 156—2007《标准电压》所给定的标称电压等级序列,表 2 为推荐接入电压等级。特别对于进口电动汽车,充电设备的供电电压应符合我国标称电压的要求。(二)用户等级选择 《电动汽车充换电设施接入电网技术规范》(以下简称《规范》)中第5.2条规定,具有重大政治、经济、安全意义的充换电站,或中断供电将对公共交通造成较大影响或影响重要单位的正常工作的充换电站,可作为二级重要用户,其他可作为普通用户。标准明确规定充换电设施要按照用户重要性分级,即按照充换电设施对供电可靠性的要求以及中断供电造成的危害程度,分为二级重要电力用户和普通用户(标准第5.4.3条规定属于二级重要用户的充换电设施宜采用双回路供电;第5.4.4条规定属于一般用户的充换电设施可采用单回线路供电)。 (三)接入点选择标准 第5.3.1条规定,220V充电设备,宜接入低压配电箱;380V充电设备,宜接入低压线路或配电变压器的低压母线。标准第5.3.2条规定,接入10kV的充换电设施,容量小于3000kVA宜接入公用电网10kV线路或接入环网柜、电缆分支箱等,容量大于3000kVA的充换电设施宜专线接入。 (四)供电电源 充换电设施的供电系统应保障人身安全,满足供电可靠、技术先进、经济合理和维护方便的要求。电源配置应根据负荷性质、用电容量、地质环境、供电条件和节约电能等因素,确定供电方案。电源点一方面要具备足够的供电能力,满足电网运行安全要求,避免充换电设施接入造成变压器或线路重载、过载运行;另一方面要能够提供合格的电能质量,满足充换电设施用电电压、频率等要求。在具体的建设与实施中,电源点选择应结合地理环境,就近选择,减少与道路或其他线路的交叉,特别是对于居民区、商业区停车场所布置的分散式充电桩,要充分考虑供电线路的安全运行和后期维护,电缆敷设应采用排管、沟槽、直埋等方式,穿越道路时,应采用抗压力保护管。 充换电设施已经成为保障城市交通运输系统顺畅运转的重要基础设施之一,其建设用地以及接入电网所需线路走廊、地下通道、变/配电站址等供电设施用地,应纳入城乡发展规划。规划阶段,应注意将充换电设施布局与其接入系统的电网规划同步开展,积极落实并保障充换电设施接入系统工程的用地需求,从源头上避免城市土地资源紧张导致的工程落地困难。(五)无功补偿及设备选型 标准第5.5.1—5.5.4条规定了充电设施无功补偿的要求,充换电设施的本质为用电客户,其无功补偿遵循用户无功补偿的规定配置即可。标准第5.6.1条规定,充换电设施接入的供电线路、变/配电设备选择应满足Q/GDW1738《配电网规划设计技术导则》的有关要求。(六)电能质量 标准第6.1.1—6.1.2条规定,充换电设施接入公共连接点谐波电压的限值(相电压)要求应符合GB/T14549《电能质量公用电网谐波》规定,注入公共连接点的谐波电流允许值应符合GB/T14549规定。标准第6.3条规定,充换电设施接入公共电网,公共连接点的三相不平衡度应满足国标GB/T15543《电能质量三相电压不平衡》规定的限制,由各充换电设施引起的公共连接点三相电压不平衡度不应超过1.3%,短时不超过2.6%。 (七)V2G技术 随着电池价格的降低和循环寿命的延长,动力电池可以作为分布式储能单元向电网输送电能,发挥调峰填谷的调节作用。当充换电设施具有与电网双向交换电能的功能时,电动汽车相当于分布式电源接入系统。当电动汽车反向送电时,应遵循以下原则:(1)应对充换电设施接入的配电线路载流量、变压器容量进行校核,并对接入的母线、线路、开关等进行短路电流和热稳定校核。(2)在满足供电安全的条件下,接入单条线路的送电总容量不应超过线路的允许容量;接入本级配电网的送电总容量不应超过上一级变压器的额定容量以及上一级线路的允许容量。(3)具有双向交换电能功能的充换电设施接入后,配电线路的短路电流不应超过该电压等级的短路电流限定值,否则应重新选择接入点。(4)具有双向交换电能功能的充换电设施接入点应安装易操作、可闭锁、具有明显开断点、带接地功能、可开断故障电流的开断设备。(5)具有向电网输送电能功能的充换电设施,其向电网注入的直流分量不应超过其交流定值的0.5%。 二、充换电设施接入电网的典型模式

电动汽车充换电设施建设工作总结

抚顺供电公司电动汽车充换电设施建设工作总结 一、工程进度 2011年,根据辽宁省电力有限公司电动汽车充换电设施建设计划安排,抚顺供电公司负责30个交流充电桩的建设安装工作。现将工程进展情况介绍如下: 辽宁省电力有限公司在今年4月末下发了电动汽车充换电设施建设的计划安排,抚顺供电公司负责30个交流充电桩的建设安装工作。接到任务后,我公司营销部高度重视,由营销部主任宁方程牵头,副主任何欣及专工孙杰具体实施运作,立刻开始了相关工作的筹划工作。经过多方走访调研和实地勘察,结合抚顺地区未来的经济发展趋势和目前现状,我们提出了在以下7个地点建设交流充电桩: 抚顺县供电分公司高湾供电营业所门前; 抚顺县供电分公司河北供电营业所门前; 抚顺县供电分公司章党供电营业所门前; 开发区供电分公司后院停车厂; 河北供将军供电营业所后院; 东洲供电分公司后院停车厂; 城东供电分公司后院停车厂。

