数学分析试题与答案
数学分析试题及答案

数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。
A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。
A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。
A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。
答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。
答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。
答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。
答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。
2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。
答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。
3. 求定积分∫(0,2) (2x-1) dx。
答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。
数学分析试题及答案

(二十一)数学分析期终考试题一 叙述题:(每小题5分,共15分) 1 开集和闭集2 函数项级数的逐项求导定理3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分)1、⎰-9131dx x x2、求)0()(222b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积3、求幂级数n n n x n ∑∞=+12)11(的收敛半径和收敛域4、11lim 22220-+++→→y x y x y x5、22),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分)1、已知⎪⎩⎪⎨⎧==≠+++=0,0001sin )(),(222222y x y x y x y x y x f ,验证函数的偏导数在原点不连续,但它在该点可微2、讨论级数∑∞=-+12211ln n n n 的敛散性。
3、讨论函数项级数]1,1[)1(11-∈+-∑∞=+x n x n x n n n 的一致收敛性。
四 证明题:(每小题10分,共20分)1 若⎰+∞adx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞→x f x2 设二元函数),(y x f 在开集2R D ⊂内对于变量x 是连续的,对于变量y 满足Lipschitz 条件:''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。
参考答案一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。
2 设函数项级数∑∞=1)(n n x u 满足(1)),2,1)(( =n x u n 在[a ,b]连续可导a)∑∞=1)(n nx u在[a ,b]点态收敛于)(x Sb)∑∞=1')(n x un在[a ,b]一致收敛于)(x σ则)(x S =∑∞=1)(n n x u 在[a ,b] 可导,且∑∑∞=∞==11)()(n n n n x u dxdx u dx d3、有界函数)(x f 在[a ,b]上可积的充分必要条件是,对于任意分法,当0)(max 1→∆=≤≤i ni x λ时Darboux 大和与Darboux 小和的极限相等二、1、令31x t -=(2分)7468)1(31233913-=--=-⎰⎰-dt t t dx x x (5分) 2、222221,x a b y x a b y --=-+=,(2分)所求的体积为:b a dx y y aa 2222212)(ππ=-⎰-(5分) 3、解:由于e n n n n n n nn 1])111(1))111()11(lim[(11=++⨯+++++∞→收敛半径为e 1(4分),当e x 1=时,)(01)1()1()11(2∞→≠→±+n e n n n n ,所以收敛域为)1,1(ee - (3分)4、2)11(lim )11)(11()11)((lim11lim2200222222220222200=+++=+++-++++++=-+++→→→→→→y x y x y x y x y x y x y x y x y x y x (7分)5、解: 设极坐标方程为4)2,1,2(.0)2,1,2(,2)2,1,2(-=-=-=-z y x f f f (4分)136)2,1,2(=-l f (3分)三、1、解、⎪⎩⎪⎨⎧=+≠+++-+=000)1c o s 11(s i n 22222222222y x y x yx y x y x x f x (4分)由于22221c o s 1yx y x ++当趋于(0,0)无极限。
