弱酸、弱碱的标准解离常数 - 江南大学教务处

合集下载

酸碱中的弱酸与弱碱的离解度

酸碱中的弱酸与弱碱的离解度

酸碱中的弱酸与弱碱的离解度酸碱是化学中常见的概念,它们在许多领域都有重要的应用。

在酸碱反应中,我们经常会遇到弱酸和弱碱。

弱酸和弱碱的离解度是指它们在溶液中的离解程度,也是了解酸碱强弱的重要指标之一。

弱酸是指在水溶液中只部分离解的酸,它们分子中的氢离子只释放出一部分。

弱酸的离解度与其分子结构有关,通常用酸的离解常数Ka来表示。

Ka值越大,表示弱酸的离解度越高,酸性越强。

以乙酸(CH3COOH)为例,它是一种常见的弱酸。

乙酸在水中只部分离解成CH3COO-和H+,其离解常数Ka为1.8×10^-5。

这意味着乙酸的离解度相对较低,只有一小部分分子会释放出氢离子,因此它的酸性相对较弱。

与弱酸类似,弱碱也是指在水溶液中只部分离解的碱。

弱碱的离解度与其分子结构有关,通常用碱的离解常数Kb来表示。

Kb值越大,表示弱碱的离解度越高,碱性越强。

以氨(NH3)为例,它是一种常见的弱碱。

氨在水中只部分离解成NH4+和OH-,其离解常数Kb为1.8×10^-5。

这意味着氨的离解度相对较低,只有一小部分分子会释放出氢氧离子,因此它的碱性相对较弱。

弱酸和弱碱的离解度与溶液中的浓度也有关系。

一般来说,浓度越高,离解度也会相应增加。

这是因为在浓度较高的溶液中,分子之间的碰撞更频繁,离解的机会也更多。

但是需要注意的是,即使浓度较高,弱酸和弱碱的离解度也不会达到100%。

这与强酸和强碱不同,强酸和强碱在溶液中会完全离解,释放出所有的氢离子或氢氧离子。

弱酸和弱碱的离解度对于化学反应和溶液的性质有重要影响。

在酸碱中性化反应中,弱酸和弱碱的离解度决定了反应的进行程度和速率。

在溶液中,弱酸和弱碱的离解度也会影响pH值的变化。

pH值是衡量溶液酸碱性的指标,pH值越低表示溶液越酸,pH值越高表示溶液越碱。

弱酸和弱碱的离解度决定了溶液中氢离子或氢氧离子的浓度,进而影响了溶液的酸碱性质和pH值。

总之,弱酸和弱碱的离解度是了解酸碱性质的重要指标之一。

常见酸碱水中的解离常数

常见酸碱水中的解离常数

常见酸碱水中的解离常数弱酸、弱碱的解离常数Dissociation Constants of Weak Acids and Weak Bases1. 无机酸在水溶液中的解离常数(25o C)Dissociation Constants of Mineral Acids in Aqueous Solution (25o C)序号名称(Name) 化学式(Chemical formula) K a p K a (No.)1 偏铝酸HAlO2 6.3×10-1312.22 亚砷酸H3AsO3 6.0×10-109.223 砷酸H3AsO46.3×10-3 (K1) 2.2 1.05×10-7 (K2) 6.98 3.2×10-12 (K3) 11.54 硼酸H3BO35.8×10-10 (K1) 9.24 1.8×10-13 (K2) 12.74 1.6×10-14 (K3) 13.85 次溴酸HBrO 2.4×10-98.626 氢氰酸H CN 6.2×10-109.217 碳酸H2CO34.2×10-7 (K1) 6.385.6×10-11(K2) 10.258 次氯酸HClO 3.2×10-87.59 氢氟酸HF 6.61×10-4 3.1810 锗酸H2GeO31.7×10-9 (K1) 8.78 1.9×10-13 (K2) 12.7211 高碘酸HIO4 2.8×10-2 1.5612 亚硝酸HNO2 5.1×10-4 3.2913 次磷酸H3PO2 5.9×10-2 1.2314 亚磷酸H3PO35.0×10-2 (K1) 1.3 2.5×10-7 (K2) 6.615 磷酸H3PO47.52×10-3 (K1) 2.12 6.31×10-8 (K2) 7.2 4.4×10-13 (K3) 12.3616 焦磷酸H4P2O73.0×10-2 (K1) 1.524.4×10-3 (K2) 2.36 2.5×10-7 (K3) 6.65.6×10-10 (K4) 9.2517 氢硫酸H2S 1.3×10-7 (K1) 6.88 7.1×10-15 (K2) 14.1518 亚硫酸H2SO31.23×10-2 (K1) 1.91 6.6×10-8 (K2) 7.1819 硫酸H2SO4 1.0×103 (K1) -31.02×10-2 (K2) 1.9920 硫代硫酸H2S2O32.52×10-1 (K1) 0.6 1.9×10-2 (K2) 1.7221 氢硒酸H2Se 1.3×10-4 (K1) 3.89 1.0×10-11(K2) 1122 亚硒酸H2SeO32.7×10-3 (K1) 2.57 2.5×10-7 (K2) 6.623 硒酸H2SeO41×103 (K1) -3 1.2×10-2 (K2) 1.9224 硅酸H2SiO31.7×10-10 (K1) 9.77 1.6×10-12 (K2) 11.825 亚碲酸H2TeO32.7×10-3 (K1) 2.57 1.8×10-8 (K2) 7.742. 