所选的地点依据城区分布平衡,交通方便,易于安装,成本较低等原则,确定了17个立式,13个挂壁式的安装方式,并按时上报省公司。 8月末,省公司充电桩施工招标结束后,抚顺供电公司营销部及时与施工方沟通,按时签订了充电桩建设施工合同,并于10月初带领施工方勘察场地,制定施工计划。由于抚顺地区冬季寒冷、不易施工,我方要求施工方提前尽早动工。目前,抚顺供电公司充电桩的基础部分及供电电源的铺设工作已经完成,充电桩设备已经到货。按照目前进度,我公司完全能够圆满完成省公司给予的本年度建设任务。 二、存在问题 电动汽车充换电设施建设是一项新兴产业,整个项目建设施工还在探索中前行,抚顺供电公司承担的工程较少,只有一小部分充电桩工程,没有充电站项目建设,与承担充电桩及充电站项目较多的单位相比经验谈不上,问题方面我们简要建议谈以下两点: 1、充电桩建设完成后的验收问题。充电桩建设完成后,对施工外观质量及布线方面我们还有能力验收。但是我公司目前还没有配备电动汽车,充电桩安装完成后,如何检验充电桩是否施工正确、功能完好还不具备条件。 2、充电桩建设完成后的维护问题。充电桩全部建设在室外,虽然目前选址都在我公司各单位的院内,但都是对外营业场所,