数学分析试题库证明题答案

5n 2 n 「2 5 3n 2-23< ■:.注扩大分式是采用扩大分子或缩小分母的方法.这里先限定 n>4,扩大之后的分式数学分析题库(1-22章)五.证明题1. 设A, B 为R 中的非空数集,且满足下述条件:(1) 对任何 a *A,b w B 有a<b ;(2) 对任何EA 0,存在x w A,y ^B ,使得Y —x <&.证明:supA =inf B.证 由(1)可得sup A 〈inf B .为了证supA =inf B ,用反证法.若supA y inf B ,设inf B —supA = &,5x 气 Ay^B,使得 y —x 芝 & .2. 设A, B 是非空数集,记 S=AuB ,证明:(1) supS =max1supA,supB}; (2) inf S =min :inf A,inf B:证(1)若A, B 中有一集合无上界,不妨设 A 无上界,则 S 也是无上界数集,于是 supA =E,supS = E ,结论成立.若A, B 都是有上界数集,且 supBMsupA,现设法证明 supS =supA:(i )你在S ,无论 x^A 或 x^B,有 x 'sup A;(ii) V6 > 0,三x 0肴 A, x 0 > sup A — a ,于是 x 0肴 S,x 0> supA.同理可证(2). 3. 按& -N 定义证明5n 2n -2 5lim ------ 2 ------- =一 nf 3n-2 35n 2 +n -2 523n 2-2^n_3 2n 223n ,(n>4)+1,4,,当 n>N时,取 N = max〜、2 ,- …,, G(n)=—仍是无分小数列.3n4.如何用£ -N 方法给出lim a^a 的正面陈述?并验证| n 21和| (-1)n |是发散数列. n—.%0>0, VN E N * 三n‘ > N,使得数列{ a n }发散u Va^R ,(1) a n =n 2.\/a , 3^0 =— , X/N w N+,只要取 n' = max 』(2)a n=(—1)n.若 a=1, *0=1,取 n‘为任何奇数时,有 |3"-1|=2>诳.若 a=-1 ,13^=1,取 n 为任何偶数时,有 |a" -(一1) |=2 > % .右 a 乒 ±1, %。
本科数学分析试题及答案

本科数学分析试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则以下哪个选项是正确的?A. f(x)在点x=a处连续B. f(x)在点x=a处不可导C. f(x)在点x=a处不连续D. f(x)在点x=a处的导数为0答案:A2. 设f(x)是定义在实数集上的函数,若f'(x)存在,则以下哪个选项是正确的?A. f(x)是单调函数B. f(x)在任意点处都有定义C. f(x)在任意点处都可导D. f(x)是周期函数答案:B3. 若函数f(x)在区间(a, b)内连续,则以下哪个选项是正确的?A. f(x)在区间(a, b)内一定有最大值和最小值B. f(x)在区间(a, b)内一定有唯一的最大值和最小值C. f(x)在区间(a, b)内不一定有最大值和最小值D. f(x)在区间(a, b)内的最大值和最小值一定在区间端点处取得答案:C4. 若函数f(x)在区间[a, b]上可积,则以下哪个选项是正确的?A. f(x)在区间[a, b]上一定连续B. f(x)在区间[a, b]上一定有界C. f(x)在区间[a, b]上一定单调D. f(x)在区间[a, b]上一定有界且连续答案:B二、填空题(每题5分,共20分)1. 设函数f(x)在区间(a, b)内连续,且f(a)=f(b),则根据罗尔定理,存在至少一个点c∈(a, b),使得f'(c)______。
答案:=02. 若函数f(x)在点x=a处可导,则f(x)在点x=a处的导数定义为______。
答案:lim (x→a) [f(x) - f(a)] / (x - a)3. 设f(x)在区间[a, b]上连续,则根据微积分基本定理,∫[a, b]f(x) dx = F(b) - F(a),其中F(x)是f(x)的一个原函数,即F'(x)______。
答案:=f(x)4. 若函数f(x)在区间[a, b]上可积,则∫[a, b] f(x) dx表示的是函数f(x)在区间[a, b]上与x轴所围成的区域的______。
数学分析试题及答案

(十四)《数学分析II 》考试题一填空(共15分,每题5分):1 设 E = {x — [x] I x e 则 s upE = 1 , inf E = 0"'(5) = 2,则鳏今若警=竺,sin ax, x < 0,ln(l + x) +。
在"。
处可导,灿 Jb= o二计算下列极限:(共20分,每题5分)1 1 1 11 lim (1 + — + — + ----------- F —)〃 ; ,一823 n故 lim (1 + 土 + ! + 〃一>8 2 3]+ + —2 hm ------------- ---------- :— (V/?)解:由Stolz 定理, 「 1 + A /2 + — yfn..lim ----------- — --------- = lim —。
