苏科版九上 一元二次方程及其解法 测试题

合集下载

苏科版九年级上1.2一元二次方程的解法(1)同步练习含答案.doc

苏科版九年级上1.2一元二次方程的解法(1)同步练习含答案.doc

苏科版九年级上 1.2 一元二次方程的解法(1)同步练习含答案1.2一元二次方程的解法(1)【基础提优】1.已知一元二次方程mx2n 0(m0) ,若方程可以用直接开平方法求解,且有两个不相等的实数根,则m , n 必须满足的条件是()A .n 0 B.m,n异号C.n是m的整数倍 D .m,n同号2.方程3x2 9 0 的根为()A .3 B. 3 C. 3 D.无实数根3x 4 是一元二次方程x23x a2 的一个根,那么常数a的值为().如果A .2 B. 2 C. 2 D . 44.已知一元二次方程( x 6)2 16 可转化为两个一元一次方程,若其中一个一元一次方程是 x 6 4 ,则另一个一元一次方程是()A .x 6 4B .x 6 4C.x 6 4 D .x 6 45.下列解方程的过程中,正确的是()A .x2 2 ,解方程,得x 2B.( x 2)2 4 ,解方程,得x 2 2 , x 4C.4( x 1) 2 9 ,解方程,得4(x 1) 3 , x1 7 , x2 14 4D.( 2x 3) 2 25 ,解方程,得2x 3 5 ,x1 1 , x2 46.若最简二次根式 a 2 25 与4a2 2 是同类二次根式,则 a .7.当x 时,分式x2 9的值为 0.x 2 18.某药品经过两次降价,每瓶零售价由100 元降为 81 元.已知两次降价的百分比都为x ,那么 x 所满足的方程是, x .9.用直接开平方法解下列方程:(1)x2 3 0 ;( 2)4x2 9 0 ;(3)(2)2 9 0;( 4)4( y 3) 2169 ;x1(5)( 2x 1)2 8 ;( 6)1(x 3)2 3 .4【拓展提优】1.( 1)一元二次方程(x 1)2 2 的解为;( 2)一元二次方程12(3 2x) 2 3 0 的解为.2.若( a2 b 2 2)2 49 ,则a2 b2 .3.若x2 8y2 0 ,则x y.x y4.已知关于x的方程a( x m)2 b 0(a,m,b 均为常数,且 a 0) 的解是x1 2 ,x2 1 ,则关于 x 的方程 a(x m 2) 2 b 0 的解是.5.用直接开平方法解下列方程:(1)x2 4x 4 1 ;( 2)(2x 1)2 ( x 2) 2.6.已知双曲线y 28x 相交于点A,求点A的坐标.与直线 yx7.某商场今年 2 月份的营业额为 400 万元, 3 月份的营业额比 2 月份增加 10%, 5 月份的营业额达到 633.6 万元,求 3 月份至 5 月份营业额的月平均增长率.28.某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁1250m 2,因为准备工作不足,第一天少拆迁了 20%.从第二天开始,该工程队加快了拆迁速度,第 3 天拆迁了1440m2.(1)该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.【趣味思考】1.已知y x 0 ,x y 2 xy 2 ,试求x y 的值.参考答案【基础提优】1-5 BDCDD6. 37. 3.100(1 x) 281; 0.1839.解:( 1)x1 3 , x2 33 3 ;( 2)x1 , x2 ;2 2( 3)x1 5 , x2 1 ;19, y 27 ( 4)y1 ;2 2( 5)x1 1 2 2, x21 2 22 2;( 6)x1 3 2 3 , x2 3 23.【拓展提优】1.( 1)x1 1 2 , x2 17 5 2 ;(2)x1 , x2 .4 42. 99 4 23.74.x1 4 , x2 15.解:( 1)x1 1, x2 3 ;(2) x1 1 , x2 1 .6. A (0.5,4)或A(0.5 ,4)7. 20%8.( 1) 1000m2;( 2) 20%【趣味思考】1. 24。

苏科版九年级上册数学第1章 一元二次方程含答案【完整版】

苏科版九年级上册数学第1章 一元二次方程含答案【完整版】

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、三角形两边的长是3和4,第三边的长是方程的根,则该三角形的周长为()A.10B.12C.14D.12或142、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片。