电动汽车智能充换电服务网络的构建

科技信息 SCIENCE &TECHNOLOGY INFORMATION 2012年第33期电动汽车尤其是纯电动汽车具有多重战略意义,它能够保障能源 安全、促进节能减排、带动产业升级,对缓解我国城市PM2.5等大气污 染问题具有极大的促进作用。根据国内外的数据显示,纯电动乘用车 相比同类型汽油车能够节能约50%,纯电动公交车相比常规燃油公交 车能够节能30%,电动汽车的能效优势十分显著。而电动汽车的动力 来源直接依靠电力供应,这也就使得我国必须加快坚强智能电网的建 设。 1各地服务网络构建现状 截至2011年底,国家电网共建成投运243座充换电站、13283台 交流充电桩,使我国成为世界上投运充换电设备最多的国家。 山东电力集团公司自2010年开始就一直致力于电动汽车服务设 施建设,截止2012年已在全省9个城市建成17座电动汽车充换电站 和545个充电桩,形成国内覆盖范围最广、服务能力最强、技术最先进 的电动汽车服务网络。2011年,浙江建成首个电动汽车智能充换电服 务网络,首次实现了电动汽车充换电设施的网络化、智能化运营。截至 2011年12月31日,浙江公司已在全省累计建成充换电站78座,充 电桩1026个。 苏沪杭城际互联工程是我国第一个跨省区电动汽车城际互联工 程,涉及杭州、上海和苏州之间多条高速公路5个服务区的9个智能 充换电站,于2011年11月25日通过验收。其中,浙江境内4座城际 充换电站由杭州市电动汽车服务有限公司负责代理运行,分别位于于 沪杭高速嘉兴服务区、常台高速新塍服务区,各站均配置标准充电仓、 电池仓3对,可同时对60组标准电池箱进行充电。江苏境内白洋湖服 务区2座、阳澄湖服务区1座;上海境内枫泾服务区2座。目前处于车 辆试运行测试阶段,目的主要是测试电动汽车充换电服务网络运营管 理系统的功能,同时充分验证苏沪杭电动汽车城际互联工程的可行性 和实用性,进一步提高充换电网络的运行管理水平。 2012年1月29号,国内规模最大的电动汽车充换电站北京高安 屯站也已通过专家组验收,进入试运营阶段。该站共设置4条换电流 水线、1条配送线,安装充电机1044台,充电机容量10080千瓦,可同 时服务8辆电动车,整车每次换电时间4至6分钟。预计每天能满足 400辆纯电动环卫车的充换电需求,可服务北京市现有电动环卫车所 有车型。该站同时具备电动大巴车的换装条件,可满足周边乘用车电 池更换,提供配送需求。 2服务网络的构建 国家电网对电动汽车的智能充换电服务网络的构建的指导思想 是,以科学发展观为指导,全面落实国家能源战略和节能减排政策,紧 密围绕我国电动汽车推广应用需求,优化充换电服务运营模式,创新 建设与运营工作体系,加强标准体系建设,加强关键技术研究,大力推 进智能充换电服务网络建设与运营,积极推进与上下游企业的项目合 作,促进我国电动汽车发展。 2.1不断优化网络服务运营模式 国家电网在《国家电网公司2012年电动汽车智能充换电服务网 络建设运营指导意见》中明确了“换电为主、插充为辅、集中充电、统一 配送”的智能充换电网络运营模式。对国内外电动汽车、动力电池及充 换电技术发展和研究进度进行跟踪,深化电动汽车动力电池技术现状 与发展趋势、电动汽车充换电对配电网影响及应对策略等研究,与国 内权威研究机构合作跟踪动力电池技术发展趋势,联合开展动力电池 安全防护研究,准确把握国家政策导向,深入论证充换电设施发展技 术路线,全面分析风险因素,优化充换电服务运营模式,提升充换电设 施运营经济性,确保充换电设施建设持续健康发展。 同时还要不断优化调整充换电服务网络发展规划。高度关注当地 电动汽车发展情况,根据电动汽车充换电实际需求和技术发展趋势, 结合电网智能化、配电网及营销专项规划修编工作,坚持“统一标准、统一规范、统一标识、优化布局、安全可靠、适度超前”的原则,细化城市电动公交车、出租车专项发展规划,优化调整智能充换电服务网络发展规划,实现充换电设施建设与电动汽车发展相衔接。2.2创新建设与运营工作体系(1)创新充换电设施组织管理体系。根据各省市的实际情况加快建立职能管理与公司化运营相协调的组织管理体系,为智能充换电服务网络的建设运营提供组织保障。以国家电网的整体营销系统为基础,在全国各个省市设立智能电网用电处,专门管理电动汽车智能充换电业务,同时根据当地电动汽车充换电设施建设与运营实际,在有需求的地市成立电动汽车服务公司。(2)强化充换电设施建设运营安全。根据国家相关法律法规和国家电网及其各省分公司的有关安全管理规定,加强充换电设施建设运营安全管理,建立健全安全防控体系,强化安全教育和培训,坚决落实安全措施,杜绝违规操作,保证人身、电动汽车、动力电池和充换电设备的安全。对运营过程中动力电池的安全性要保持高度的关注,明确安全责任,加强电池充放电状态监控,一旦超出质量要求必须及时更换。同时要制定人身事故、电池燃烧、电动汽车受损、充换电设备损坏、大风暴雨恶劣天气等现场处置预案,强化日常安全演练,提高事故应急处置能力。(3)深化充换电设施建设运营管理。国家电网在建设过程中必须加强充换电设施建设项目管理,做好项目实施方案编制、设备采购等关键环节的管控,确保工程建设质量,按期完成年度建设任务。优化今年充换电服务网络建设和内部应用电动汽车计划,掌握社会应用电动汽车计划,完善充换电服务网络建设项目可研报告。(4)加强动力电池购置租赁管理,电池性能应符合电动汽车要求,数量应与电动汽车应用规模相匹配;加强已投运充换电设施的运营维护管理,提高设施运行效率,做好充换电服务;加强内部电动汽车应用管理,购置车辆应与充换电设施建设相衔接。(5)加强运营管理人员培训。公司将加强电动汽车充换电设施建设运营技术与管理培训工作,不断提升从业人员的技术和管理水平,为充换电服务网络的建设运营提供人才保障。2.3加强标准体系建设(1)推进标准国际化工作。为了推进体系标准国际化,必须建立充换电设施国际标准推进工作协调机制,加强与国际标准化组织交流合作,积极研究充换电设施国际标准发展动向,参与国际电工委员会、国际标准化组织充换电设施标准编制工作,加快充换电设施标准国际化步伐。(2)深化标准研究。以国家电网的整体实力为后盾,快速搜集智能电网充换电服务网络构建相关信息和数据,积极开展充换电技术研究和实验验证工作,以实验数据为基础开展标准编制,提高标准编制水平。(3)加快标准编制。国家电网为了能够保障电动汽车充换电建设顺利进行并在全国得以全面推广,就必须继续加强与国标委的沟通汇报,积极承担和参与国家标准、行业标准、央企联盟标准和企业标准的制定工作。标准编制牵头单位将按照年度标准编制计划开展标准编制工作,确保完成年度15项标准的编制任务,不断完善标准体系。(4)积极开展标准宣贯。做好充换电标准宣贯工作,对在设备研发、工程设计、建设验收及运营过程中切实执行标准规定有积极的作用,以确保充换电设施建设运营的标准化和规范化。2.4加强关键技术研究(1)电动汽车智能充换电服务网络构造复杂,涉及发电、调度、输变电、配电和用户(电动汽车)各个环节。电动汽车最关键的电池组容量瓶颈难题和电池组快速更换系统集成技术研究与装备开发等关键技术一旦突破,将会大大促进我国电动汽车的发展,(下转第132页)电动汽车智能充换电服务网络的构建 郑华凤 (东台市供电公司江苏东台224200) 【摘要】电动汽车的未来快速发展趋势已被全世界认可,而与之相适应的坚强智能电网建设的加强也是势在必然,智能充换电服务网络的构建已是大势所趋。本文通过对服务网络构建的必要性和现状的分析,从六个方面对网络构建提出了一些建议。 【关键词】电动汽车;智能充换电;服务网络 ○科教前沿○116

