飞机重量和重心计算教案资料

合集下载

《飞机构造基础》重量和平衡及计算方式

《飞机构造基础》重量和平衡及计算方式
重心,即飞机的所有重量集中于重心一点上,它位于升力 重心稍前一点。
这种布置将使飞机头部下俯,下俯力矩由水平尾翼的载荷 平衡,它使飞机水平飞行。
重心在焦点前,纵向静稳定;重心在焦点后,纵向静不稳定。
焦点:当飞机的攻角发生变化时,飞机的气动力对该点的力矩 始终不变,因此它可以理解为飞机气动力增量的作用点。
2.飞机重心太靠前:
① 飞机会有俯冲的趋势; ② 稳定性降低; ③ 要求有较大的发动机功率。
3.飞机重心太靠后:
① 飞行速度降低; ② 发生失速较快; ③ 稳定性降低; ④ 需要较大的发动机功率。
注意:任何一种情况都可能导致严重后果。
2.2定期称重的必要性
• 飞机会因不易清洗的角落里积聚灰尘和油 脂等而有增加重量的趋势。飞机在一定时 间内的增重程度则取决于飞机的使用、飞 行时间、环境状况以及起降场地的类型。 所以定期对飞机称重是必要的。
2.5飞机称重
• 飞机称重前的准备 • 称重设备的准备 • 飞机的称重程序 • 称重计算
称重前准备
• 使飞机处于水平姿态。 • 清洗飞机。称重时保持飞机干燥。 • 检查飞机设备清单以确保所有需要的设备
确实安装好,拆下不包括在飞机设备清单 内的所有项目。 • 对燃油系统放油直到优良指示为零,即排 空。 • 装满液压油箱及滑油箱。(属于空重) • 饮用和洗涤水箱以及厕所便桶排空。 • 当对一架飞机称重时,如扰流板、襟翼等 装置的位置应收好。
• 飞机的水平顶置
最常用的顶置工序是在飞机构架上的几个 制定点安置气泡水准仪。
• 飞机的水平顶置
对于飞机进行称重时,重量集中在磅秤上 的一点叫做称重点。通常把机轮放在磅秤 上。
飞机上的某些结构部位(如主梁上的千斤 顶底座),可当作称重点而采用千斤顶支 撑方式来对飞机称重。

飞机重量和重心计算讲解

飞机重量和重心计算讲解
10%; • 如果起落架不安装在机翼,减少5%; • 采用富勒襟翼,增加2%。 • 讨论:
bs W机翼 可通过增加翼载来减缓由于bs 带来的不利因素,故大型飞机
通常有较高的翼载
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
航空宇航学院
控制面操纵系统的重量
W操纵 K SC (Wto )2/3 0.768 (kg)
• 设有双重操纵机构的轻型飞机:KSC=0.23 • 用于手操纵的运输机和教练机: KSC=0.44 • 运输机,动力操纵系统,仅有后缘襟翼: KSC=0.64 • 有前缘襟翼时,增加20%。
航空宇航学院
(kg)
• 对于增压客舱,增加8%; • 后机身安装发动机,增加4%; • 主起落架在机身上,增加7%; • 若无主起落架支撑结构,也无机轮舱减少4%; • 对于货机,增加10%。
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
根据油箱布置的位置 计算油箱的体积和重量,燃油密度=0.8g/cm3
• 有效载荷(乘客和行李、 货物或武器弹药)
由载荷的布置来确定
航空宇航学院
全机重量计算和重心定位
xG
(mgx)i (mg)i
yG
(mgy)i (mg)i
重心在平均空气动力翼弦的位置:
xG

xG xA cA

• 使用燃油

航空宇航学院
飞机的过载
• 结构重量与飞机过载有关
• 几种飞机的使用过载:
战斗机: 教练机和攻击机: 轰炸机: 运输机和货机:

第三章飞机称重及决定空重重心

第三章飞机称重及决定空重重心

圖 3-1 重心前限與後限之分佈區域。 在 FAA AC120-27B 詳細說明 , 正常登記註冊為 N 字頭的航空器所要檢測的 時間間隔 36 個曆月,最長可延至 4 年,本情況為航機未有任更改時,若有下列 之行為,則需再次校驗載重及重心位置。 (A)重大修改或修理完成時,無正確的資料可供計算。 (B)所記載之文件懷疑有誤。 (C) 駕駛員操縱飛行時,出現不平穩的現象,例機鼻太重,妨礙操縱性能, 且無法證明是因不適當的裝載所造成。 (D)除去塗裝噴漆,或重新塗裝。 (E)實際操作重量比最大著陸重量有±0.5%的變動。
飛機總重 (8000+12000+12000)=32000 重心位置 10240000/32000=320 吋 3-3 準備稱重準備工作 不管是內部或是外在的準備,航機要完成載重的量測時,要盡可能做到以 下這些系統所要求的。 (A)燃油系統:油箱、管路、唧筒完全清乾,或依照標準燃油排出程序將 油箱的燃油排出。 (B)潤滑系統(Lubricating System) :潤滑的滑油箱和系統完全清乾,或 將滑油箱裝滿,確認引擎可以完全運轉。 (C)各式的流體: (1)以下所列之水箱和系統都應洩光: *洗手間和廚房的飲用水和洗滌水 *洗手間和廁所的慶水 *飲用水的水箱及管路 (2)以下所列之容器或系統將其操作的容量裝滿: *液壓系統及其儲存槽 *氧氣系統之鋼瓶 *防火滅火器 *起落架內之滑油精 (D)飛機結構:以下每一個步驟必需在載重量測前完成: (1)使用認可的設備清單進行飛機設備盤存。 (2)移除所有工作場合的多餘裝備工具和垃圾。 (3)將全部設備固定在適當的位置。 (4)確定飛機完全乾燥,淋過雨後 10 小時才能秤重。 (5)關閉所有的門及進出口。 (6)收起所有襟翼、翼縫條、擾流器。 (7)設定水平安定面及控制面在中心位置。 (8)充氣讓輪胎保持在規定的操作壓力。 (9)收回引擎推進反向器。 飛機載重測量應盡可能水平姿態,如果無法達成水平量測,最低要求為±2° (與實際秤重的水平夾角) , 利用已知的重心以數學式算出等效的水平重心位置, 應用前面所提的矯正因子計算,並對照載重與平衡手冊中的表。 如果利用棚廠進行載重量測,在密閉的棚廠內,地板清斜角度不可超過 1/4 吋(每呎) ,當室內環境無法提供,在外界時,所受的限制就更多,如下:

第七章 第六节 飞机重心的计算

第七章 第六节 飞机重心的计算

第六节 飞机重心的计算一、飞机的重心和重心位置的表示1、飞机重心确保飞行安全的要求和条件是多方面的,重要的一点就是要保证飞机平衡。

飞机的重心必须在安全的范围内,保证飞机飞行具有良好的操作性和稳定性。

飞机重心具有以下特性:(1)飞行中,重心位置不随姿态改变。

(2)飞机在空中的一切运动,无论怎样错综复杂,总可以分解为:飞机各部分随飞机重心一道的移动和飞机各部分转绕着飞机重心的转动。

本节将着重介绍飞机的重心、重心计算的方法,以及飞机的平衡,稳定性和操纵性。

重力是地球对物体的吸引力,飞机的各部件(机身、机翼、尾翼、发动机等)、燃油、货物、乘客等都要受到重力的作用,飞机各部分重力的合力,叫做飞机的重力,用G 表示。

重力的着力点,叫做飞机的重心。

重心所处的位置叫做重心位置。

飞机在空中的转动,是绕飞机的重心进行的。

因此,确定飞机重心位置是十分重要的。

飞机重心的前后位置,常用重心到某特定翼弦上投影点到该翼弦前缘点的距离,占该翼弦的百分比来表示。

这一特定翼弦,就是平均空气动力弦(MAC )。

所谓平均空气动力弦,是一个假想的矩形机翼的翼弦。

该矩形机翼和给定的任意平面形状的机翼面积、空气动力以及俯仰力矩相同。

在这个条件下,假想矩形机翼的弦长,就是给定机翼的平均空气动力弦长。

机翼的平均空气动力弦的位置和长度,均可以从飞机技术手册上查到。

有了平均空气动力弦作为基准,就可以计算飞机重心相对位置。

燃油的消耗等都使飞机重心位置发生变化。

有了平均空气动力弦作为基准,就可以计算飞机重心相对位置。

设重心的投影点到前缘点的距离为X T ,平均空气动力弦长为b A ,则重心相对位置可用下表示: 飞机各部分重力的合力叫飞机的重力G=G 1+G 2+G 3+G 4+G 5+. . . . .图7.6.1 飞机重心 图 7.6.3 平均空气动力弦 图 7.6.2 飞机重心相对位置 T = 100%X T b A2、飞机的机体轴通过飞机重心的三条互相垂直的、以机体为基准的坐标轴,叫机体轴。