有机酸在水溶液中的解离常数(25o C)Dissociation Constants of Organic Acids in Aqueous Solution (25o C)序号(No .) 名称(Name)化学式K a p K a(Chemical formula)1 甲酸HCOOH 1.8×10-4 3.752 乙酸CH3COOH 1.74×10-5 4.763 乙醇酸CH2(OH)COOH 1.48×10-4 3.834 草酸(COOH)25.4×10-2(K1) 1.27 5.4×10-5(K2) 4.275 甘氨酸CH2(NH2)COOH 1.7×10-109.786 一氯乙酸CH2ClCOOH 1.4×10-3 2.867 二氯乙酸CHCl2COOH 5.0×10-2 1.38 三氯乙酸CCl3COOH 2.0×10-10.79 丙酸CH3CH2COOH 1.35×10-5 4.8710 丙烯酸CH2═CHCOOH 5.5×10-5 4.2611 乳酸(丙醇酸) CH3CHOHCOOH 1.4×10-4 3.8612 丙二酸HOCOCH2COOH 1.4×10-3(K1) 2.852.2×10-6(K2) 5.6613 2-丙炔酸HC≡CCOOH 1.29×10-2 1.8914 甘油酸HOCH2CHOHCOOH 2.29×10-4 3.6415 丙酮酸CH3COCOOH 3.2×10-3 2.4916 α-丙胺酸 CH3CH NH2COOH 1.35×10-109.8717 β-丙胺酸CH2NH2CH2COOH 4.4×10-1110.3618 正丁酸CH3(CH2)2COOH 1.52×10-5 4.8219 异丁酸(CH3)2CHCOOH 1.41×10-5 4.8520 3-丁烯酸CH2═CHCH2COOH 2.1×10-5 4.6821 异丁烯酸CH2═C(CH2)COOH 2.2×10-5 4.6622 反丁烯二酸(富马酸)HOCOCH═CHCOOH9.3×10-4(K1) 3.033.6×10-5(K2)4.4423 顺丁烯二酸(马来酸)HOCOCH═CHCOOH1.2×10-2(K1) 1.925.9×10-7(K2)6.2324 酒石酸HOCOCH(OH)CH(OH)COOH 1.04×10-3(K1) 2.98 4.55×10-5(K2) 4.3425 正戊酸CH3(CH2)3COOH 1.4×10-5 4.8626 异戊酸(CH3)2CHCH2COOH 1.67×10-5 4.7827 2-戊烯酸CH3CH2CH═CHCOOH 2.0×10-5 4.728 3-戊烯酸CH3CH═CHCH2COOH 3.0×10-5 4.5229 4-戊烯酸CH2═CHCH2CH2COOH 2.10×10-5 4.67730 戊二酸HOCO(CH2)3COOH 1.7×10-4(K1) 3.77 8.3×10-7(K2) 6.0831 谷氨酸HOCOCH2CH2CH(NH2)COOH7.4×10-3(K1) 2.13 4.9×10-5(K2) 4.31 4.4×10-10 (K3) 9.35832 正己酸CH3(CH2)4COOH 1.39×10-5 4.8633 异己酸(CH3)2CH(CH2)3—COOH 1.43×10-5 4.8534 (E)-2-己烯酸H(CH2)3CH═CHCOOH 1.8×10-5 4.7435 (E)-3-己烯酸CH3CH2CH═CHCH2COOH 1.9×10-5 4.7236 己二酸HOCOCH2CH2CH2CH2COOH 3.8×10-5(K1) 4.42 3.9×10-6(K2) 5.4137 柠檬酸HOCOCH2C(OH)(COOH)CH2COOH 7.4×10-4(K1) 3.13 1.7×10-5(K2) 4.76 4.0×10-7(K3) 6.438 苯酚C6H5OH 1.1×10-109.9639 邻苯二酚(o)C6H4(OH)23.6×10-109.45 1.6×10-1312.840 间苯二酚(m)C6H4(OH)23.6×10-10(K1) 9.3 8.71×10-12(K2) 11.0641 对苯二酚(p)C6H4(OH)2 1.1×10-109.9642 2,4,6-三硝基苯酚2,4,6-(NO2)3C6H2OH 5.1×10-10.2943 葡萄糖酸CH2OH(CHOH)4COOH 1.4×10-4 3.8644 苯甲酸C6H5COOH 6.3×10-5 4.245 水杨酸C6H4(OH)COOH 1.05×10-3(K1) 2.98 4.17×10-13(K2) 12.3846 邻硝基苯甲酸(o)NO2C6H4COOH 6.6×10-3 2.1847 间硝基苯甲酸(m)NO2C6H4COOH 3.5×10-4 3.4648 对硝基苯甲酸(p)NO2C6H4COOH 3.6×10-4 3.4449 邻苯二甲酸(o)C6H4(COOH)21.1×10-3(K1) 2.96 4.0×10-6(K2) 5.450 间苯二甲酸(m)C6H4(COOH)22.4×10-4(K1) 3.62 2.5×10-5(K2) 4.651 