中考真题圆经典

中考真题圆经典
中考真题圆经典

2017年中考圆真题

1.(2017四川泸州第6题)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()

A.7

B.27 C

.6 D .

8

2.

如图,AB

是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=,BD=5,则OH的长度为()A.B.C.D.

3.如图,是⊙的直径,弦交于点,,.则的长为()A. B. C. D.8

4. (2017河池第8题)如图,⊙的直径垂直于弦,则的大小是()A. B. C. D.

5. (2017黑龙江齐齐哈尔)如图,是⊙的切线,切点为,是⊙的直径,交⊙于点

,连接,若,则的度数为.

6. (2017海南第12题)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25° B.50° C.60° D.80°

7.如图,四边形为⊙的内接四边形.延长与相交于点,,垂足为,连接,

,则的度数为().

A.50°

B.60°

C.80°

D.85°

8.(2017江苏盐城第14题)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB= °

4

5

3

2

6

5

1

6

7

AB CD AB P2,6

AP BP

==0

30

APC

∠=CD 1525215

O ABο

36

,=

∠CAB

CD BCD

ο

18ο

36ο

54ο

72

AC O C BC O AB O

D OD50

A

∠=?COD

ABCD O AB DC G CD

AO⊥E BD ?

=

∠50

GBC DBC

?

AmB?AB

第1题第2题第3题

第4题

9.(2017四川宜宾第17题)如图,等腰△ABC 内接于⊙O ,已知AB=AC ,∠ABC=30°,

BD 是⊙O 的直径,如果CD=

43

3

,则AD= . 10. (2017天津第21题)已知AB 是⊙O 的直径,AT 是⊙O 的切线,

050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .

(1)如图①,求T ∠和CDB ∠的大小;

(2)如图②,当BC BE =时,求CDO ∠的大小.

11.(2017年贵州省黔东南州第21题)如图,已知

直线PT 与⊙O 相切于点T ,直线PO 与⊙O 相交于A ,B 两点. (1)求证:PT 2

=PA ?PB ; (2)若PT=TB=,求图中阴影部分的面积.

12.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;

(2)若CF =2,DF =4,求⊙O 直径的长.

13.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E . (1)求证:∠A =∠ADE ;

(2)若AD =16,DE =10,求BC 的长.

14.(2017四川省广安市)如图,已知AB 是⊙O 的直径,弦CD 与直径AB 相交于点F .点E 在⊙O 外,做直线AE ,且∠EAC =∠D . (1)求证:直线AE 是⊙O 的切线. (2)若∠BAC =30°,BC =4,cos ∠BAD =

,CF =,求BF 的长.

3410

3

15.(2017四川省绵阳市)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ; (2)连接DF ,若cos ∠DFA =

,AN =,求圆O 的直径的长度.

16. (2017内蒙古通辽第24题)如图,为⊙的直径,为的中点,连接交弦于点.过点作,交的延长线于点.

(1)求证:是⊙的切线;

(2)连接,若,求四边形的面积.

17. (2017湖北咸宁第21题)如图,在中,,以为直径的⊙与边分别交于两点,过点作,垂足为点. ⑴求证:是⊙的切线; ⑵若,求的长 18. (2017青海西宁第26题)如图,在中,,以为直径作⊙交于点,过点作⊙的切线交于点,交

延长线于点.

(1)求证:;

(2)若,求的长.

19. (2017年辽宁省沈阳市第22题)如图,在中,以为直径的⊙交于点,过点做于点,延长交的延长线于点,且.

(1)求证:是的切线; (2)若,⊙的半径是3,求的长.

4

5

210AB O D AC OD AC F D AC DE //BA E DE O CD 4==AE OA ACDE ABC ?AC AB =AB O AC BC ,E D ,D AC DF ⊥F DF O 5

2

cos ,4=

=A AE DF ABC ?AB AC =AB O BC D D O DE AC E AB F DE AC ⊥10,8AB AE ==BF ABC ?BC O AC E E EF AB ⊥F EF CB G 2ABG C ∠=∠EF O e 3

sin 5

EGC ∠=O AF

20. (2017湖南张家界第21题)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.

(1)求证:DF是⊙O的切线;

(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,

求阴影部分的面积.