如果全班有x名学生,根据题意,列出方程为()A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.3、某药品经过两次降价,每瓶零售价由1000元降为640元,已知两次降价的百分率都为x,则x满足的方程是()A.1000(1+x)2=640B.1000(1﹣x)2=640C.1000(1﹣x%)2=640 D.1000x 2=6404、下列说法正确的是()A.x 2=4的根为x=2B. 是x 2=2的根C.方程的根为D.x 2=﹣a没有实数根5、要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠3且b≠-1D.a≠3且b≠-1且c≠06、一元二次方程(x+6)2﹣9=0的解是()A.x1=6,x2=﹣6 B.x1=x2=﹣6 C.x1=﹣3,x2=﹣9 D.x1=3,x2=﹣97、已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长是()A.5B.7C.5或7D.108、一元二次方程配方后可变形为().A. B. C. D.9、一元二次方程x2+x﹣1=0的两根分别为x1, x2,则=()A. B.1 C. D.10、关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.m<1且m≠0D.m≤1且m≠011、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1或-1B.-1C.1D.012、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠013、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有()人.A.12B.10C.9D.814、如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1B.0或1C.2D.-115、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是________.17、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=________.18、一种药品经过两次降价,药价从每盒100元调至每盒81元,则平均每次降价的百分率是________ .19、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________20、已知x=3是方程x2-6x+k=0的一个根,则k=________.21、方程(x-3)2=x-3的根是________.22、设等腰三角形的三条边长分别为a、b、c.已知a=4,b、c是关于x的方程x2−6x+m=0两个根,则m的值是________.23、已知方程x2﹣3x+k=0有两个相等的实数根,则k=________.24、关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.25、已知是关于的方程的一个根,则________三、解答题(共5题,共计25分)26、解方程:27、阅读下面的例题:解方程解:当x≥0时,原方程化为x2– x –2=0,解得:x1=2,x2= - 1(不合题意,舍去)当x<0时,原方程化为x2 + x –2=0,解得:x1=1,(不合题意,舍去)x2= -2∴原方程的根是x1=2, x2= - 2请参照例题解方程28、解下列方程:(1)x(x﹣1)+2(x﹣1)=0;(2)x2+1.5=3x.29、阅读例题,解答下题.范例:解方程:x2+∣x+1∣﹣1=0解:⑴当x+1≥0,即x≥﹣1时,x2+x+1﹣1=0x2+x=0解得x1=0,x2=﹣1⑵当x+1<0,即x<﹣1时,x2﹣(x+1)﹣1=0x2﹣x﹣2=0解得x1=﹣1,x2=2∵x<﹣1,∴x1=﹣1,x2=2都舍去.综上所述,原方程的解是x1=0,x2=﹣1依照上例解法,解方程:x2﹣2∣x-2∣-4=0 30、求不等式组的整数解参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、B6、C8、A9、B10、D11、B12、D13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

苏科版九年级上册数学第1章 一元二次方程 含答案

苏科版九年级上册数学第1章 一元二次方程 含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、用因式分解法解方程,下列方法中正确的是()A.(2x-2)(3x-4)=0 , ∴2x-2=0或3x-4=0B.(x+3)(x-1)=1 ,∴x+3=0或x-1=1 C.(x-2)(x-3)=2×3 , ∴x-2=2或x-3=3 D.x(x+2)=0 ,∴x+2=02、用配方法解一元二次方程x2-3=4x,下列配方正确的是()A.(x+2) 2=2B.(x-2) 2=7C.(x+2) 2=7D.(x-2) 2=13、是关于的一元一次方程的解,则()A.-2B.-3C.4D.-64、用配方法解方程时,配方后所得的方程为()A. B. C. D.5、定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程的解为()A. 或B. 或C. 或D. 或6、关于的一元二次方程有一个实数根,则下面关于该方程的判别式的说法正确的是( )A. B. C. D.无法确定7、关于的一元二次方程的两个实数根分别为,,且,则的取值范围是()A. B. 且 C. D. 且8、已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2B.k<2C.k>2D.k<2且k≠19、下列方程中没有实数根的是()A.x 2+x-1=0B.x 2+8x+1=0C.x 2+x+2=0D.x 2-2 x+2=010、某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.25(1+x) 2=64B.25(1+x 2)=64C.64(1-x) 2=25 D.64(1-x 2)=2511、若关于x的一元二次方程有两个不相等的实数根,则实数k的取值范围是()A. B. 且 C. D. 且12、关于x的方程有两个不相等的实数根,且较小的根为2,则下列结论:①;②;③关于的方程有两个不相等的实数根;④抛物线的顶点在第四象限。