电动汽车充电站工程项目建议书

**电动汽车充换电站工程 项 目 建 议 书 二零一一年十二月 **公司

**电动汽车充换电站工程项目建议书 项目负责人: 编制人员:

目录 第一章概述 (1) 第二章项目建设的理由 (7) 第三章项目选址 (10) 第四章总图布置与项目建设内容 (12) 第五章节能 (13) 第六章环境影响和水土保持 (14) 第七章劳动安全卫生与消防 (18) 第八章组织机构、实施保障和项目招标方案 (22) 第九章项目实施进度与工程管理 (24) 第十章投资估算和资金筹措 (26) 第十一章效益分析 (28) 第十二章项目社会效益评价 (29) 附件 **电动汽车充换电站工程总平面图

第一章概述 1.1项目概况 1.1.1项目名称 **电动汽车充换电站 1.1.2项目建设单位 ***** 1.1.3项目建设地址 **工业区 1.1.4建设规模 建筑面积5943.09平方米 1.1.5项目负责人 王华慧 1.1.6编制单位 **公司 证书编号:******* 1.2建设单位简介 **全市土地面积8256平方公里,下辖五县(市)一区,现有乡镇94个、行政村2222个。2010年末人口438.91万人。 **电力局是承担全市五县(市)一区的供电营业和电网建设任务的国有大型供电企业。下辖七个供电单位,即:部属企业三个:用电管理所、

**供电分局、**供电分局;省属企业一个:**供电局;代管县局三个:**市供电局、**市供电局、新昌县供电局。截至2010年底,全市拥有35千伏及以上(公用)变电所192座,变电容量2871.82万千伏安。其中500千伏变电所5座,变电容量975万千伏安;220千伏变电所23座,变电容量930万千伏安;110千伏变电所101座,变电容量843.02万千伏安;35千伏变电所63座,变电容量150.62万千伏安。输电线路426条,总长4996.273公里。其中500千伏线路25条、963.24公里;220千伏线路74条、1305.88公里;110千伏线路170条、1542.05公里;35千伏线路157条、1185.103公里。 1.3编制依据和范围 1.3.1编制依据 1、相关标准 a、电动汽车技术标准 GB/T 18487.1-2001《电动车辆传导充电系统一般要求》 GB/T18487.2-2001《电动车辆传导充电系统电动车辆与交流/直流电源的连接要求》 GB/T18487.3-2001《电动车辆传导充电系统电动车辆与交流/直流充电机(站)》 GB/T 19596-2004《电动汽车术语》 GB/T20234-2006《电动汽车传导充电用插头、插座、车辆耦合器和车辆插孔通用要求》

广州市推进电动汽车充换电设施建设与管理暂行办法

广州市推进电动汽车充换电设施 建设与管理暂行办法 第一章总则 第一条为加快广州市电动汽车充换电设施(以下简称充电设施)建设,加强充电设施的规范管理,促进电动汽车的推广应用,根据国务院办公厅《关于加快新能源汽车推广应用的指导意见》(国办发〔2014〕35号)、《国家发展改革委关于电动汽车用电价格政策有关问题的通知》(发改价格〔2014〕1668号)和《广州市新能源汽车推广应用工作方案》等文件,制订本办法。 第二条本市行政区域内充电设施规划编制、投资建设、运营管理等相关活动适用本办法。 第三条市工业和信息化主管部门负责本市行政区域内充电设施行业发展、布局规划,以及行业指导工作,组织实施本办法。区(县级市)工业和信息化行政主管部门负责做好本辖区内充电设施行业发展、布局规划,以及行业指导工作。 各级发展改革、国土规划、住房和城乡建设、工商、质监、公安消防、交通运输、安全监管、人民防空等行政主管部门和城市管理综合执法机关按照各自职责对充电设施建设和运营做好相应的监督管理工作。 第四条充电设施分为个人自用、公共机构及企业专属、公共充电设施三类。

(一)个人自用充电设施是指在个人用户所有或长期租赁的固定停车位安装,专门为其停放的电动汽车充电的充电设施; (二)公共机构及企业专属充电设施是指在党政机关、事业单位、社会团体、企业等专属停车位建设,为营运车辆、专用车辆、公务车辆、员工车辆等提供专属充电服务的充电设施; (三)公共充电设施是指在规划的独立地块、社会停车场、住宅小区公共停车场、商业配建停车场、加油加气站、高速服务区等区域规划建设,面向社会车辆提供充电服务及增值服务的充电设施。 第五条鼓励积极利用城市现有场地和设施建设充电设施。适度超前建设个人自用、公共机构及企业专属、社会公共等各类充电设施。 第六条本市推广使用电动汽车及充电设施,鼓励和支持社会投资主体在本市投资建设和运营充电设施。 第七条市工业和信息化等行政主管部门、各区(县级市)政府、街道办事处和充电设施运营企业等应当加强充电设施建设、运营和使用规范等方面的宣贯,提高市民安全使用充电设施的意识。联系新闻媒体做好安全、规范使用充电设施和节约用电的公益性宣传。 第二章规划管理 第八条充电设施及配套电网的建设与改造应当纳入城市建设规划。市工业和信息化行政主管部门会同国土规划行政主管部门按照“统一规划、适度超前、统筹安排、逐步实施”的原则组织编制市充电设施专项规划,并按照《广州市城乡规划程序规定》执行专项规划

《电动汽车充换电服务信息交换》第四部分.