21. (2017年四川省成都市第20题)如图,在中,,

以为直径作圆,分别交于点,交的延长线于点,过点作于点,连接交线段于点.

(1)求证:是圆的切线;

(2)若为的中点,求的值;

(3)若,求圆的半径.

22.(2017年湖北省十堰市第23题)已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.

(1)如图1,若CD=CB,求证:CD是⊙O的切线;

(2)如图2,若F点在OB上,且CD⊥DF,求的值.

ABC

?AB AC

=

AB O BC D CA E D DH AC

⊥H

DE OA F

DH O

AE H

EF

FD

1

EA EF

==O

AE

AF

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

必考圆中考试题(附答案)

圆中考试题集锦 一、(哈尔滨市)已知⊙O 的半径为35厘米,⊙O '的半径为5厘米.⊙O 与⊙O ' 相交于点D、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两 侧),则两圆的圆心距O O '的长为 ( ) (A)2厘米 (B)10厘米 (C )2厘米或10厘米 (D)4厘米 13.(陕西省)如图,两个等圆⊙O 和⊙O '的两条切线OA 、OB ,A 、B是切点,则∠AOB 等于 ( ) (A ) 30 (B) 45 (C ) 60 (D ) 90 14.(甘肃省)如图,AB 是⊙O 的直径,∠C = 30,则∠ABD = ( ) (A) 30 (B) 40 (C ) 50 (D) 60 15.(甘肃省)弧长为6π的弧所对的圆心角为 60,则弧所在的圆的半径为 ( ) (A)6 (B)62 (C)12 (D )18 16.(甘肃省)如图,在△AB C中,∠BAC = 90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ( ) (A )1 (B )2 (C )1+4π (D )2-4 π 17.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为 ( ) (A)18π (B)9π (C )6π (D)3π 18.(山东省)如图,点P 是半径为5的⊙O内一点,且OP =3,在过点P 的所 有弦中,长度为整数的弦一共有 ( ) (A)2条 (B)3条 (C )4条 (D)5条 19.(南京市)如图,正六边形A BCD EF 的边长的上a ,分别以C 、F为圆 心,a 为半径画弧,则图中阴影部分的面积是 ( ) (A )261 a π (B )231 a π (C )232 a π (D )2 34 a π

经典必考圆中考试题集锦(附答案)

圆中考试题集锦 一、(哈尔滨市)已知⊙O的半径为35厘米,⊙O '的半径为5厘米.⊙O 与⊙O ' 相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两侧) ,则两圆的圆心距O O '的长为 ( ) (A)2厘米 (B)10厘米 (C)2厘米或10厘米 (D)4厘米 13.(陕西省)如图,两个等圆⊙O 和⊙O '的两条切线OA 、O B,A 、B 是切点,则∠AOB 等于 ( ) (A) 30 (B) 45 (C) 60 (D ) 90 14.(甘肃省)如图,AB 是⊙O 的直径,∠C= 30,则∠ABD = ( ) (A ) 30 (B ) 40 (C) 50 (D) 60 15.(甘肃省)弧长为6π的弧所对的圆心角为 60,则弧所在的圆的半径为 ( ) (A )6 (B)62 (C)12 (D)18 16.(甘肃省)如图,在△ABC 中,∠BAC = 90,AB =AC =2,以AB 为直径的 圆交BC 于D ,则图中阴影部分的面积为 ( ) (A )1 (B )2 (C)1+4π (D )2-4 π 17.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为 ( ) (A )18π (B)9π (C)6π (D)3π 18.(山东省)如图,点P 是半径为5的⊙O 内一点,且OP =3,在过点P 的 所有弦中,长度为整数的弦一共有 ( ) (A)2条 (B )3条 (C)4条 (D )5条 19.(南京市)如图,正六边形ABCDEF 的边长的上a,分别以C 、F为圆 心,a为半径画弧,则图中阴影部分的面积是 ( ) (A)261 a π (B)231 a π (C )232 a π (D )2 34 a π

2018中考数学圆(大题培优)

(2018?福建A卷)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E. (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小. (12.00分)(2018?福建B卷)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB. (1)求证:BG∥CD; (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

25.(10.00分)(2018?河北)如图,点A在数轴上对应的数为26,以原点O为 圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP. (1)若优弧上一段的长为13π,求∠AOP的度数及x的值; (2)求x的最小值,并指出此时直线l与所在圆的位置关系; (3)若线段PQ的长为12.5,直接写出这时x的值. 23.(10.00分)(2018?恩施州)如图,AB为⊙O直径,P点为半径OA上异于O 点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点. (1)求证:DE为⊙O切线; (2)若⊙O的半径为3,sin∠ADP=,求AD; (3)请猜想PF与FD的数量关系,并加以证明.