苏科版九年级数学上册1-2一元二次方程的解法 同步练习题【含答案】

苏科版九年级数学上册1-2一元二次方程的解法 同步练习题【含答案】
移项、合并同类项,得 ,
两边开平方,得 .
所以 , .
19.(1) x1=5, x2=﹣15;(2) x1=3+ ,x2=﹣2+
(1)(x+2)2+6(x+2)﹣91=0;
设y=x+2,则原方程可变形为:
y2+6y﹣91=0,
解得:y1=7,y2=﹣13,
当y1=7时,x+2=7,
x1=5;
当y2=﹣13时,x+2=﹣13,
A.x=2B.x=0C.x1=﹣2,x2=0D.x1=2,x2=0
二、填空题
9.若 ,则代数式 的值为_____
10.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x=.
11.等腰△ABC中,AC=8,AB、BC的长是关于x的方程x2﹣9x+m=0的两根,则m的值是.
12.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是.
1.2一元二次方程的解法
一、单选题
1.用配方法解方程 时,应在方程两边同时加上( )
A.3B.9C.6D.36
2.已知 ,则 的值是()
A.3或 B. 或2C.3D.
3. 的根是()
A. B. 或 C. D. 或
4.如果关于x的方程 只有一个实数根,那么方程 的根的情况是()
A.没有实数根B.有两个不相等的实数根
x= ,
x1= ,x2= ;
(4)(x+1)2=2x+2,
(x+1)2﹣2(x+1)=0,