/_____ 今〃f° (而)3 f (如)一(J. — 1)=lim____ _____________〃一8( — — 1)(〃 + 一 1) + 〃 一 1)=lim"*(〃 —(〃一 1))(2” + — 1)—1)1 + J1--2=怛 I ------------ " 1=32 +、)F ),,小 1 1解:由于1<(1 + 5 +氏+・…+上是沽,又limS = l,n〃一>81 1+ —)〃 = lony/n(y/n + y/n — 1)「sinx —sin6f3 lim ------------------------L x — ac x + a ・ x — a「 sin X —sin Q 2cos -------------------------- sin ----------- 解:lim ------------------- = Um -------------- 2 ---------X* x — a — x — a . X — Usin ----------=lim cos ------------------------ =—— = cost/.2X — Cl ~~2~4 lim(l + 2x) ve .X —()解:lim(l + 2x)' = lim (l + 2x)A —>0X —>Qi2x2=e 2三计算导数(共15分,每题5分): 1 /(x) = Vx 2 + 1 — ]n(x + J-? +1), '(x); 2x 1 + _ _____解:e)=玉 _ 2«.『+l=^2 Jx? + 1 X ++ 1 yjx 1 +1 yjx 2 + 1 」X’ + 1 x-1 表示的函数的二阶导数 y = “sin t(“sin ,)' 3〃sirr ,cos , - —- = z ----------------- = -tanf, dx (acos t) — 3ocos~fsin ,d^y — sec" t sec 、 ~ o dx~ (t/cos ,)' 3“cosUsin ,3 设 y = (3x2 _ 2)sin2x,求y (I(x,)o 2 求由方程! 解: 解:由Leibniz 公式 y <,00) =C 1%(sin2x)<100)(3x 2 -2) + C l l 00(sin 2x)(99>(3x 2 -2y + C^(sin 2x)(98)(3x 2 -2/ =2,0° sin(2x + 衅)(3子一 2) +100 ・ 2的 siii(2x + 哗)6x + 悴298 sin(2x + 哗)• 6= 2,00(3x 2 - 2)sin 2x - 600 • 2W xcos 2x - 29700 x 2<?8 sin 2x = 2*12/ -229708 )sin 2.s 1200xcos2炸四(12分)设u>0, {%}满足:X 。
数学分析试题及答案

数学分析试题及答案4(总8页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除(十四) 《数学分析Ⅱ》考试题一 填空(共15分,每题5分):1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ;2 设=--='→5)5()(lim,2)5(5x f x f f x 则54;3 设⎩⎨⎧>++≤=0,)1ln(,0,sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。
二 计算下列极限:(共20分,每题5分)1 n n n1)131211(lim ++++∞→ ; 解: 由于,n n n n 11)131211(1≤++++≤ 又,1lim =∞→nn n故 。
1)131211(lim 1=++++∞→nn n2 3)(21limn nn ++∞→;解: 由stolz 定理,3)(21limn n n ++∞→33)1()(lim --=∞→n n nn )1)1()(1(lim-+-+--=∞→n n n n n n nn)1)1(2))(1(()1(lim--+---+=∞→n n n n n n n n n.32)1)11(2111lim2=--+-+=∞→nn nn 3 ax a x a x --→sin sin lim;解: ax ax a x --→sin sin lim ax ax a x ax --+=→2sin 2cos2lim.cos 22sin2coslim a a x a x a x ax =--+=→ 4 xx x 1)21(lim +→。
解: xx x 10)21(lim +→.)21(lim 22210e x xx =⎥⎦⎤⎢⎣⎡+=→ 三 计算导数(共15分,每题5分):1 );(),1ln(1)(22x f x x x x f '++-+=求解: 。
数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。
因此,答案为 D。
2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。
A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。