第七章第六节飞机重心的计算

第七章第六节飞机重心的计算

G=G i+ G 2+ G 3+ G 4+ G 5+ .......所谓平均空气动力弦,是一个•假想的矩形机翼的翼、弦。

该矩形机翼和给定的任意平面形状的机翼面积、 空气动力以及俯仰力矩相同。

在这个条件下6.假想矩形机翼的弦长,就是给定机翼的平均空气动力弦长。

机翼的平均空气动力弦的位置和长度,均可以从飞机技术手册上查到。

有了平均空气动力弦作为基准,就 可以计算飞机重心相对位置。

飞机飞机对置与装载情况有关, 要发生移动。

如果飞机前总载重增加,重心位置前 燃油的消耗等都使飞机重心位置发生变化。

有了平均空气动力弦作为基准 平均空气动力弦长为76| b A而与飞机飞行状态无关。

当载;载重减少,重心位置后移。

在飞行中,收放起落架、, 就可以计算飞机重心相对位置。

设重心的投影点到前缘点的距离为 X T , b A ,则重心相对位置可用下表示:图763平均空气动力弦 第六节飞机重心的计算、飞机的重心和重心位置的表示1飞机重心确保飞行安全的要求和条件是多方面的,重要的一点就是要保证飞机平衡。

飞机的重心必须在安全的 范围内,保证飞机飞行具有良好的操作性和稳定性。

飞机重心具有以下特性: (1)飞行中,重心位置不随姿态改变。

(2)飞机在空中的一切运动,无论怎样错综复杂,总可以分解为:飞机各部分随飞机重心一道的移动和飞机各部分转绕着飞机重心的转动。

本节将着重介绍飞机的重心、重心计算的方法,以及飞机的平衡,稳定性和操纵性。

重力是地球对物体的吸引力,飞机的各部件(机身、机翼、尾翼、发动机等)、燃油、货物、乘客等 都要受到重力的作用,飞机各部分重力的合力,叫做飞机的重力,用 G 表示。

重力的着力点,叫做飞机的重心。

重心所处的位置叫做重心位置。

飞机在空中的转动,是绕飞机的重心进行的。

因此,确定飞机重心 位置是十分重要的。

飞机重心的前后位置,常用重心到某特定翼弦上投影点到该翼弦前缘点的距离,占该翼弦的百分比来 表示。

这一特定翼弦,就是平均空气动力弦(MAC 。

飞机重量和重心计算演示幻灯片

飞机重量和重心计算演示幻灯片
W 固定 设 0.1 备1W to
14
航空宇航学院
飞机重心的几个概念
• 飞机重心的前、后限
- 中立重心位置
纵向静稳定度为零时的重心位置
- 重心后限位置
10%; • 如果起落架不安装在机翼,减少5%; • 采用富勒襟翼,增加2%。 • 讨论:
▪ bs W机翼 ▪ 可通过增加翼载来减缓由于bs 带来的不利因素,故大型飞机
通常有较高的翼载
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
3
航空宇航学院
重量的分组


全 机 重 量
油 重 量
使
用 空 重

机 重 量
• 机翼结构 • 尾翼结构 • 机身结构 • 起落装置 • 操纵系统 • 推进系统 • 固定设备 • 不可用燃油 • 机组乘员
? ? ? ? ? ? ?
√ √
有 • 乘客
效 • 行李 载 • 货物
√ √ √
荷 • 军用装载
Zh — 定义见图:
1/4 — ¼ 弦线后掠角(度); 垂 — 垂尾梯形比; MH — 海平面最大马赫数; W平、 W垂的单位为磅
Zh = 0
From 《Airplane Design》, Part 5 , Roskam.
9
航空宇航学院
机身结构重量
W机身 KWf
VDbf
lt hf
SG 1.2
Kwf = 0.23 VD — 设计俯冲速度(km/h) lt — 机翼根弦1/4处至平尾根弦1/4处之间的距离 bf — 机身最大宽度(m); SG — 机身壳体面积(m);
航空宇航学院