对苯二甲酸(p)C6H4(COOH)22.9×10-4(K1) 3.543.5×10-5(K2)4.4652 1,3,5-苯三甲酸C6H3(COOH)37.6×10-3(K1) 2.12 7.9×10-5(K2) 4.1 6.6×10-6(K3) 5.1853 苯基六羧酸C6(COOH)62.1×10-1(K1) 0.68 6.2×10-3(K2)2.213.0×10-4(K3) 3.52 8.1×10-6(K4) 5.094.8×10-7(K5) 6.323.2×10-8(K6) 7.4954 癸二酸HOOC(CH2)8COOH 2.6×10-5(K1) 4.59 2.6×10-6(K2) 5.5955乙二胺四乙酸(EDTA)CH2—N(CH2COOH)2 1.0×10-2(K1) 2∣ 2.14×10-3(K2) 2.67CH2—N(CH2COOH)2 6.92×10-7(K3) 6.165.5×10-11(K4) 10.263. 无机碱在水溶液中的解离常数(25o C)Dissociation Constants of Mineral Bases in Aqueous Solution (25o C)序号(No .) 名称(Name)化学式K b p K b(Chemical formula)1 氢氧化铝Al(OH)3 1.38×10-9(K3) 8.862 氢氧化银AgOH 1.10×10-4 3.963 氢氧化钙Ca(OH)23.72×10-3 2.43 3.98×10-2 1.44 氨水NH3+H2O 1.78×10-5 4.755 肼(联氨)N2H4+H2O 9.55×10-7(K1) 6.02 1.26×10-15(K2) 14.96 羟氨NH2OH+H2O 9.12×10-98.047 氢氧化铅Pb(OH)29.55×10-4(K1) 3.02 3.0×10-8(K2) 7.528 氢氧化锌Zn(OH)29.55×10-4 3.024. 有机碱在水溶液中的解离常数(25o C)Dissociation Constants of Organic Bases in Aqueous Solution (25o C)序号(No.)名称(Name) 化学式(Chemical formula) K b p K b 1 甲胺CH3NH2 4.17×10-4 3.382 尿素(脲)CO(NH2)2 1.5×10-1413.823 乙胺CH3CH2NH2 4.27×10-4 3.374 乙醇胺H2N(CH2)2OH 3.16×10-5 4.55 乙二胺H2N(CH2)2NH28.51×10-5(K1) 4.07 7.08×10-8(K2) 7.156 二甲胺(CH3)2NH 5.89×10-4 3.237 三甲胺(CH3)3N 6.31×10-5 4.28 三乙胺(C2H5)3N 5.25×10-4 3.289 丙胺C3H7NH2 3.70×10-4 3.43210 异丙胺i-C3H7NH2 4.37×10-4 3.361,3-丙二胺NH2(CH2)3NH22.95×10-4(K1) 3.5311 3.09×10-6(K2) 5.511,2-丙二胺CH3CH(NH2)CH2NH25.25×10-5(K1) 4.2812 4.05×10-8(K2) 7.39313 三丙胺(CH3CH2CH2)3N 4.57×10-4 3.3414 三乙醇胺(HOCH2CH2)3N 5.75×10-7 6.2415 丁胺C4H9NH2 4.37×10-4 3.3616 异丁胺C4H9NH2 2.57×10-4 3.5917 叔丁胺C4H9NH2 4.84×10-4 3.31518 己胺H(CH2)6NH2 4.37×10-4 3.3619 辛胺H(CH2)8NH2 4.47×10-4 3.3520 苯胺C6H5NH2 3.98×10-109.421 苄胺C7H9N 2.24×10-5 4.6522 环己胺C6H11NH2 4.37×10-4 3.3623 吡啶C5H5N 1.48×10-98.8324 六亚甲基四胺(CH2)6N4 1.35×10-98.8725 2-氯酚C6H5ClO 3.55×10-6 5.4526 3-氯酚C6H5ClO 1.26×10-5 4.927 4-氯酚C6H5ClO 2.69×10-5 4.5728 邻氨基苯酚(o)H2NC6H4OH 5.2×10-5 4.28 1.9×10-5 4.7229 间氨基苯酚(m)H2NC6H4OH 7.4×10-5 4.13 6.8×10-5 4.1730 对氨基苯酚(p)H2NC6H4OH 2.0×10-4 3.73.2×10-6 5.531 邻甲苯胺(o)CH3C6H4NH2 2.82×10-109.5532 间甲苯胺(m)CH3C6H4NH2 5.13×10-109.2933 对甲苯胺(p)CH3C6H4NH2 1.20×10-98.9234 8-羟基喹啉(20℃) 8-HO—C9H6N 6.5×10-5 4.1935 二苯胺(C6H5)2NH 7.94×10-1413.136 联苯胺H2NC6H4C6H4NH25.01×10-10(K1) 9.3 4.27×10-11(K2) 10.37。