因此,答案为 B。
3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。
4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。
在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。
因此,答案为 C。
高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。
以下是本次考试的部分试题及其答案,供大家参考。
一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。
工科数学分析试题及答案

A一、 求解下面问题(每小题6分,满分48分)1.设),(y x f 为一连续函数,求极限.),(122220lim dxdy y x f rr y x r ⎰⎰≤+→+π解 (0,0)),(12222limf dxdy y x f r r y x r =⎰⎰≤+→+π建议:中间过程4分2. 改变累次积分的积分顺序:dy y x f dx x x ),(-21-426-2⎰⎰0820-1(,)(,)ydy f x y dx dy f x y dx---=+⎰⎰⎰⎰3. 计算二重积分dxdy y x D22sin +⎰⎰,其中积分区域为}.4|),{(2222ππ≤+≤=y x y x D解:D⎰⎰4. 计算三重积分dxdydz x y V⎰⎰⎰+)1(2012,其中V 由22--4y x z =与223y x z +=所成的立体.解:由于V 是关于yoz 平面对称的,且x y 2012是关于x 的奇函数,所以02012=⎰⎰⎰d x d y d z x yV,于是23220121()r VVyx dxdydz dxdydz d πθ+==⎰⎰⎰⎰⎰⎰⎰⎰223)r d rdr πθ=⎰2223001)()2r d d r πθ=⎰22220012(4)()62r d r d r πθ⎤=--⎢⎥⎣⎦⎰34222001219(4)6236r d r πθπ⎡=⋅---=⎢⎥⎣⎦⎰ (写出对称性给2分,计算过程适当给分)2204sin 6d r rdr πππθπ==-⎰⎰5. 计算积分2(2)I x z ds Γ=+⎰,其中曲线Γ为2222,0.x y z a x y z ⎧++=⎨++=⎩(利用对称性)解: 利用轮换对称性知2322222212()333a a x ds y ds z ds x y z ds ds πΓΓΓΓΓ===++==⎰⎰⎰⎰⎰1()03zds xds yds x y z ds ΓΓΓΓ===++=⎰⎰⎰⎰ 所以322(2)3a x z ds πΓ+=⎰(建议:两个对称性各3分,写出参数方程直接计算适当给分)6. 计算第一型曲面积分()x y z dS ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分. (可利用对称性) 解: 利用对称性知0xdS ydS ∑∑==⎰⎰⎰⎰设xy D ={|),(y x 2222x y a h +≤-} 则()x y z dS ∑++⎰⎰=zdS ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-(建议:对称性0xdS ydS∑∑==⎰⎰⎰⎰2分 ,= 1分,zdS ∑⎰⎰计算过程3分)7. 证明向量场))2(),2(),2((z y x xy z y x xz z y x yz F ++++++= 是有势场,并求其势函数.解:先验证有势场0)2()2()2(=++++++=∂∂∂∂∂∂z y x xy z y x xz z y x yz F rot zyxk j故是有势场. ---------3分.)2()2()2(.),,222000000),,(),,(),,(),,(0000000C xyz z xy yz x dz z y x xy dy z y x xz dx z y x z y RdzQdy Pdx s d F z y x zzyy xx z y x z y x z y x z y x +++=++++++++=++==⎰⎰⎰⎰⎰(φ(另一种方法也可(这里略),请判卷的时候注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014---2015学年度第二学期《数学分析2》A 试卷一. 1.若f 2... .二. 1.若2.A.()x f 在[]b a ,上一定不可积;B.()x f 在[]b a ,上一定可积,但是()()⎰⎰≠ba ba dx x g dx x f ;C.()x f 在[]b a ,上一定可积,并且()()⎰⎰=b ab a dx x g dx x f ;D.()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D.不确定 4.设∑n u 为任一项级数,则下列说法正确的是() A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B.若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;1.1.⎰+02.∑∞=1!n n n n 3.()nnn nn21211+-∑∞= 五.判别在数集D 上的一致收敛性(每小题5分,共10分)1.()()+∞∞-===,,2,1,sin D n nnxx f n2.(][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(本题满10分) 七.将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。
