人教A版高中数学选修2-1复习课件:3.1.2(共35张PPT)
合集下载
人教A版高中数学选修2-1课件本章归纳整合(三)(25张PPT)

设 n=(x,y,z)是平面 B1EF 的一个法向量,则
nn··EE→→BF1==00,⇒-2y+2x4+z=20y,=0,
令 x=1,得 n=(1,1,- 42).
则|D→1B1·n|=4 2, ∴d=|D→1B|n1·| n|=161717.
∴点 D1 到平面 B1EF 的距离为161717.
又由nn··DD→→11AF1==00,⇒12xy2=2-0z,2=0.
令 z2=1,得 n=(0,2,1).∵m·n=(0,1,-2)·(0,2,1) =0,∴m⊥n,故平面 AED⊥平面 A1FD1.
专题三 空间向量与空间角
利用空间向量确定空间中的线线角、线面角、二面 角,避免了利用传统方法求角时先进行角的确定,然后求 角的弊端,只需要准确求解直线的方向向量和平面的法向 量,代入公式求角即可,大大体现了向量法的简捷之处.
∴当 F 为 CD 中点时,有 D1E⊥平面 AB1F.
【例4】 正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的 中点,求证:平面AED⊥平面A1FD1. 证明 如图,建立空间直角坐标系 D-
xyz. 设正方体棱长为 1,
则 E(1,1,12)、D1(0,0,1)、 F(0,12,0)、A(1,0,0).
D(0,2,0),∴P→C=(2,2,-2),P→D=
(0,2,-2).
设 M(x1,y1,z1),∵P→M=λP→D,
∴(x1,y1,z1-2)=λ(0,2,-2), ∴x1=0,y1=2λ,z1=-2λ+2, ∴M(0,2λ,2-2λ).
∵PC⊥平面 AMN,∴P→C⊥A→M, ∴P→C·A→M=0,
三、是对利用向量处理平行和垂直问题的考查,主要解 决立体几何中有关垂直和平行判断的一些命题.对于垂直,
2020—2021学年人教A版高中数学选修2-1复习课件:(共41张PPT)

探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
反思感悟 利用空间向量证明面面平行的方法 (1)转化为线面平行、线线平行,然后借助向量共线进行证明; (2)通过证明两个平面的法向量平行证明.
探究一
探究二
探究三 思维辨析
变式训练3在长方体ABCD-A1B1C1D1中,DA=2,DC=3,DD1=4 ,M,N,E,F分别为棱A1D1,A1B1,D1C1,B1C1的中点.
如图①.
12
(2)直线的方向向量
图②
空间中任意一条直线l的位置可以由l上一个定点A以及一个定方
向确定,如图②,点A是直线l上一点,向量a表示直线l的方向(方向向
量),在直线l上取 =a,那么对于直线l上任意一点P,一定存在实数 t,使得
12
(3)平面的向量形式
图③ 空间中平面α的位置可以由α内两条相交直线来确定.如图③,设
12345
2.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则直线AB( ) A.与坐标平面xOy平行 B.与坐标平面yOz平行 C.与坐标平面xOz平行 D.与坐标平面yOz相交 解析:因为A(9,-3,4),B(9,2,1),所以 =(0,5,-3),而坐标平面yOz的 法向量为(1,0,0),显然(0,5,-3)·(1,0,0)=0,故直线AB与坐标平面yOz平 行.
探究一
探究二
探究三 思维辨析
利用向量方法证明线面平行
【例2】 如图,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1 的中点.求证:MN∥平面A1BD.
探究一
探究二
探究三 思维辨析
探究一
探究二
2020—2021学年人教A版高中数学选修2-1复习课件:(共40张PPT)

向量分别为(0,-1,3),(2,2,4),则这个二面角的余弦值为
.
易错分析将向量夹角的余弦值等同于二面角的余弦值.
探究一
探究二
探究三 思维辨析
纠错心得在一个二面角的两个面内和二面角的棱都垂直的两个 向量,其方向是不确定的,因此其夹角可能等于该二面角的大小,也 可能等于该二面角的补角.
探究一
探究二
(2)思路二:利用平面的法向量,将直线与平面所成的角转化为其 方向向量与平面法向量所成的锐角的余角进行求解.
以上两种思路中,思路一需要用到线面角的定义,在解题中并不 实用,而思路二则不需要找出要求的角,只需利用法向量求解即可, 因此一般多采用思路二.
探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
反思感悟 1.利用空间向量求两异面直线所成角的步骤. (1)建立适当的空间直角坐标系. (2)求出两条异面直线的方向向量的坐标. (3)利用向量的夹角公式求出两直线方向向量的夹角. (4)结合异面直线所成角的范围得到两异面直线所成角. 2.求两条异面直线所成的角的两个关注点. (1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而 对应的方向向量的夹角可能为钝角.
探究一
探究二
探究三 思维辨析
利用向量方法求两异面直线所成角
【例1】 如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,试求 直线EF和BC1所成的角.
思路分析建立空间直角坐标系,求出直线EF和BC1的方向向量的 坐标,求它们的夹角即得直线EF和BC1所成的角.
2020—2021学年人教A版高中数学选修2-1复习课件:3.1.1