航空飞机重心的计算下

航空飞机重心的计算下

7.6 飞机重心的计算
–3、指数计算法 • 1)以力矩数为基础的指数 –定义:以力矩数为基础的指数是以力矩数作为 基数,按照一定的规定换算成指数,这种方法叫 以力矩数为基础的指数。 –方法:确定两类力矩数: –①固定力矩数:空机力矩、基本重量力矩数是 固定的。 –②变动力矩数:燃油、旅客、货物的重量数是 变动的,但客座的位置、货舱的位置、油箱的位 置是固定的。可预先计算出每个固定位置的单位 载量力矩数。
–以上结果中的重心站位可以换算成MAC % 值, 是商务配平中最常用的重心表示方法。
7.6 飞机重心的计算
• [例1]:某架飞机的平均空气动力弦长度为6.91642米, 重心在该弦上的投影点距翼弦前缘的距离为1.647米,则 飞机的重心位置? –1.647/6.91642×1OO%MAC=23.82%MAC
原后掠机翼
假想矩 形机翼
平均空气 动力弦MAC
7.6 飞机重心的计算
• 7.6.5飞机重心位置的计算 –1.代数计算法 • (1)定义: 以重心到基准点的距离作为未知数x, 按照逐项计算力矩,最后求算重心位置的方法,叫 代数计算法。 • (2)原理公式:重心到基准点的距离=总力矩 ÷ 总重量 • (3)计算方法:从其定义和原理公式可知,重心的 位置是由重心到基准点的距离来表示,首先要设定 基准点;其次应求算总力矩和总重量;即可得出重 心距离基准点的长度。
7.6 飞机重心的计算
• 2)平均空气动力弦百分比法
–平均空气动力弦百分比(MAC%,Mean aerodynamic chord_MAC):飞机重心的前后位 置,常用重心到某特定翼弦上投影点到该翼弦前 缘点的距离,占该翼弦的百分比来表示,这就是 平均空气动力弦百分比。
–假想一个矩形机翼,其面积、空气动力特性和 俯仰力矩等都与原机翼相同。该矩形机翼的翼弦 与原机翼某处的翼弦长度相等,则原机翼的这条 翼弦即为平均空气动力弦,用MAC表示。

民航培训资料之载重平衡讲义

民航培训资料之载重平衡讲义

民航培训资料之载重平衡讲义
目录Content
一、载重平衡基础知识
二、舱单
一、载重平衡基础知识
一、载重平衡基础知识
一、载重平衡基础知识
定义:MAC与LEMAC
平均空气动力弦(MAC):是从空气动力角度计算出来的一个假想的矩形机翼的翼弦。

重心通常以平均空气动力弦的百分比(MAC%)表示。

即:重心到某特定翼弦上投影点到该翼弦前缘点的距离(LEMAC),占该翼弦的百分比。

一、载重平衡基础知识
力矩=力×力臂
指数(INDEX):用来衡量飞机重心相对于力臂参考点的力矩的大小
(简而言之,指数是缩小了一定倍数的力矩)
干使用指数(DOI ):用来衡量飞机干使用重量重心相对于力臂参考点的力矩大小
一、载重平衡基础知识
目录Content
一、载重平衡基础知识
二、舱单
二、舱单
结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空宇航学院
机身结构重量
W机身 KWf
VDbf
lt hf
SG 1.2
Kwf = 0.23 VD — 设计俯冲速度(km/h) lt — 机翼根弦1/4处至平尾根弦1/4处之间的距离 bf — 机身最大宽度(m); SG — 机身壳体面积(m);
(kg)
• 对于增压客舱,增加8%; • 后机身安装发动机,增加4%; • 主起落架在机身上,增加7%; • 若无主起落架支撑结构,也无机轮舱减少4%; • 对于货机,增加10%。
From 《Introduction to Aircraft Design: Synthesis and Analysis》, Kroo
航空宇航学院
控制面操纵系统的重量
W 操 纵 K SC (W to )2 /30 .76( 8 k)g
• 设有双重操纵机构的轻型飞机:KSC=0.23 • 用于手操纵的运输机和教练机: KSC=0.44 • 运输机,动力操纵系统,仅有后缘襟翼: KSC=0.64 • 有前缘襟翼时,增加20%。
机翼结构重量(运输机)
• 基本公式
以下公式为基本公式—只适于起落架可收,发动机 不安装在机翼上的情况:
W 机 翼 K w b s0 .75 (1 b b rse)fn m( aW b x s G //tr S)0 .3W 0G
其中: bref = 1.905
bs为结构展长: bsb/co1s/2
S — 机翼面积;
W 固定 设 0.1 备1W to
航空宇航学院
飞机重心的几个概念
• 飞机重心的前、后限
- 中立重心位置
纵向静稳定度为零时的重心位置
- 重心后限位置