必考圆中考试题(附答案)

圆中考试题集锦 一、(哈尔滨市)已知⊙O 的半径为35厘米,⊙O '的半径为5厘米.⊙O 与⊙O '相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两侧),则两圆的圆心距O O '的长为 ( ) (A )2厘米 (B )10厘米 (C )2厘米或10厘米 (D )4厘米 13.(陕西省)如图,两个等圆⊙O 和⊙O '的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) (A )ο 30 (B )ο 45 (C )ο 60 (D )ο 90 14.(甘肃省)如图,AB 是⊙O 的直径,∠C =ο 30,则∠ABD = ( ) (A )ο 30 (B )ο 40 (C )ο 50 (D )ο 60 15.(甘肃省)弧长为6π的弧所对的圆心角为ο 60,则弧所在的圆的半径为 ( ) (A )6 (B )62 (C )12 (D )18 16.(甘肃省)如图,在△ABC 中,∠BAC =ο 90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ( ) (A )1 (B )2 (C )1+ 4π (D )2-4 π 17.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为 ( ) (A )18π (B )9π (C )6π (D )3π 18.(山东省)如图,点P 是半径为5的⊙O 内一点,且OP =3,在过点P 的所有弦中,长度为整数的弦一共有 ( ) (A )2条 (B )3条 (C )4条 (D )5条 19.(南京市)如图,正六边形ABCDEF 的边长的上a ,分别以C 、F 为圆心,a 为半径画弧,则图中阴影部分的面积是 ( ) (A )2 6 1 a π (B )2 3 1a π (C )2 3 2a π (D )2 3 4a π

经典必考圆中考试题大全附答案

圆中考试题 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的4 1 ,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数 学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A ) 2 25 寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交 ⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为 10厘米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交 BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学圆的综合-经典压轴题及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数. 【答案】(1)证明见解析;(2)25°. 【解析】 试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论. (2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ??? ∴AO=OB (2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1 252 B OCB AOP ∠=∠= ∠=?. 2.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形 (性质探究)如图1,试探究圆外切四边形的ABCD 两组对边AB ,CD 与BC ,AD 之间的数

中考复习--圆专题(所有知识点和题型(大全),全)

《圆》题型分类资料 一.圆的有关概念: 1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有() A. 1个 B.2个 C.3个 D.4个 2.下列命题是假命题的是() A.直径是圆最长的弦B.长度相等的弧是等弧 C.在同圆或等圆中,相等的圆心角所对的弧也相等 D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。 3.下列命题正确的是() A.三点确定一个圆B.长度相等的两条弧是等弧 C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形 4.下列说法正确的是( ) A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半 C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90° 5.下面四个图中的角,为圆心角的是( ) A.B.C.D. 二.和圆有关的角: 1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________ 图1 图2 2.如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( ) A.116° B.64° C. 58° D.32° 3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为

A 图3 图4 4. 如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°, 那么∠BDC=_________度. 5. 如图5,在⊙O中, BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=. A 图5 图6 6. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°. 7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。 8. 若⊙O的弦AB所对的劣弧是优弧的 1 3 ,则∠AOB= . 9.如图7,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________ A 图7 图8 10.如图8,△ABC是O的内接三角形,点C是优弧AB上一点(点C不与A,B重合),设OABα ∠=,Cβ ∠=(1)当35 α=时,求β的度数; (2)猜想α与β之间的关系为 11.已知:如图1,四边形ABCD内接于⊙O,延长BC至E,求证:∠A+∠B C D=180°,∠DCE=∠A; 如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系;