ICS 35.240.60 L 73 T/CEC 中国电力企业联合会标准 T/CEC XXXXX—XXXX 电动汽车充换电服务信息交换 第4部分:数据传输与安全 Charging and battery swap service data interactive for electric vehicle Part4:Data exchange and Security (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施

目次 目次............................................................................... I 前言.............................................................................. II 引言............................................................................... I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 数据传输体系 (1) 4.1 概述 (1) 4.2 数据传输一般流程 (2) 4.3 数据传输接口的基本要求 (2) 5 平台认证方式及规则 (2) 5.1 概述 (2) 5.2 平台认证模式 (2) 5.3 平台认证方法 (3) 6 数据传输方式及规则 (3) 6.1 数据传输接口规则 (3) 6.2 接口调用方式 (4) 6.3 消息头规范 (4) 6.4 消息主体规范 (4) 6.5 批量数据传输 (5) 6.6 返回参数规则 (5) 7 密钥的使用及管理 (6) 7.1 基本安全要求 (6) 7.2 密钥的安全要求 (6) 7.2.1 密钥的产生 (6) 7.2.2 密钥的分发 (6) 7.2.3 密钥的存储 (6) 7.2.4 密钥的销毁 (6) 7.3 数据的加密处理 (6) 7.3.1 数据加密规则 (6) 7.3.2 数据加/解密方法 (7) 7.3.3 数据加/解密示例 (8) 附录 A (资料性附录)数字信封密钥分发方式 (10)

电动汽车充换电站建设资料汇编标准汇总

1电动汽车标准 1.1电动汽车标准 1)GB/T 18388-2005 电动汽车定型试验规程 2)GB/T 18385-2005 电动汽车动力性能试验方法 3)GB/T 19596-2004 电动汽车术语 4)GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置 5)GB/T 18384.2-2001 电动汽车安全要求第2部分:功能安全和故障防护 6)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护 7)GB/T 18386-2005 电动汽车能量消耗率和续驶里程 8)GB/T 24347-2009 电动汽车DC∕DC变换器 9)GB/T 18488.1-2006 电动汽车用电机及其控制器 10)GB/T 18488.2-2006电动汽车用电机及其控制器第2部分:试验方法 11)GB/T 19751-2005 混合动力电动汽车 12)GB/T 19836-2005 电动汽车用仪表 13)QC/T 838-2010 超级电容电动城市客车 14)QC/T 839-2010 超级电容电动城市客车供电系统 1.2电池标准 1)QC/T 743-2006 电动汽车用锂离子蓄电池 2)QC/T 744-2006 电动汽车用金属氢化物镍蓄电池 3)QC/T 742-2006 电动汽车用铅酸蓄电池 4)QC/T 840-2010 电动汽车用动力蓄电池产品规格尺寸 2充换电站标准 2.1整站规范 1)Q/GDW236-2009 电动汽车充电站通用要求 2)Q/GDW237-2009 电动汽车充电站布置设计导则 3)Q/GDW238-2009 电动汽车充电站供电系统规范 4)Q/GDW486-2010 电动汽车电池更换站技术导则 5)Q/GDW487.1-2010 电动汽车电池更换站设计规范

太原公布电动车充换电收费标准

太原公布电动车充换电收费标准 最高服务费暂定每度0.45 元 本报记者贾文艳 太原市发改委最新发布,《关于太原市电动汽车用电价格及充换电服务费(试行)有关事项的通知》。 《山西青年报》新政详解。 0.45 元 据上述通知,充换电设施经营单位可向电动汽车用户收两项费用,电费和充换电服务费。纯电动汽车(七座及以下)充电服务费按充电电度收取,充电最高服务费暂定为0.45 元/千瓦时。 电价 据上述通知,太原市电动汽车充换电设施用电价格,依据设置方不同,执行不同电价。对向电网经营企业直接报装接电的经营性集中式充换电设施用电,执行大工业用电价格。2020 年前,暂免收基本电费。居民家庭住宅、住宅小区、执行居民电价的非居民用户中设置的充电设施用电,执行居民用电价格中的合表用户电价。党政机关、企事业单位和社会公共停车场中设置的充电设施用电,执行“一般工商业及其他”类用电价格。 另外,太原市电动汽车充换电设施用电,执行峰谷分