* 最低纵向静稳定度由设计规范或适航性条例规定:
航空宇航学院
尾翼结构重量
平尾结构重量:
W 平 0 . 0 尾 { W 3 t o ( n m 4 ) 0 . 8 a S 1 平 x 0 . 5 3 ( b 8 平 / t 4 r , 平 ) 0 . 0 ( c 3 A / l 平 3 ) 0 . 2 } 0 . 9 81
垂尾结构重量:
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
航空宇航学院
起落装置重量
起落装置重量包括:
▪ 主结构(支柱和撑杆) ▪ 机轮、 刹车装置、 轮胎、 导管和冷气装置; ▪ 收放机构、阻尼器、操纵器件、机轮小车等。
W 起落 装 0.0 置 4W to
W 垂 0 .1{ 9 1 (Z h/b 垂 )0 .5 (W to n m)0 a .3x6 (S 5 垂 )1 .08 (M 9H )0 .601
l垂 0 .7( 2 1 6 S r/S 垂 )0 .2( 1垂 7 )0 .3( 3 1 7 1 垂 )0 .3( 6 C 3 O 1 /4 ) 0 .4 S } 8 1 .0 41
10%; • 如果起落架不安装在机翼,减少5%; • 采用富勒襟翼,增加2%。 • 讨论:
▪ bs W机翼 ▪ 可通过增加翼载来减缓由于bs 带来的不利因素,故大型飞机
通常有较高的翼载
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
航空宇航学院
重量的分组


全 机 重 量
油 重 量
使
用 空 重

机 重 量
• 机翼结构 • 尾翼结构 • 机身结构 • 起落装置 • 操纵系统 • 推进系统 • 固定设备 • 不可用燃油 • 机组乘员
? ? ? ? ? ? ?
√ √
有 • 乘客
效 • 行李 载 • 货物
√ √ √
荷 • 军用装载
航空宇航学院
飞机重量和重心计算
航空宇航学院
飞机总体设计框架
设计 要求
主要参数计算 布局型式选择
发动机选道
是否满足 设计要求?
最优?
分析计算
重量计算 气动计算 性能计算
结构分析
总体布局 三面图 部位安排图 结构布置图
内容提要
航空宇航学院
• 重量的分组 • 飞机的过载 • 飞机结构重量估算 • 飞机重心的几个概念 • 各部件的重心位置估算 • 全机重量计算和重心定位 • 飞机重心位置的调整 • 飞机重量重心计算报告
航空宇航学院
推进系统重量
推进系统重量包括: ▪ 发动机 ▪ 安装发动机的结构 ▪ 短舱 ▪ 操纵发动机的附件(起动和控制系统等) ▪ 反推力装置 ▪ 燃油系统
W推进系 1统 .6W发动机
航空宇航学院
固定设备重量
• 包括:
▪ 辅助动力装置(APU) ▪ 仪表、 导航、 电子设备 ▪ 液压、 冷气、 电气 ▪ 装饰和设备 ▪ 空调和防冰 ▪ 其它……
nMAX — 最大过载系数; 垂 — 垂尾展弦比; Sr — 方向舵面积(ft) ; Wto — 起飞重量(磅);
Zh — 定义见图:
1/4 — ¼ 弦线后掠角(度); 垂 — 垂尾梯形比; MH — 海平面最大马赫数; W平、 W垂的单位为磅
Zh = 0
From 《Airplane Design》, Part 5 , Roskam.
其中:S平 — 平尾面积(ft2); l平 — 平尾尾力臂(ft); tr,平— 平尾根部最大厚度(ft); tr,垂— 垂尾根部最大厚度(ft);
S垂 — 垂尾面积(ft2); l垂 — 垂尾尾力臂(ft); b平 — 平尾展长(ft); b垂 — 垂尾展长(ft);
航空宇航学院
尾翼结构重量(续)
WG — 零燃油重量;
nMAX — 最大过载系数; tr — 根弦最大厚度
对于轻型飞机(Wto 5670):Kw = 4.90 10-3
对于运输飞机(Wto 5670):Kw = 6.67 10-3
航空宇航学院
机翼结构重量(续)
• 如机翼上有扰流板和减速板,增加2%; • 当机翼安装2台或4台发动机时,分别减少5%或

• 使用燃油

航空宇航学院
飞机的过载
• 结构重量与飞机过载有关
• 几种飞机的使用过载:
▪ 战斗机: ▪ 教练机和攻击机: ▪ 轰炸机: ▪ 运输机和货机:
ny = 8 ~ 9 ny = 5 ~ 6 ny = 3 ~ 4 ny = 1.5 ~ 2.5
▪ 最大过载: nmax = 1.5 ny
航空宇航学院
相关文档
最新文档