圆中考经典试题精选

圆中考经典试题精选 一、选择题 1.(2010安徽芜湖)若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为__________. 2.(2010甘肃兰州) 已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆 的圆心距为1,两圆的位置关系是 A .外离 B .内切 C .相交 D .外切 3.(2010山东济宁)已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cm C .1 cm 或5 cm D .0.5cm 或2.5cm 4.(2010山东日照)已知两圆的半径分别为3cm ,5 cm ,且其圆心距为7cm ,则这两圆的位置关系是 (A )外切 (B )内切 (C )相交 (D )相离 【 5.(2010四川眉山)⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 6.(2010浙江宁波) 两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是 (A)内切 (B)相交 (C)外切 (D)外离 7.(2010浙江绍兴)如图为某机械装置的截面图,相切的两圆⊙O 1, ⊙O 2均与⊙O 的弧AB 相切,且O 1O 2∥l 1( l 1为水 平线),⊙O 1,⊙O 2的半径均为30 mm ,弧AB 的 最低点到l 1的距离为30 mm ,公切线l 2与l 1间的 距离为100 mm .则⊙O 的半径为( )

A.70 mm B.80 mm C.85 mm D.100 mm 8.(2010湖南长沙)已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是( ). A 、2 B 、4 C 、6 D 、8 9.(2010江苏宿迁)外切两圆的半径分别为2 cm 和3cm ,则两圆的圆心距是 A .1cm B .2cm C .3cm D .5cm 10.(2010 山东济南)已知两圆的半径分别是3和2,圆心的坐标分别是(0,2)和 (0,-4),那么两圆的位置关系是 ( ) A.内含 B.相交 C.相切 D.外离 11.(2010江苏无锡)已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d 的取值满足 ( ) A .9d > B . 9d = C . 39d << D .3d = 12.(2010湖南邵阳)如图(四)在边长为1的小正方形组成的网格中,半径为2的1O e 的圆心1O 在格点上,将一个与1O e 重合的等圆向右平移2个单位,再向上平移2个单位 得到2O e ,则2O e 与1O e 的位置关系是 ( ) 第10题图 A B 单位:mm l 1 l 2

中考数学压轴题专题圆与相似的经典综合题附答案解析

中考数学压轴题专题圆与相似的经典综合题附答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点,

备战中考数学圆的综合-经典压轴题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积. 【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3. 【解析】 试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切. (2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论. (3)连接BD,由AG2=AF?AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案. 试题解析:解:(1)PA与⊙O相切.理由如下: 如答图1,连接CD, ∵AD为⊙O的直径,∴∠ACD=90°. ∴∠D+∠CAD=90°. ∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D. ∴∠PAC+∠CAD=90°,即DA⊥PA. ∵点A在圆上, ∴PA与⊙O相切.

(2)证明:如答图2,连接BG , ∵AD 为⊙O 的直径,CG ⊥AD ,∴AC AD =.∴∠AGF=∠ABG. ∵∠GAF=∠BAG ,∴△AGF ∽△ABG. ∴AG :AB=AF :AG. ∴AG 2=AF?AB. (3)如答图3,连接BD , ∵AD 是直径,∴∠ABD=90°. ∵AG 2=AF?AB ,55∴5 ∵CG ⊥AD ,∴∠AEF=∠ABD=90°. ∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴ AE AF AB AD =545=,解得:AE=2. ∴221EF AF AE = -=. ∵224EG AG AE = -=,∴413FG EG EF =-=-=. ∴1132322 AFG S FG AE ?=??=??=.

中考几何证明题集锦(主要是与圆有关的)

中考几何证明题 1、如图:A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于C ,连结BC ,∠C =22.50,∠BAC =450。 第 1 题图 C 2. 如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD . ⑴求证:AD 是⊙O 的切线; ⑵如果AB =2,AD =4,EG =2,求⊙O 的半径. . 3.,正三角形ABC 的中心O 恰好为扇形ODE 的圆心,且点B 在扇形内.要使扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的3 1 ,扇形的圆心角应为多少度?说明你的结论。 4、如图:已知在Rt △ABC 中,∠B =900,AC =13,AB =5,O 是AB 上的点,以O 为圆心,0B 为半径作⊙O 。 (1)当OB =2.5时,⊙O 交AC 于点D ,求CD 的长。 (2)当OB =2.4 时,AC 与⊙O 的位置关系如何?试证明你的结论。 第 4 题图 C B D E 第3 题图 第2题 ⌒