(本题满分10分)八.证明:函数()∑=3cos nnxx f 在()∞+∞-,上连续,且有连续的导函数.(本题满分9分)2014---2015学年度第二学期《数学分析2》B 卷•答案一、 1.?2.?3.?4.?5.?6.?7.?二=tdt t tt cos sin 2sin cos ⎰=⎰tdt t sin 2-----------------------------------4分 =2cos 2sin t t t C -++=C ----------------5分四.判别敛散性(每小题5分,共10分)1.dx xx ⎰-121arctan解:()241arctan lim1arctan 1lim 012211π=+=---→-→xx xx x x x -------3分且121<=p ,∴由柯西判别法知, 瑕积分dx xx ⎰-121arctan 收敛-------------------------5分2.()∑∞=2ln ln 1n nn解:ln lim n ∞→ 有五.1.f n 又f n 从而故知该函数列在D 上一致收敛.-------------------------5分 2.]1,1[,3sin 2-=∑D x nn解:因当D x ∈时,()nn n n x x u ⎪⎭⎫⎝⎛≤=323sin 2--------------2分而正项级数∑⎪⎭⎫⎝⎛n32收敛,-----------------------------4分由优级数判别法知,该函数列在D 上一致收敛.-------------5分 3.()()∑+∞∞-=+-,,12D nx n解:易知,级数()∑-n1的部分和序列{}n S 一致有界,---2分 而对()n x x V D x n +=∈∀21,是单调的,又由于 ()()∞→→≤+=∈∀n nn x x V D x n 011,2,------------------4分六.(⎰=12V π=76π七.dW ==1250πν=12250π(千焦)-----------------------------------10分 八.设()() 2,1=n x u n 是],[b a 上的单调函数,证明:若()∑a u n 与()∑b u n 都绝对收敛,则()∑x u n 在],[b a 上绝对且一致收敛.(本题满分9分) 证明:()() 2,1=n x u n 是],[b a 上的单调函数,所以有()()()b u a u x u n n n +≤------------------------------4分又由()∑a u n 与()∑b u n 都绝对收敛,所以()()[]∑+b u a u n n 收敛,--------------------------------------7分 由优级数判别法知:()∑x u n在],[b a 上绝对且一致收敛.--------------------------------2013---2014学年度第二学期《数学分析2》A试卷一.5.若6.若an=7.若8.二.1.A⎰101dxxB⎰∞+11dxxC⎰+∞sin xdx D⎰-1131dxx2.级数∑∞=1nna收敛是∑∞=1nna部分和有界的()A必要条件B充分条件C充分必要条件D无关条件3.正项级数∑n u收敛的充要条件是()A.0lim =∞→n n u B.数列{}n u 单调有界C.部分和数列{}n s 有上界D.1lim1<=+∞→ρnn n u n4.设a a a nn n =+∞→1lim则幂级数()1>∑b x a bn n 的收敛半径R=()A.aB.ba 1C.a 1D.ba 11⎪⎭⎫ ⎝⎛5.6..A.三.2.3.-⎰114.四.(16分)判别下列反常积分和级数的敛散性. 1.⎰+∞+-1324332x x dx ;2.dx x x ⎰++1)1ln(113.∑∞=-21ln n nn n; 4.∑∞=1!n n n nn e 五、判别函数序列或函数项级数在所给范围上的一致收敛性(每题5分,共10分)1.),(;,2,1,)(42∞-∞∈=+=-x n n x x f n2.nn n n 1)1(21∑∞=-+;+∞⋃-∞-=∈,5.05.0,D x 六.1.7π(2.七已知f2013---2014学年度第二学期《数学分析2》B 试卷一、 1.对任何可导函数()x f 而言,()()C x f dx x f +='⎰成立。