初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法-章节测试习题

初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法-章节测试习题

章节测试题1.【题文】解方程:x2-4x-1=0.【答案】x1=2+,x2=2-.【分析】根据配方法,可得答案.【解答】解:∵x2-4x-1=0,∴x2-4x=1,∴x2-4x+4=1+4,∴(x-2)2=5,∴x=2±,∴x1=2+,x2=2-.2.【题文】解下列方程:(1)x2+10x+25=0(2)x2﹣x﹣1=0.【答案】(1)x1=x2=﹣5;(2)x1=,x2=【分析】本题考查了一元二次方程的解法---配方法,按照先移项,再配方,后开方的步骤求解即可..【解答】解:(1)配方,得:(x+5)2=0,开方,得:x+5=0,解得x=﹣5,x1=x2=﹣5;(2)移项,得:x2﹣x=1,配方,得:x2﹣x+=,(x﹣)2=,开方,得x﹣=±,x1=,x2=.3.【题文】解方程:(1)x2﹣9=0(2)x2+2x﹣1=0.【答案】(1)x1=3,x2=﹣3;(2)x1=﹣1+,x2=﹣1﹣.【分析】(1)根据本题方程的特点,用“直接开平方法”解答即可;(2)根据本题方程的特点,用“配方法”或“公式法”解答即可.【解答】解:(1)x2﹣9=0,∴x2=9,∴x=±3,∴x1=3,x2=﹣3;(2)x2+2x﹣1=0,移项得:x2+2x=1,配方得:x2+2x+1=2,∴(x+1)2=2,∴x+1=±,∴ x1=﹣1+,x2=﹣1﹣.4.【题文】用配方法解方程:.【答案】,【分析】先把常数项移到右边,两边同时加上一次项系数的一半的平方,即都加上9,把左边写成完全平方式,即的形式,然后两边开平方求出未知数的值.【解答】解:,,,,,∴,.5.【题文】用配方法说明下列结论:(1)代数式x2+8x+17的值恒大于0;(2)代数式2x-x2-3的值恒小于0【答案】(1)代数式x2+8x+17的值恒大于0(2)代数式2x-x2-3的值恒小于0【分析】运用配方法的运算方法,第一步:如果二次项数不是1,首先提取二次项系数,一次项与二次项都提取二次项系数并加括号,常数项可以不参与运算;第二步:配方,加常数项为一次项系数一半的平方,注意括号外应相应的加减这个常数项,保证配方后不改变原式的值,分别进行运算即可.【解答】解:(1)x2+8x+17= x2+8x+16-16+17=(x+4)2+1∵(x+4)2≥0∴(x+4)2+1>0即代数式x2+8x+17的值恒大于0(2)2x-x2-3= -x2+2x -3= -(x2-2x +3)= -(x2-2x+1-1 +3)= -[(x-1)2+2]= -(x-1)2-2∵-(x-1)2≤0∴-(x-1)2-2<0即代数式2x-x2-3的值恒小于0.6.【题文】解方程:【答案】,【分析】本题考查了一元二次方程的解法,根据完全平方公式配方,配方的方法是:先将常数项移到右边,然后两边都加一次项系数一半的平方.【解答】解:,7.【题文】解方程:x2+4x﹣4=0.【答案】x1=﹣2+2,x2=﹣2﹣2.【分析】根据这个一元二次方程的特点,用“配方法”或“公式法”解即可.【解答】解:方程移项得:x2+4x=4,配方得:x2+4x+4=8,即(x+2)2=8,∴x+2=±2,解得:x1=﹣2+2,x2=﹣2﹣2.8.【题文】解方程:2x2-4x-1=0.【答案】.【分析】根据配方法解方程即可.【解答】解:移项得,2x2-4x=1,将二次项系数化为1得,,配方得,x2-2x+1=+1,,∴,∴.9.【题文】用配方法解下列方程:(1)4x2 -4x -1 = 0;(2)7x2 -28x +7= 0. (3) x2-x-4=0(4) 3x2-45=30x【答案】(1);(2);(3);(4)【分析】(1)把二次项系数化为1,常数项移到等号右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(2)把二次项系数化为1,常数项移到等号右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(3)把二次项系数化为1,常数项移到等号右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(4)整理成一般式,把二次项系数化为1,常数项移到等号的右边后,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案.【解答】解:(1)4x2 -4x -1 = 0,x2-x-=0,x2-x=,x2-x+=+,即(x-)2=,则x-1=±,;(2)7x2 -28x +7= 0,x2-4x=-1,x2-4x+22=-1+22,即(x-2)2=3,则x-2=±,x=2±,即;(3)x2-x-4=0x2-4x=16,x2-4x+22=16+22,即(x-2)2=20,则x-2=±,x=2±,即;(4)3x2-45=30x,x2-10x=15,x2-10x+52=15+52,即(x-5)2=40,则x-5=±,x=5±,即.10.【题文】用配方法解下列方程:(1)x2+2x-8=0 (2)x2+12x-15=0(3)x2-4x=16 (4)x2=x+56【答案】(1);(2);(3);(4)【分析】(1)常数项移到等号的右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(2)常数项移到等号的右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(3)两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(4)整理成一般式,常数项移到等号的右边后,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案.【解答】解:(1)x2+2x-8=0,x2+2x=8,x2+2x+12=8+12,即(x+1)2=9,则x+1=±3,x=−1±3,即;(2)x2+12x-15=0,x2+12x=15,x2+12x+62=15+62,即(x+6)2=51,则x+6=±,x=−6±,即;(3)x2-4x=16,x2-4x+22=16+22,即(x-2)2=20,则x-2=±,x=2±,;(4)x2=x+56,x2-x+2=56+2,(2=,则x-=±,x-=±+,即.11.【题文】x2﹣4x+1=0(用配方法)【答案】x1=2+,x2=2﹣.【分析】先移项,然后配方,解出x即可.【解答】解:x2-4x+1=0,移项,得x2-4x=-1,配方,得x2-4x+4=-1+4,即(x-2)2=3,解得,x-2=,即x1=2+,x2=2-.12.【题文】解下列方程:(1)(1+x)2-2=0;(2)9(x-1)2-4=0.【答案】(1);(2).【分析】(1)先移项,再用“直接开平方法”解方程即可;(2)先移项,再把二次项系数化为1,然后用“直接开平方法”解方程即可.【解答】解:(1)移项得:,∴,∴.(2)原方程可化为:,∴,∴.13.【题文】解关于x的方程(x+m)2=n.【答案】当时,方程无解;当时,,.【分析】由于题目中没有告诉“n”的取值范围,所以分“n0”和“n<0”进行解答即可.【解答】解:(1)当n≥0时,x+m=±,∴ x1=-m,x2=--m.(2)当n<0时,方程无解.14.【题文】解方程:(1)x2+4x﹣1=0.(2)x2﹣2x=4.【答案】(1)x1=﹣2+,x2=﹣2﹣;(2)x1=1+,x2=1﹣【分析】(1)利用配方法即可解决;(2)利用配方法即可解决.【解答】解:解:(1)∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.(2)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.15.【题文】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.【答案】(1)4;(2)7;(3)2【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=-1,a=3,则a-b=4;(2)∵2a2+b2-4a-6b+11=0,∴2a2-4a++2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(3)∵x+y=2,∴y=2-x,则x(2-x)-z2-4z=5,∴x2-2x+1+z2+4z+4=0,∴(x-1)2+(z+2)2=0,则x-1=0,z+2=0,解得x=1,y=1,z=-2,∴xy z=2.16.【题文】“a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2﹣4x+6=(x)2+ ;所以当x= 时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为.(2)比较代数式x2﹣1与2x﹣3的大小.【答案】(1)﹣2;2;2;小;2;(2)x2﹣1>2x﹣3.【分析】(1)把原式利用平方法化为完全平方算与一个常数的和的形式,利用偶次方的非负性解答;(2)利用求差法和配方法解答即可.【解答】解:(1)x2-4x+6=(x-2)2+2,所以当x=2时,代数式x2-4x+6有最小值,这个最值为2,故答案为:-2;2;2;小;2;(2)x2-1-(2x-3)=x2-2x+2;=(x-1)2+1>0,则x2-1>2x-3.17.【题文】如果a、b为实数,满足+b2-12b+36=0,求ab的值.【答案】-8【分析】将原式化为+(b-6)2=0,由此可得,分别求出a、b 的值即可求出ab.【解答】解:原等式可化为+(b-6)2=0,∴,∴a=,b=6,∴ab=-8.故答案为-8.18.【题文】用配方法解下列方程:(1)x2+4x+1=0;(2)2x2-4x-1=0;(3)9y2-18y-4=0;(4)x2+3=2x.【答案】(1)x1=-2,x2=--2;(2)x1=1+,x2=1-;(3)y1=+1,y2=1-;(4)x1=x2=.【分析】(1)先移项,再配方,解出x即可;(2)先移项,再将二次项系数化为1,最后配方解出x即可;(3)先移项,再将二次项系数化为1,最后配方解出x 即可;(4)先移项,再配方解出x即可.【解答】解:(1)移项,得x2+4x=-1,配方,得x2+4x+22=-1+22,即(x+2)2=3,解得x1=-2,x2=--2;(2)移项,得2x2-4x=1,二次项系数化为1,得x2-2x=,配方,得x2-2x+12=+12,即(x-1)2=,解得x-1=±,即x1=1+,x2=1-;(3)移项,得9y2-18y=4,二次项系数化为1,得y2-2y=,配方,得y2-2y+12=+12,即(y-1)2=,解得y-1=±,即y1=+1,y2=1-;(4)移项,得x2-2x+3=0,配方,得(x-)2=0,解得x1=x2=.19.【题文】用配方法解方程,下面的过程对吗?如果不对,找出错在哪里,并改正.解:方程两边都除以2并移项,得,配方,得,即,解得,即.【答案】.【分析】上面过程不对,错在配方一步,改正即可.【解答】解:上面的过程不对,错在配方一步,改正如下:配方,得x2-x+=15+,即(x-)2=,解得x-=±,即x1=3,x2=.20.【题文】解下列方程:(1)x2+6x+5=0;(2)2x2+6x-2=0;(3)(1+x)2+2(1+x)-4=0.【答案】(1)∴x1=-1,x2=-5;(2)x1=-,x2=--;(3)x1=-2,x2=--2【分析】(1)先移项,再配方解出x即可;(2)先移项,再将二次项系数化为1,然后配方解出x即可;(3)先去括号,再移项,然后配方解出x即可.【解答】解:(1)移项,得x2+6x=-5,配方,得x2+6x+32=-5+32,即(x+3)2=4,由此可得:x+3=±2,∴x1=-1,x2=-5;(2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方,得x2+3x+()2=-1+()2,即(x+)2=,由此可得x+=±,∴x1=-,x2=--;(3)去括号整理,得x2+4x-1=0,移项,得x2+4x=1,配方,得(x+2)2=5,由此可得x+2=±,∴x1=-2,x2=--2.。