5、如图:已知A 、D 两点分别是正三角形DEF 、正三角形ABC 的中心,连结GH 、AD ,延长AD 交BC 于M ,延长DA 交EF 于N ,G 是FD 与AB 的交点,H 是ED 与AC 的交点。 (1)写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程); (2)问FE 、GH 、BC 有何位置关系?试证明你的结论。 第 5 C M B D H G A E N F 6.如图(a ),已知直线AB 过圆心O ,交⊙O 于A 、B ,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C 、D ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC 、AD . 求证:①∠BAD =∠CAG ;②AC ·AD =AE ·AF . (2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变. ①请你在图(b )中画出变化后的图形,并对照图(a ),标记字母; ②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由. 7. 如图,△ABC 中,∠BAC 的平分线AD 交BC 于D ,⊙O 过点A ,且和BC 切于D ,和AB 、AC 分别交于E 、F 。 设EF 交AD 于G ,连结DF 。 (1) 求证:EF ∥BC ; (2) 已知:DF =2 ,AG =3 ,求 EB AE 的值。 8、 已知:如图,CD 是Rt △ABC 的斜边AB 上的高,且BC =a ,AB =c ,CD =h ,AD =q ,DB =p 。 求证:q p h ?=2 ,c p a ?=2 8 题 · B D C F E A G O 图(a) B O A F D C G E l · B O A 图(b) 第6题·

最新经典必考圆中考试题集锦(附答案)经典中的经典.doc

( ) ( ) D B ) P 5 ) ( ) D 8 C (A ) 15 (A ) 6 (C ) 45 (D ) 60 (B ) 30 圆中考试题集锦 、选择题 1.(北京市西城区)如图, BC 是O O 的直径, 于点A,如果P& ,3 , PB= 1,那么/ APC 等于 ___ _ 一 一 1 一 一 2.(北京市西城区)如果圆柱的高为 20厘米,底面半径是高的 ,那么这个圆柱 4 (C ) 500 n 平方厘米 (D ) 200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱 《九章算术》中的一个问题, “今在圆 5.(北京市朝阳区)如果圆锥的侧面积为 厘米,那么此圆锥的底面半径的长等于(A ) 2厘米 (B ) 2 ,2厘米 (A ) 7厘米 (B ) 16厘米 (C ) 21厘米 (D ) 27厘米 BC 于点D, AC= 4, DC= 1,则O O 的半径等于 ( ) P 是CB 延长线上一点,PA 切O O 的侧面积是 ( 埋在壁中,不知大小?以锯锯之,深一寸,锯道长一尺,问径几何? ”用现在的数 学语言表述是:“如图,CD 为O O 的直径,弦ABL CD 垂足为E , CE= 1寸,AB= (B ) 2 .5 (C ) 2 .. 10 (D) 2 . 14 (C ) 4厘米 (D ) 8厘米 6.(天津市)相交两圆的公共弦长为 10厘米和17厘米,则这两圆的圆心距为 16厘米,若两圆的半径长分别为 7.(重庆市)如图,O 0为厶ABC 的内切圆,/ C = 90 , AO 的延长线交 (A ) 100 n 平方厘米 (B ) 200 n 平方厘米 20通米 寸,求直径CD 的长”.依题意,CD 长为 (B ) 13 寸 “译寸 4.(北京市朝阳区)已知:如图,O O 半径为5, PC 切O O 于点C, PO 交 O O 于点A PA = 4,那么PC 的长等于 ( 20 n 平方厘米,它的母线长为 (C ) 25 寸 (D ) 26 寸

初中数学圆的经典测试题及答案解析

初中数学圆的经典测试题及答案解析 一、选择题 1.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A .3 B .2 C .3 D .2 【答案】D 【解析】 【分析】 先根据题意,画出图形,令直线y= 3x+ 23与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ; 然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-,并利用垂线段最短求得PA 的最小值即可. 【详解】 如图, 令直线3x+23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H , 当x=0时,y=3D (0,3 当y=033,解得x=-2,则C (-2,0), ∴222(23)4CD = +=, ∵12OH?CD=12 OC?OD , ∴OH= 2334?= 连接OA ,如图, ∵PA 为⊙O 的切线, ∴OA ⊥PA ,