弱酸

弱酸
Hendersor—Hasse!balch方程弱酸在溶液中只有微弱的解离,酸与结合碱之间达到真正的平衡状态,若以 HA代表弱酸,则HA(aq)↔H+(aq)+A-(aq)
常见的
碳酸 乙酸
次氯酸 氢氟酸
碳酸(H₂CO₃)是一种二元弱酸,电离常数都很小。但也有认为其为中强酸,因为根据无机酸酸性强弱判断式 (OH)nROm可判断其酸性与磷酸相似。在常温、常压下,二氧化碳饱和溶液的浓度约为0.033mol/L,pH为5.6, pKa=6.37。
乙酸,也叫醋酸(36%--38%)、冰醋酸(98%),化学式CH3COOH,是一种有机一元酸,为食醋主要成分。 纯的无水乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.6℃(62℉),凝固后为无色晶体,其水溶液中呈弱 酸性且蚀性强,蒸汽对眼和鼻有刺激性作用。
乙酸可用作酸度调节剂、酸化剂、腌渍剂、增味剂、香料等。它也是很好的抗微生物剂,这主要归因于其可 使pH降低至低于微生物最适生长所需的pH。乙酸是我国应用最早、使用最多的酸味剂,主要用于复合调味料、配 制蜡、罐头、干酪、果冻等。用于调味料时,可将乙酸加水稀释至4%~5%溶液后,添加到各种调味料中应用。以 食醋作为酸味剂,辅以纯天然营养保健品制成的饮料称为国际型第三代饮料。
HA(aq)↔H+(aq)+A-(aq)
其溶液于平衡时,反应物及生成物的关系可用酸的电离平衡常数(Ka)表示如下:
Ka=[H+][A-]/[HA]
Ka愈大(或是pKa值愈小),就代表有愈多的氢离子(H+)生成,其pH值也就愈小。弱酸的Ka值大约在104~10-14之间,或是pKa值大于4。因此,除了少数的酸被定义为强酸或超强酸外,大部分的酸均是弱酸。有机酸 也是弱酸的重要一环,常见的家用弱有机酸包括醋内的乙酸,柠檬及不少生果内的柠檬酸等;无机酸当中如用作 抗菌剂的硼酸,及用在汽水当中的碳酸等。