时电价政策。鼓励电动汽车在用电低谷时段充电,提高电力系统利用效率,降低充电成本。 浮动 据上述通知,2020 年前,太原市电动汽车充换电服务费实行政府指导价管理。充电经营企业可在最高限价内下浮,下浮幅度不限。 通知明确,鼓励对充电服务费给予优惠。纯电动汽车(七座及以下)换电服务费和电动公交车充换电服务费另行核定公布。 严格 太原市发改委强调,充换电设施经营单位要严格执行明码标价规定,在收费场所醒目位置公示服务内容、充电电价和充换电服务费标准等事项。 待正常运行后,将根据充换电设施服务市场发展情况重新核定价格。 关于印发《电动汽车充电基础设施发展指南(2015-2020 年)》的通知

纯电动汽车换电模式的思考

龙源期刊网 https://www.360docs.net/doc/7b10902605.html, 纯电动汽车换电模式的思考 作者: 来源:《新能源汽车报》2017年第19期 随着新能源汽车在出租车领域的广泛使用和换电网络的不断完善,人们对换电模式的认可度也随之不断提高,换电模式在私人用车领域使用的可能性也变得更大,未来换电模式可能会成为电动汽车领域的主导模式。 经历了“十一五”末期、“十二五”的五年再到“十三五”初期三个时间段的发展,中国的新能源汽车从最初的“充电模式”到中期的换电模式,最终形成了充换电并举的格局。截止到目前,虽然获得了比较大的发展,新能源汽车的存量与增量均居世界领先地位,但是存在的问题也很多,如盈利模式不清晰、用户使用体验欠佳、保值率低,以及离开政府补贴后行业的发展能力令人担忧等。我个人认为,我们离新能源汽车完全替代传统燃油车的目标依然很遥远。 目前,新能源汽车发展按照车企和地域主要呈以下分布态势,首先是以比亚迪为代表的车企,他们生产的新能源汽车以充电模式为主,主要分布在西安、太原、深圳等城市。其次是以北汽新能源、力帆、海马为代表的车企,生产的新能源汽车主要以换电模式为主,主要分布在北京、郑州、重庆、海口等城市。 出租车领域是天然市场 从发展趋势来看,自2014年开始,新能源汽车就以国家电网主导的以充电为主(四横四纵的高速路充电网建设)的充电模式,充电设施建设得到了长足的发展。而在城市中,反而是车企推广的换电模式在出租车、分时租赁领域发展迅猛。 我认为,新能源汽车近5年的发展主流还应该为营运型车辆。在私家用车应用领域,除北京、上海等需要摇号购车的地区外,其他省市的新能源汽车的需求量暂时不会有很大的提高。在出租车应用领域,换电模式因其更换电池时间短的特点受到出租车师傅们的青睐,因此我认为,换电模式将是新能源汽车领域近几年发展的主要力量。 随着新能源汽车在出租车领域的广泛使用和换电网络的不断完善,人们对换电模式的认可度也随之不断提高,换电模式在私人用车领域使用的可能性也将变得更大,未来换电模式可能会成为电动汽车领域的主导模式。 新能源汽车在营运车领域的发展离不开几个关键环节,司机、投资人、运营方。 司机(尤其是出租车司机)因为其运营时间长的缘故,他们无法容忍补电时间过长;投资人则需要快速收回成本,无法容忍高昂的投资和迟迟得不到收回的成本;而运营方则需要设备稳定运行、方便运营。

纯电动车充换电站项目规划实施方案实施计划书

纯电动车立体车库智能充换电站项目 规划实施方案

一、概述 1、背景 随着燃油产品的价格走高以及不可再生、环境恶化等各种因素的联合推动下,发展新能源汽车已经成为政府、汽车生产厂家以及用户的共同心声。但新能源汽车发展的终极目标是纯电动汽车。 2、必要性 纯电动汽车要推向社会,走进寻常百姓家,除价格适中外,还必须建设完善的配套设施,首当其冲的便是充换电站。充换电设施是新能源汽车示推广的重要配套设施,在很大程度上决定示推广成效。因

此,为有序推进纯电动汽车充换电设施的建设,政府各级部门多次召开专题会议研究,讨论确定布点方案及实施要求。 3、目标及展望 计划三年在市区(含上城、下城、拱墅、西湖、江干、滨江、萧山、余杭等八个城区)以及富阳市、临安市、桐庐县建设超过500-1000座带智能充换电装置的立体车库,可为约10万辆车提供充电、换电、停车以及维修保养服务。 二、技术支撑 本方案主要是基于带充换电服务的立体车库以停车、充电、换电为基础,提出三位一体化立体车库的运营模式。以自动化设备、电气自动化控制理论、计算机控制为基础,依托相对成熟的电池仓库系统、自动化立体车库系统、全自动智能视觉换电系统,建设集自动更换电池、电池充电、停车为一体的立体车库。采用集约方式运营,可以有效降低全过程成本。还可根据“智慧城市”的全新理念,利用各种包括车载终端应用、实时路况信息采集、车况信息采集、GPS导航、3G移动技术、RFID无线射频等技术整合应用研究以及通过接口方式