苏科版九年级数学上册《1.2一元二次方程的解法》练习题-带答案

苏科版九年级数学上册《1.2一元二次方程的解法》练习题-带答案

苏科版九年级数学上册《1.2一元二次方程的解法》练习题-带答案基础巩固提优1.用公式法解一元二次方程3x²−4x=8时,化方程为一般式,当中的a、b、c 依次为( ).A. 3、一4、8B. 3、4、8C. 3、4、—8D. 3、—4、—82.以x=b±√b2−4c2为根的一元二次方程可能是( ).A.x²+bx+c=0B.x²+bx−c=0C.x²−bx+c=0D.x²−bx−c=03.把方程53x+13=x2−13化为一般形式是 ,其中 a= ,b= ,c=,b²−4ac=,方程的根是x₁=。

4.定义新运算“*”,规则为a∗b={a(a≥b),b(a<b),如3∗1=3,(−√5)∗√2=√2若x²+x−1=0的两根为x₁、x₂,则.x₁∗x₂= 5.用公式法解下列一元二次方程:(1)5x²+2x−1=0;(2)5x²−10x=−5。

6.解方程:(1)x²+2x−5=0;(2)2x²−3x−6=0;(3)10x²−9x+2=0;(4)6x²−4x+7=0。

7.当x为何值时,代数式5x²−x的值与4x—2的值互为相反数.思维拓展提优8. 下列方程适合用公式法解的是( ).A.(x−3)²=2B.325x²−326x+1=0C.x²−100x+2500=0D.2x²+3x−1=09.方程2x²−6x−1=0的负数根为 .10.已知a²+ab−b²=0且ab≠0,则 ba的值为 .11.用公式法解下列一元二次方程:(1)x2+118=23x;(2)3x²−2=2x。