()f ab 1⎰∞+- ⎝⎛在,则()()x f x f n n x x n x x n ∞→→→∞→=lim lim lim lim 00.二.单项选择题(每小题3分,共15分)1.函数)(x f 在],[b a 上可积的必要条件是() A 连续B 有界C 无间断点D 有原函数2.下列说法正确的是()A.∑∞=1n n a 和∑∞=1n n b 收敛,∑∞=1n n n b a 也收敛B.∑∞=1n n a 和∑∞=1n n b 发散,∑∞=+1)(n n n b a 发散C.∑∞=1n n a 收敛和∑∞=1n n b 发散,∑∞=+1)(n n n b a 发散∞∞∞3.A.a n ∑∞=1C.∑⎰∞=n 14.三. 3.()()[]nn n n n n n111lim-++∞→ 4.dx b a x b a⎰--2四.判别敛散性(每小题4分,共16分)1.dx x xx ⎰+∞+131arctan ; 2.dx xx⎰-1013.()∑∞=+-+1111n n n n n .4.∑+∞=⎪⎭⎫ ⎝⎛-11cos 1n n n五.判别在所示区间上的一致收敛性(每小题5分,共10分)1.()⎩⎨⎧<<++≤≤+-=1)1/(1,0)1/(10,)1(1x n n x x n x f n [)1,0.,2,1∈=x n六.1.2.将⎰0一.七.(.014---2015学年度第二学期《数学分析2》A 卷•答案三. 判断题(每小题3分,共21分) 1.?2.?3.?4.?5.?6.?7.?二.单项选择题(每小题3分,共15分) B,C,C,D,A三.计算与求值(每小题5分,共10分)1.=⎩⎨⎧∞→k n exp lim =⎩⎨⎧∞→k n lim exp =2.==四.1.lim 23+∞→xx ∴2.由比式判别法=+∞→nn n a a 1lim()()=+++∞→nnn n n n n !1!1lim1()1/111lim1<=+-∞→e n n -----4分故该级数收敛.-------------------------------5分 3.解:由莱布尼兹判别法知,交错级数()∑∞=-11n n n收敛-----------2分又121112120<+-=+<nn n 知其单调且有界,---------4分 故由阿贝尔判别法知,级数收敛.--------------------------------5分五.1.解:极限函数为()()D x x f x f n n ∈==∞→0lim ---------------------2分又()()nn nx x f x f n 1sin ≤=----------------------------------4分 0sup lim =-∴∞→f f n n 故知该函数列在D 上一致收敛.-----------5分2.解:过()x S =⎰-=RV 七.dx x F ⎰-=021002ν----------------------------------------7分()吨ν33.1333≈()千牛67.13066≈------10分八.证明:()() 2,1cos 3==n n nxx u n 每一项在()∞+∞-,上连续,又()331cos n n nx x u n ≤=而∑31n收敛所以∑3cos nnx在()∞+∞-,上一致收敛,-------------------------------3分 故由定理结论知()∑=3cos nnxx f 在()∞+∞-,上连续,------------------------------5分再者()221sin n n nx x u n≤-='而∑21n收敛 所以()∑'x u n在()∞+∞-,上一致收敛,结合()x u n '在()∞+∞-,上的连续性 可知2014---2015学年度第二学期《数学分析2》B 试卷二、 1.若()x f 为偶函数,则()⎰dx x f 必为奇函数().2.3.4.5.6.().7.)(x u n 也在[]b a ,二.1.2.dx xx -021A.此为普通积分B.此为瑕积分且瑕点为0C.此为瑕积分且瑕点为1D.此为瑕积分且瑕点为0,13.就级数∑nn p ln 12(0>p )的敛散性而言,它是()A.收敛的B.发散的C.仅1>p 时收D.仅1≤p 时收敛4..函数列{}n f 在区间I 上一致收敛于0的充要条件是() A.()0lim ,=∈∀∞→x f I x n n B.()0lim ,=∈∃∞→n n n x f I xC.()0lim =∈∀∞→+x f N n n x D.(){}0sup lim =∈∞→x f n Ix n5.幂级数∑∞=+0212n nn x n 的收敛域为: A.(-0.5,0.5)B.[-0.5,0.5]C.[)5.0,5.0- D.(]5.0,5.0-三.四.1.dx x x ⎰-1021arctan 2.()∑∞=2ln ln 1n nn五.1.f n 3.六.设平面区域D 是由圆222=+y x ,抛物线2x y =及x 轴所围第一象限部分,求由D 绕y 轴旋转一周而形成的旋转体的体积(本题满分10分)七.现有一直径与高均为10米的圆柱形铁桶(厚度忽略不计),内中盛满水,求从中将水抽出需要做多少功?(本题满分10分)八.设()() 2,1=n x u n 是],[b a 上的单调函数,证明:若()∑a u n 与()∑b u n 都绝对收敛,则()∑x u n 在],[b a 上绝对且一致收敛.(本题满分9分)。