反馈给运营管理平台。为运营管理平台省级运营、多级监控、智能配送等服务提供数据支撑,为“智慧城市”建设提供数据基础。 1、电池仓库及自动换电技术 电池仓库系统主要包括两部分组成:电池充电装置、电池自动移载机(电池存取机构)。 自动化电池仓库,是由多层货架、运输系统、计算机系统和通讯系统组成的,集信息自动化技术、自动导引小车技术、机器人技术和自动仓储技术于一体的集成化系统。 电池入库存储是在入库接驳站台上进行的,双向换电机器人将电池送到入库站台,入库过程自动完成。电池自动移载机在入库接驳口将电池送到由主控计算机预先分配好的货位上进行存储。 电池的出库是由生产管理人员或相应系统向主控计算机输入出库指令,计算机按一定的原则生成出库单,控制电池自动移载机将相应的库存电池从货位上取出。送到出库站台,双向换电机器人接收电池。 全自动换电机构由汽车旋转平台、双向换电机器人等两大部分组成,以汽车旋转平台为初定位,机器视觉为二次精确定位,避免不同车停放位置,胎压不同,车辆差异等诸多因素,使整个自动化换电作业流程实现精准、可靠、高效、安全,目标定位误差率≤±2mm,定位运算时间≤500ms,单次换电时间缩短为45秒/车次。 2、立体车库技术应用

新能源汽车换电池模式的思考分析

关于我国新能源汽车产业发展换电模式的思考 2019年01月11日 10:35 自2008年起,我国就已经开始在纯电动客车领域开展换电模式的推广,但受限当时政策环境、技术水平、成本因素和市场规模,换电模式并没有大规模推广。随着换电技术进步、换电站建设成本降低、换电标准不断完善,以北汽新能源、力帆、蔚来汽车等为代表的企业开始加大换电模式的研究和推广。中国新能源汽车的能源补给方式正逐渐由充电为主转变为充换并举,换电模式成为充电模式的重要补充,是后补贴时代推动我国新能源汽车产业发展的创新商业模式之一。 1、换电模式发展现状 (1)早期换电模式失败原因分析 早期,以色列新能源汽车公司Better Place、美国新能源汽车公司Tesla、中国国家电网等企业均尝试过换电模式,但都以失败告终,主要原因是前期一次性投入大和技术标准不完善。 第一,前期建站投入大。换电站建设投入一次性成本较大,包括场地需求、车辆技术改造、电池储备、换电设施建设、能源站建设等,成本远远高于充电桩建设。企业需要投入巨额资金,而且当时新能源汽车产销规模小,大多数换电站利用率不高,投资回报周期太长,导致换电模式最终失败。

第二,技术标准不完善。换电模式技术标准涉及车的制造路线、电池制造技术、标准化建设、能源补给网络建设、国家智能电网建设、城市规划、车辆准入标准修改等一系列问题。各车企均有不同的设计理念,技术标准不同,电池位置和规格尺寸千差万别,很难保证每种车型都能在换电站找到适合更换的电池。 第三,涉及多方博弈及利益纠葛。换电模式会导致动力电池的专业化经营,多数整车企业反对换电模式,通过支持充电模式来自主掌控动力电池等核心技术,进而掌控动力电池技术带来的利润。但国家电网等能源企业希望通过换电模式降低成本、避开基础设施壁垒、快速打开新能源汽车市场,同时掌握电池技术及其衍生资源。由于利益纠葛和整车企业的不配合,由能源企业主导的换电模式并没有发展起来。 (2)换电模式应用领域分析 换电模式目前主要应用于公交车、出租车、物流车、分时租赁等营运车辆领域,私人领域应用成为新趋势。北汽新能源等企业正积极探索私人领域的可行性,蔚来汽车的换电车辆则主要应用于私人领域。 第一,目前主要应用于营运车辆领域。目前换电模式主要适用于公交车、出租车、物流车、分时租赁等营运车辆领域。一是公交车、出租车、物流车、分时租赁等营运车辆是定制车型,品牌相对集中、电池规格相对一致、标准化程度较高,对动力电池寿命和维护要求高,符合换电模式技术要求。二是运营车辆对运营效率要求很高,普通充电导致运营效率低下,换电企业通过构建能源服务网络,大幅提高运营车辆效率,易形成可持续发展的商业模式。 第二,私家车领域的应用成为新趋势。换电模式的目标群体主要是对车辆运营效率和使用寿命要求较高的营运类客户,以及家里无停车位无法自建充电桩的私人用户。总体来看,换电模式的综合效率远高于充电模式,因此高频出行的出租车等市场对换电模式具有十分迫切的刚需。为了给消费者提供更加舒适的用车体验,部分企业如蔚来汽车、北汽新能源等都开始将换电模式推广至私人领域。主要满足三类客户,一是在一线和二线城市无专属停车位,充电不方便的消费者,二是有专属停车位,但所在的小区充电桩建设协调难度大,无法安装专属充电桩的消费者;三是认同和希望体验换电模式的消费者。 2、换电模式的优势和不足分析 (1)换电模式的优势