(3)(x+1)(x—3)=1.12. 解关于x 的方程:(m−1)x²+2mx+m+3=013.对于实数a、b,新定义一种运算“※”:(a※b={ab−b2(a≥b),b2−ab(a<b),例如:∵4>1,∴4※1=4×1--1²=3.(1)计算:2※(--1)= ,(--1)※2= ;(2)若x₁和x₂是方程.x²−5x−6=0的两个根且x₁<x₂,,求x₁※x₂的值;(3)若x※2与3※x 的值相等,求x的值.14.有长为 30米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆(平行于 AB)的矩形花圃,设花圃的一边 AB 为x 米,面积为y 平方米. (1)用含x 的代数式表示y ;(2)如果要围成面积为 63 平方米的花圃,AB 的长是多少?(3)能围成面积为 78平方米的花圃吗? 若能,求出AB 的长;若不能,请说明理由.延伸探究提优15.欧几里得的《几何原本》中记载了形如 x²−2bx +4c²=0(b ⟩2c >0)的方程根的图形解法:构造 Rt△BAC ,AD 为斜边中线,且 AD =12BC,作AE⊥AD,与BC 的延长线交于点E.设DE=b,AE=2c,则 x²−2bx +4c²=0较小的根是( ).A. BD 的长度B. CE 的长度C. AC 的长度D. AE 的长度 16.请阅读下列材料:我们规定一种运算: |a c bd |=ad −bc,例如: |2345|=2×5−3×4=10−12=−2,按照这种运算的规定,请解答下列问题. (1)直接写出 |−12−20.5|的计算结果;(2)当x取何值时,|x0.5−x12x|=0;(3)若直接写出x 和y的值.17.如图,在△ABC 中,已知∠BAC=45°,AD⊥BC,垂足为D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以 AB、AC 为对称轴,画出△ABD、△ACD的轴对称图形,点D 的对称点分别为点E、F,延长EB、FC 相交于点G,求证:四边形 AEGF 是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.中考提分新题18.一元二次方程x²+4x−8=0的解是( ).A.x1=2+2√3,x2=2−2√3B.x1=2+2√2,x2=2−2√2C.x1=−2+2√2,x2=−2−2√2D.x1=−2+2√3,x2=−2−2√3参考答案1. D [解析]3x²−4x=8,化为一般式为3x²−4x−8=0,则a=3,b=—4,c=—8.故选D.2. C [解析]由题意,可知二次项系数为1,一次项系数为--b,常数项为c.故选 C.3.3x²-5x-2=0 3 —5 —2 49-1324−1+√52[解析]x²+x−1=0∵a=1,b=1,c=-1∴△=1-4×(-1)=5>0.∴x=−b±√b2−4ac2a =−1±√52.∴x1=−1+√52,x2=−1−√52.∴−1+√52>−1−√52,∴x1∗x2=−1+√52.5.(1)x1=−1+√65,x2=−1−√65(2)x₁=x₂=16.(1)x1=−1+√6,x2=−1−√6(2)x1=3+√574,x2=3−√574(3)x1=25,x2=12(4)∵△=(−4)²−4×6×7=−152<0;∴原方程无解.7.由题意,得5x²−x+4x−2=0,即5x²+3x−2=0,∴x=−3±√9+4010=−3±710,∴x1=−1,x2=25.故当x=--125₅时,代数5x²−x的值与4x—2的值互为相反数.8. D [解析]根据方程的特点及各方法的优缺点解答即可.A.此方程适合直接开平方法求解;B.此方程不适合用公式法求解;C.此方程适合配方法求解;D.此方程适合公式法求解.9.3−√11210.1±√52 [解析]由题意,得a≠0,等式两边同除a²,得1+ba−(ba)2=0令ba=t,则t²−t−1=0,解得t=1±√52,故ba=1±√52.11.(1)整理,得18x²−12x+1=0,∴△=144-4×18×1=72∘x=12±√722×18=2±√26.∗x1=2+√26,x2=2−√26.(2)整理,得3x²−2x−2=0,∴△=(−2)²−4×3×(−2)=28>0.∴x=2±√282×3=1±√73.∴x1=1+√73,x2=1−√73.(3)x1=1+√5,x2=1−√512.当m-1=0,即m=1时,方程为一元一次方程,解得x=-2;当m—1≠0,即m≠1时,方程为一元二次方程①当Δ>0,即4m²-4(m--1)(m+3)>0时,解得m<32,此时x1=−m+√3−2mm−1x2=−m−√3−2mm−1;②当△=0,即m=32时此时x₁=x₂=−3;③当Δ<0,即m>32时,方程无解.解后反思本题考查了分类讨论的思想,考虑问题要全面.13.(1)—3 6 [解析]由题意,得2※(—1)=2×(-1)-(-1)²=-2-1=-3;(-1)※2=2²-(-1)×2=4+2=6.(2)解方程x²−5x−6=0,得x₁=−1,x₂=6,所以x₁※a x₂=(−1)×6=6²−(−1)×6=42.(3)当x<2时,2²−2x=3x−x²整理得x²−5x+4=0解得x₁=1,x₂=4(舍去);当2≤x≤3时,2x−2²=3x−x²整理,得x²−x−4=0,解得x1=1+√172,x2=1−√172(舍去);当x>3时,2x−2²=x²−3x整理,得.x²−5x+4=0解得x₁=1(舍去)x₂=4。