∴2221 =-=-, PA OP OA OP 当OP的值最小时,PA的值最小, 而OP的最小值为OH的长, ∴PA的最小值为22 -=. (3)12 故选D. 【点睛】 本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系. 2.如图,在平面直角坐标系中,点P是以C(﹣2,7)为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是() A.6 B.8 C.10 D.12 【答案】C 【解析】 【分析】 设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可. 【详解】 设P(x,y), ∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2, ∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2, ∵OP2=x2+y2, ∴PA2+PB2=2OP2+2, 当点P处于OC与圆的交点上时,OP取得最值, ∴OP的最小值为CO﹣CP=3﹣1=2, ∴PA2+PB2最小值为2×22+2=10. 故选:C. 【点睛】 本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

初中数学中考试题集锦(圆相关试题大全)

初中数学中考试题集锦(圆相关试题) 一、选择题: 1、(2009·浙江温州·模拟1) 图①、图②、图③是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为a,b,c, (不记接头部分),则a, b, c,的大小关系为( )。 A 、a=b >c B. a=b=c C. ab>c 答案:B 2、(2009·浙江温州·模拟2)如图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠OBA =70°,则∠BAC 等于( ) A .20° B .10° C .70° D .35° 答案:A 3、(2009·浙江温州·模拟3)一个圆锥的底面半径为3㎝,它的侧面积为15π㎝2 ,那么这个圆锥的高线长为 A 、6㎝ B 、8㎝ C 、4㎝ D 、4π㎝ 答案:C 4、(2009·浙江温州·模拟4)如图,AB 是O 的直径,20C ∠=,则BOC ∠的度数 是( ) A .10 B . 20 C . 30 D . 40 答案:D 5、(2009·浙江温州·模拟5)在半径为18的圆中,120°的圆心角所对的弧长是( ) A .12π B .10π C .6π D .3π 答案:A 6、(2009·浙江温州·模拟6)如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( ) A. 2 9cm π B. 2 18cm π C. 2 27cm π D. 2 36cm π 答案:B 7、(2009·浙江温州·模拟6)如图,已知⊙O 的弦AB 、CD 相交于点E , 的度数为60°, 的度数为100°,则∠AEC 等于 ( ) (A )60° (B )100° (C )80° (D )130° 答案:C 8、(2009·浙江温州·模拟7)如图,在⊙O中,弦AB,CD相交于点E。已知∠EC 图① 图② O A B C (第2题) C O 第4题图

最新经典必考圆中考试题集锦附答案)

圆中考试题集锦 一、选择题 ??1.如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点 A ,如果PA =3,P B =1,那么∠AP C 等于?(??) ??(A ) 15???(B ) 30???(C ) 45???(D ) 60 ??2.如果圆柱的高为20厘米,底面半径是高的4 1,那么这个圆柱的侧面积是?(??) ??(A )100π平方厘米??????????(B )200π平方厘米 ??(C )500π平方厘米??????????(D )200平方厘米 ??3.“圆材埋壁”是我国古代着名的数学菱《九章算术》中的一个问 题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”.依题意,CD 长为?(??) ??(A ) 2 25 寸???(B )13寸???(C )25寸???(D )26寸 ??4.已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A , PA =4,那么PC 的长等于?(??) (A )6???(B )25???(C )210???(D )214 ??5.如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于?(??) (A )2厘米???(B )22厘米???(C )4厘米???(D )8厘米

??6.相交两圆的公共弦长为16厘米,若两圆的半径长分别为10 厘米和17厘米,则这两圆的圆心距为?(??) ??(A )7厘米?(B )16厘米??(C )21厘米???(D )27厘米 ??7.如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于?(??) ??(A )5 4 ???(B )4 5????(C )4 3???(D )6 5 ??8.一居民小区有一正多边形的活动场.小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,以多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为400元,则建造这些花台共需资金?(??) ??(A )2400元???(B )2800元???(C )3200元???(D )3600元 ??9.如图,AB 是⊙O 直径,CD 是弦.若AB =10厘米,CD =8厘米,那 么A 、B 两点到直线CD 的距离之和为?(??) ??(A )12厘米?(B )10厘米??(C )8厘米???(D )6厘米 ??10.某工件形状如图所示,圆弧BC 的度数为 60,AB =6厘米,点B 到点C 的距离等于AB ,∠BAC = 30,则工件的面积等于?(??) ??(A )4π???(B )6π???(C )8π????(D )10π ??11.如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线且过圆心,PA =4,PB =2,则⊙O 的半径等于?(??) ??(A )3???(B )4?????(C )6?????(D )8 ??12.已知⊙O 的半径为35厘米,⊙O '的半径为5厘米.⊙O 与⊙O '相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '

必考圆中考试题(附答案)

圆中考试题集锦 一、(哈尔滨市)已知⊙O 的半径为35厘米,⊙O '的半 径为5厘米.⊙O 与⊙O '相交于点D 、E .若两圆的公共弦DE 的长是6厘米(圆心O 、O '在公共弦DE 的两侧),则两圆的圆 心距O O '的长为 ( ) (A )2厘米 (B )10厘米 (C )2厘米或10厘米 (D )4厘米 13.(陕西省)如图,两个等圆⊙O 和⊙O '的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) (A ) 30 (B ) 45 (C ) 60 (D ) 90 14.(甘肃省)如图,AB 是⊙O 的直径,∠C = 30, 则∠ABD = ( ) (A ) 30 (B ) 40 (C ) 50 (D ) 60 15.(甘肃省)弧长为6π的弧所对的圆心角为 60,则弧 所在的圆的半径为 ( ) (A )6 (B )62 (C )12 (D ) 18 16.(甘肃省)如图,在△ABC 中,∠BAC = 90,AB =AC =2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ( ) (A )1 (B )2 (C )1+4π (D )2-4 π

17.(宁夏回族自治区)已知圆的内接正六边形的周长为18,那么圆的面积为 ( ) (A )18π (B )9π (C )6π (D )3π 18.(山东省)如图,点P 是半径为5的⊙O 内一点, 且OP =3,在过点P 的所有弦中,长度为整数的弦一共有 ( ) (A )2条 (B )3条 (C )4条 (D )5条 19.(南京市)如图,正六边形ABCDEF 的边长的上a ,分别以C 、F 为圆心,a 为半径画弧,则图中阴影部 分的面积是 ( ) (A )261a π (B )231a π (C )232a π (D )23 4a π 20.(杭州市)过⊙O 内一点M 的最长的弦长为6厘米,最短的弦长为4厘米,则OM 的长为 ( ) (A )3厘米 (B )5厘米 (C )2厘米 (D )5厘米 21.(安徽省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是 ( ) (A )12π (B )15π (C )30π

圆中考经典试题精选一

圆中考经典试题精选一 一、选择题 1.( 安徽芜湖)若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为__________. 【答案】3或17 2.( 甘肃兰州) 已知两圆的半径R 、r 分别为方程0652 =+-x x 的两根,两圆的圆心距为1,两圆的位置关系是 A .外离 B .内切 C .相交 D .外切 【答案】B 3.( 山东济宁)已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cm C .1 cm 或5 cm D .0.5cm 或2.5cm 【答案】C 4.( 山东日照)已知两圆的半径分别为3cm ,5 cm ,且其圆心距为7cm ,则这两圆的位置关系是 (A )外切 (B )内切 (C )相交 (D )相离 【答案】C 5.( 四川眉山)⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 【答案】C 6.( 浙江宁波) 两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是 (A)内切 (B)相交 (C)外切 (D)外离 【答案】B 7.( 浙江绍兴)如图为某机械装置的截面图,相切的两圆⊙O 1, ⊙O 2均与⊙O 的弧AB 相切,且O 1O 2∥l 1( l 1为水

平线),⊙O 1,⊙O 2的半径均为30 mm ,弧AB 的 最低点到l 1的距离为30 mm ,公切线l 2与l 1间的 距离为100 mm .则⊙O 的半径为( ) A.70 mm B.80 mm C.85 mm D.100 mm 【答案】B 8.( 湖南长沙)已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是( ). A 、2 B 、4 C 、6 D 、8 【答案】B . 9.( 江苏宿迁)外切两圆的半径分别为2 cm 和3cm ,则两圆的圆心距是 A .1cm B .2cm C .3cm D .5cm 【答案】D 10.( 山东济南)已知两圆的半径分别是3和2,圆心的坐标分别是(0,2)和(0, -4),那么两圆的位置关系是 ( ) A.内含 B.相交 C.相切 D.外离 第10题图 A B 单位:mm l 1 l 2

相关文档
最新文档