智能充换电网络的商业模式方案

智能充换电网络的商业模式方案智能充换电服务网络商业模式的确立是以实现电动汽车用户在服务网络内各种能量补充设施间自由切换,最大程度满足用户能量快速补充需求为目的;以真正发挥电动汽车节能减排、削峰填谷等作用为目标。因此,智能充换电网络商业模式的建立,一方面应结合电动汽车充换电网络的服务模式,考虑用户实际需求;另一方面,应充分考虑充换电服务网络建设的整体投入和投资回收期限,实现成本的合理回收和持续盈利能力的提升。同时,商业模式的建立也应充分考虑电动汽车的发展阶段,制定与电动汽车发展阶段相适应的商业模式,并对后续电动汽车的发展趋势进行科学预测,密切跟踪电池 决充等相关技术的发展情况,超前制定充换电服务网络的商业模式,使商业模式满足用户和电动汽车产业健康发展需要。为了便于用户根据自身使用习惯,灵活的选择能量补充方式和付费方式,更好的接受充换电服务和付费方式,应设定多种服务套餐供用户选择。一方面套餐服务可以满足不同等级、不同类型用户的需要;另一方面,套餐形式便于快速推广和管理。目前,通过换电和充电两种方式满足用户方便的进行能量补充的要求。服务套餐应兼顾换电和充电两种服务模式,如设计如下基本服务套餐:后付费签约。以按汽车行驶公里数进行计费或以时间进行计费的套餐,客户在进行换电或者充电时,不限制换电次数和充电时间,最后与电网公司按公里数或者在网时间进行费用结算;或者每次进行换电或者充电时,根据换电次数和充电时长进行费用计算,累计到与客户相对应的账号,定期结算。 预付费充值卡。用户购买包含一定费用的预付费充值卡,在进行换电时,扣取一定额度的换电费用;在进行充电时,根据充电时长扣取相应费用。在预付费充值卡额度不足时,客户进行自发充值或重新购买。 设置相应的奖励办法。如根据不同面值的充值卡设定不同次数的道路救援、汽车保养等优惠措施和充值返费优惠等;根据电网峰谷时间,可设定相应的充电优惠时段,并写入套餐等。充电基础设施是影响电动汽车产业化、规模化发展的关键环节,未来市场发展空间巨大,其用电属性、建设和运行特性决定充电设施是配电网的自然延伸,是配电网不可分割的一部分。 汽修学校:https://www.360docs.net/doc/7b10902605.html,/

电动汽车充换电站建设资料标准汇总

电动汽车充换电站建设资料汇编标准汇总 1 电动汽车标准 1.1电动汽车标准 1) GB/T 18388-2005 电动汽车定型试验规程 2) GB/T 18385-2005 电动汽车动力性能试验方法 3) GB/T 19596-2004 电动汽车术语 4) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置 5) GB/T 18384.2-2001 电动汽车安全要求第2部分:功能安全和故障防护 6) GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护 7) GB/T 18386-2005 电动汽车能量消耗率和续驶里程 8) GB/T 24347-2009 电动汽车DC∕DC变换器 9) GB/T 18488.1-2006 电动汽车用电机及其控制器 10) GB/T 18488.2-2006电动汽车用电机及其控制器第2部分:试验方法 11) GB/T 19751-2005 混合动力电动汽车 12) GB/T 19836-2005 电动汽车用仪表 13) QC/T 838-2010 超级电容电动城市客车 14) QC/T 839-2010 超级电容电动城市客车供电系统 1.2电池标准 1) QC/T 743-2006 电动汽车用锂离子蓄电池 2) QC/T 744-2006 电动汽车用金属氢化物镍蓄电池 3) QC/T 742-2006 电动汽车用铅酸蓄电池 4) QC/T 840-2010 电动汽车用动力蓄电池产品规格尺寸 2 充换电站标准 2.1 整站规范 1) Q/GDW236-2009 电动汽车充电站通用要求 2) Q/GDW237-2009 电动汽车充电站布置设计导则 3) Q/GDW238-2009 电动汽车充电站供电系统规范 4) Q/GDW486-2010 电动汽车电池更换站技术导则 5) Q/GDW487.1-2010 电动汽车电池更换站设计规范 6) Q/GDW487.2-2010 2001电动车辆传导充电系统电动车辆与交流直流电源的连接要求 7) Q/GDW487.3-2010 2001电动车辆传导充电系统电动车辆交流直流充电机(站) 8) Q/GDW488-2010 电动汽车充电站及电池更换站监控系统技术规范 9) Q/GDW Z 423-2010 电动汽车充电设施典型设计 2.2充换电设备 1) GB/T 18487.1-2001 电动车辆传导充电系统一般要求 2) GB/T 18487.2-2001 电动车辆传导充电系统电动车辆与交流/直流电源的连接要求 3) GB/T 18487.3-2001 电动车辆传导充电系统电动车辆与交流/直流充电机(站) 4) GB/T 20234-2006 电动汽车传导充电用插头、插座、车辆耦合器和车辆插孔通用要求 5) QC/T 841-2010 电动汽车传导式充电接口 6) QC/T 842-2010 电动汽车电池管理系统与非车载充电机之间的通信协议

相关文档
最新文档