(精练)苏科版九年级上册数学第1章 一元二次方程含答案

(精练)苏科版九年级上册数学第1章 一元二次方程含答案

苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程,变形后的结果正确的是().A. B. C. D.2、若是关于x的一元二次方程,则a的值是()A.0B.2C.-2D.±23、下列方程中有两个相等实数根的是()A.2x 2+4x+35=0B.x 2+1=2xC.(x﹣1)2=﹣1D.5x 2+4x=14、一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和25、下列方程一定是一元二次方程的是()A.x 2﹣1=0B.x+y=1C.D.6、一元二次方程的实数根是()A.0或1B.0C.1D.±17、关于的方程的两根的平方和是5,则的值是( )A.-1或5B.1C.5D.-18、关于x的一元二次方程有一个根是,则A.1B.-1C.±1D.09、若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥ 且k≠110、一元二次方程化成一般形式是()A. B. C. D.11、下列方程中,是关于x的一元二次方程的是()A. +x=3B.x 2+2x﹣3=0C.4x+3=xD.x 2+x+1=x 2﹣2x12、方程(x﹣1)(x+2)=0的两根分别为()A.x1=﹣1,x2=2 B.x1=1,x2=2C.x1=﹣1,x2=﹣2 D.x1=1,x2=﹣213、用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±14、已知a,b,c是△ABC三条边的长,那么方程cx2+(a+b)x+=0的根的情况是( ).A.没有实数根B.有两个不相等的正实数根C.有两个不相等的负实数根D.有两个异号实数根15、一元二次方程x2-5x-6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=-6 D.x1=-1,x2=6二、填空题(共10题,共计30分)16、在平面直角坐标系中,如果存在一点P(a,b),满足ab =-1,那么称点P为“负倒数点”,则函数的图象上负倒数点的个数为________个.17、把方程(x﹣1)(x﹣2)=4化成一般形式是________.18、一元二次方程的两个根为,且则k=________。

苏科版九年级(上)数学课时练习:1.2一元二次方程的解法(含答案)

苏科版九年级(上)数学课时练习:1.2一元二次方程的解法(含答案)