12345
答案:C
12345
答案:C
探究一
探究二 思维辨析
纠错心得在理解空间向量相关概念时,注意以下几点: (1)对于向量,其两个特征是“大小”与“方向”,注意向量与实数的关 系. (2)对于相反向量,两向量方向相反,模相等,但表示向量的有向线 段不一定在同一条直线上. (3)对于相等向量,方向相同、大小相等,但向量的起点和终点并 不一定重合.
探究一
探究二 思维辨析
空间向量及相关概念的理解
探究一
探究二 思维辨析
答案:②③
探究一
探究二 思维辨析
反思感悟 解决空间向量相关概念的问题时,注意以下几点: (1)向量的两个要素是大小与方向,两者缺一不可; (2)单位向量的方向虽然不一定相同,但长度一定为1; (3)两个向量的模相等,则它们的长度相等,但方向不确定,即两个 向量(非零向量)的模相等是两个向量相等的必要不充分条件; (4)由于方向不能比较大小,因此“大于”“小于”对向量来说是没有 意义的,但向量的模是可以比较大小的.
探究一
探究二 思维辨析
答案:①②
探究一
探究二 思维辨析
探究一
探究二 思维辨析
易错分析向量相等,则向量的方向相同,模相等,但表示它们的有 向线段的起点未必相同,终点也未必相同.
故(1)(4)错误. 反过来,方向相同,模相等的向量是相等向量,只能用“=”连接,故 (2)错误.
探究一
探究二 思维辨析
探究一
探究二 思维辨析
跟踪训练下列命题中,正确的是( ) A.“两个向量平行”是“两个向量相等”的充分不必要条件 B.“两个向量是相反向量”是“两个向量的模相等”的必要不充分 条件 C.两个有公共点的向量一定是共线向量 D.若两个向量不共线,则这两个向量中没有零向量 解析:因为零向量和任一向量共线,所以D项正确. 答案:D
2019-学年人教A版高中数学选修2-1复习课件:3.1.2(共35张PPT)教育精品.ppt

(1)考察是否存在实数 λ,使������������=λ������������;
(2)考察对空间任意一点 O,是否有������������ = ������������+t������������;
(3)考察对空间任意一点 O,是否有������������=x������������+y������������(x+y=1).
①分配律:λ(a+b)=λa+λb;(λ+μ)a=λa+μa; ②结合律:λ(μa)=(λμ)a.
名师点拨 对空间向量数乘运算的理解 (1)λa是一个向量. (2)λa=0⇔λ=0或a=0. (3)因为a,b可以平移到同一平面内,所以λa,μb,a+b,λa+μb都在这 个平面内,因而平面向量的数乘运算律适用于空间向量.
∴x=2,y=-2.
探究一
探究二
探究三 思维辨析
反思感悟 1.对向量进行分解或对向量表达式进行化简时,要准确
运用空间向量加法、减法的运算法则,要熟悉数乘向量运算的几何
意义,同时还要注意将相关向量向选定的向量进行转化.
2.在△ABC中,若D为BC边的中点,则 ������������
=
1 2
(������������
−
2 3
������������1
=12
������������
−
1 2
������������
−
2 3
������������1
,
所以 x=12,y=-12,z=-23.
探究一
探究二
探究三 思维辨析
空间共线向量定理及其应用
【例 2】如图所示,在正方体 ABCD-A1B1C1D1 中,点 E 在 A1D1
(2)考察对空间任意一点 O,是否有������������ = ������������+t������������;
(3)考察对空间任意一点 O,是否有������������=x������������+y������������(x+y=1).
①分配律:λ(a+b)=λa+λb;(λ+μ)a=λa+μa; ②结合律:λ(μa)=(λμ)a.
名师点拨 对空间向量数乘运算的理解 (1)λa是一个向量. (2)λa=0⇔λ=0或a=0. (3)因为a,b可以平移到同一平面内,所以λa,μb,a+b,λa+μb都在这 个平面内,因而平面向量的数乘运算律适用于空间向量.
∴x=2,y=-2.
探究一
探究二
探究三 思维辨析
反思感悟 1.对向量进行分解或对向量表达式进行化简时,要准确
运用空间向量加法、减法的运算法则,要熟悉数乘向量运算的几何
意义,同时还要注意将相关向量向选定的向量进行转化.
2.在△ABC中,若D为BC边的中点,则 ������������
=
1 2
(������������
−
2 3
������������1
=12
������������
−
1 2
������������
−
2 3
������������1
,
所以 x=12,y=-12,z=-23.
探究一
探究二
探究三 思维辨析
空间共线向量定理及其应用
【例 2】如图所示,在正方体 ABCD-A1B1C1D1 中,点 E 在 A1D1