1.2一元二次方程的解法题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共12小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣33.一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根 B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 4.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A. B.﹣C.﹣D.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2= 6.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2[来源:]7.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣48.△ABC三边a,b,c满足a2+b+|﹣2|=10a+2﹣22,△ABC 为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能10.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A. B.C.D.(1+)211.关于x的一元二次方程的两根应为()A.B.,C.D.12.已知α,β是方程x2+2019x+1=0的两个根,则(1+2019α+α2)(1+2019β+β2)的值为()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题)二.填空题(共5小题)13.若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是.14.如果α,β(α≠β)是一元二次方程x2+2x﹣1=0的两个根,则α2+α﹣β的值是.15.若关于x的方程(3+a)x2﹣5x+1=0有实数根,则整数a的最大值.16.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=17.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=.三.解答题(共6小题)18.解方程(1)x2﹣36=0(2)x2﹣3x+2=019.已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.20.我们规定:方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0.例如,方程2x2﹣3x+4=0的变形方程为2(x+1)2﹣3(x+1)+4=0(1)直接写出方程x2+2x﹣5=0的变形方程;(2)若方程x2+2x+m=0的变形方程有两个不相等的实数根,求m的取值范围;(3)若方程ax2+bx+c=0的变形方程为x2+2x+1=0,直接写出a+b+c 的值.21.已知关于x的一元二次方程(m2﹣4)x2+(2m﹣1)x+1=0.(1)m为何值时,方程有实数根?(2)若x1,x2是方程的两个实数根,S=﹣+﹣++10,求S的取值范围.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a ﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.23.先阅读后解题.已知m2+2m+n2﹣6n+10=0,求m和n的值.解:把等式的左边分解因式:(m2+2m+1)+(n2﹣6n+9)=0.即(m+1)2+(n﹣3)2=0.因为(m+1)2≥0,(n﹣3)2≥0.所以m+1=0,n﹣3=0即m=﹣1,n=﹣3.利用以上解法,解下列问题:(1)已知:x2﹣4x+y2+2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52且△ABC为等腰三角形,求c.参考答案一.选择题1.B.2.C.3.D.4.C.5.B.6.C.7.B.8.A.9.C.10.A.11.B.12.D二.填空题13.a≤2.14.315.3.16.[来源:]﹣2.17.﹣三.解答题18.解:(1)∵x2﹣36=0,∴x2=36,则x=6或x=﹣6;(2)∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,则x﹣1=0或x﹣2=0,解得:x=1或x=2.19.解:(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.∵△=(﹣5)2﹣4(6﹣p2﹣p)=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;[来源:学+科+网Z+X+X+K] (2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6﹣p2﹣p.又∵x12+x22﹣x1x2=3p2+1,∴(x1+x2)2﹣3x1x2=3p2+1,∴52﹣3(6﹣p2﹣p)=3p2+1,∴25﹣18+3p2+3p=3p2+1,∴3p=﹣6,∴p=﹣2.20.解:(1)用x+1表示方程x2+2x﹣5=0里的x,可得(x+1)2+2(x+1)﹣5=0.(2)用x+1表示方程x2+2x+m=0里的x,得(x+1)2+2(x+1)+m=0.整理,得x2+4x+3+m=0∵变形后的方程有两个不相等的实数根,∴△=42﹣4(3+m)=4﹣4m>0,∴m<1.(3)a+b+c=1.(方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0,[来源:学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习七一元二次方程及其解法
一、选择
1、下列方程中,常数项为零的是 ( )
A、x2+x=1
B、2x2-x-12=12
C、2(x2-1)=3(x-1)
D、2(x2+1)=x+2
2、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于()
A、1
B、-1
C、0
D、2
3、下列方程:①x2=0,② -2=0,③2+3x=(1+2x)(2+x),④3-=0,⑤-8x+ 1=0
中,一元二次方程的个数是 ( )
A、1个
B、2个
C、3个
D、4个
4、方程x(x+1)=3(x+1)的解的情况是()
A、x=-1
B、x=3
C、
D、以上答案都不对
二、填空
5、把方程4 —x2 = 3x化为ax2 + bx + c = 0(a≠0)形式为,则该方程的二次项系数、一次项系数和常数项分别为。

6、在关于x的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。

7、方程的解为.
8、已知关于x的一元二次方程x2+kx+k=0的一个根是–2,那么k=____。

9、已知y=x2-2x-3,当x= 时,y的值是-3。

10、若方程有整数根,则的值可以是_________(只填一个)。

三、解答
11、解下列方程
(1)x2-4x+4=0 (2)8y2-2=4y(配方法)
(3)2(2x-3)2-3(2x-3)=0 (4)x2-(1+2)x+-3=0
12、如果一元二次方程x2+ax +b= 0的两个根是0和—2,则a、b分别等于多少?
13、如下图,用一块正方形纸板,在四个角上截去四个相同的边长为2厘米的小正方形,然后把四边折起来,做成一个没有盖的长方体盒子,使它的容积为32立方厘米。

所用的正方形纸板的边长应是多少厘米?(仅列方程,不求出解)
14、已知下列n(n为正整数)个关于x的一元二次方程:
(1)请解上述一元二次方程<1>、<2>、<3>、<n>;
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可。

答案:
一、D、A、A、C
二、5、x2 + 3x —4=0,1、3、—4;6、9、8;7、0、4;
8、4;9、0、2;10、例如m=0,1,4,9,……
三、11、(1)x1=x2=2;(2)原方程没有实数解;(3)x1=,x2=;(4)x1=3+,x2=-2+
12、-2、0
13、方法一:设宽为xcm,则长为(x+5)cm,列方程x(x+5)=150 ,化简得x2 +5x =150 ;方法二:设长为xcm,则宽为(x—5)cm,列方程x(x—5)=150,化简得x2—5x =150 ;
14、(1)<1>,所以
<2>,所以
<3>,所以
……
<n>,所以………………4分
(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等。

相关文档
最新文档