弱酸弱碱的解离平衡常数与溶液的酸碱性

弱酸弱碱的解离平衡常数与溶液的酸碱性

弱酸弱碱的解离平衡常数与溶液的酸碱性化学作为一门广泛的学科,其中最重要的是探究物质的组成,性质与变化。

在化学反应过程中,酸碱性也是非常重要的知识点,尤其是讨论弱酸弱碱的解离平衡常数与溶液的酸碱性尤为重要。

所以本篇文章将着重讨论弱酸弱碱的解离平衡常数与溶液的酸碱性以及这些对化学反应的影响。

首先,什么是弱酸弱碱的解离平衡常数?解离平衡常数是用于计算溶液中某种物质(通常是弱酸弱碱)以及它的解离物的浓度之比的常数。

这一概念的根本问题是:其中的一种物质会在溶液中解离成它的原子或离子,而另一种物质则会在溶液中维持原状,并与溶液中的水分子相互作用。

因此,解离平衡常数反映了某种物质在溶液中解离的能力,从而可以用于计算弱酸弱碱物质在溶液中的浓度。

其次,弱酸弱碱的解离平衡常数如何影响溶液的酸碱性?由于弱酸弱碱物质能够在溶液中解离成离子,这将导致溶液的pH值发生变化。

从化学的角度来讲,pH值的变化会导致溶液的酸碱性发生变化,进而影响到化学反应的进行。

例如,弱酸弱碱解离物的化学反应会受到溶液的酸碱性的影响,如果 pH值变化较大,则反应的速率也会发生变化。

此外,当弱酸弱碱物质在溶液中解离出离子,离子会形成共价化合物,从而影响溶液中其它物质的酸碱性,这又会影响溶液中物质之间的化学反应。

最后,在实际应用中,弱酸弱碱的解离平衡常数通常用来测定水的pH值。

具体来说,通过测量水中弱酸弱碱物质的解离平衡常数,就可以测出其pH值,从而更好地控制水的酸碱性。

此外,弱酸弱碱解离平衡常数还可以用来研究水,植物和动物结构中的弱酸弱碱物质,从而更好地了解物质的化学结构及特性,从而进行有效的化学反应。

综上所述,弱酸弱碱的解离平衡常数与溶液的酸碱性具有密切的联系。

首先,解离平衡常数因其能够反映弱酸弱碱的解离物的浓度而被广泛应用于计算弱酸弱碱物质的浓度,其次,弱酸弱碱的解离平衡常数会影响溶液的酸碱性,进而影响化学反应的进行,最后,解离平衡常数通常用来测定水的pH值,研究水中弱酸弱碱物质,从而更好地控制水的酸碱性并进行有效的化学反应。

弱酸弱碱的解离平衡

弱酸弱碱的解离平衡

弱酸弱碱的解离平衡第三节弱酸弱碱的解离平衡弱酸弱碱的电离存在平衡.高中的电离平衡即解离平衡.一.一元弱酸和弱碱的解离平衡弱电解质的解离过程就是质子的传递过程.1.一元弱酸的解离常数例如醋酸:HAc+H 2O H 3O ++Ac -此式可简化成:HAc H ++Ac -在一定温度下达到电离平衡时有:[H +][Ac -]/[HAc]=K a (酸常数)2.一元弱碱的解离常数例如:氨水:NH 3+H 2O NH 4++OH -在一定温度下达到解离平衡时:[OH -][NH 4+]/[NH 3]=K b (碱常数)结论:K 的大小表示了弱电解质在水溶液中的解离程度.在温度相同时,K 越大表示解离程度越大,该弱电解质相对越强.K=10-2-10-7之间的酸或碱为弱酸或弱碱.K<10-7的弱酸或弱碱为极弱酸或极弱碱.3.对一对共轭酸碱,应有K a K b =K WNH 3+H 2O NH 4++OH - K b =[OH -][NH 4+]/[NH 3]NH 4++H 2O H 3O ++NH 3 K a =[H 3O +][NH 3]/[NH 4+] 显然有K a K b =K W[例题]教材P78的7题.解答如下:溶液的pH=9.25,则[H +]=10-9.25mol ·L -1,所以[OH -]=K W /[H +]=10-4.5mol ·L -1 NaX →Na ++X - X -+H 2O HX+OH -K b =[OH -][HX]/[X -]=10-4.5×10-4.5/0.3=10-9/0.3 K a =K W /K b =3×10-6二.弱电解质的解离度(电离度)与浓度和解离常数的关系1.解离度的概念(1)概念:一定温度下弱电解质在水溶液中达到解离平衡时,已解离的弱电解质分子占原来弱电解质分子的百分数叫该弱电解质的解离度.(2)公式:α= ×100% 请看教材P59表. 说明:公式中的分子和分母可用浓度代替.2.解离度与解离常数及弱电解质浓度的关系这里以HAc 为例分析如下.设HAc 的浓度为cmol ·L -1,解离度为α. 已解离的弱电解质分子数原来弱电解质分子总数HAc H+ + Ac-起始浓度mol·L-1 c 0 0平衡浓度mol·L-1 c-cα cα cαK a=[H+][Ac-]/[HAc]=c2α2/(c-cα)=cα2/(1-α) 当α很小时,1-α=1.则有K a=cα2或α=√K a/c容易得到[H+]=cα=√K a c对一元弱碱是类似的.以上公式是近似的,一般当α≤5%即C/K a≥500时才能用.[例题]教材P78的4题.解答提示:(1)方法一:直接代入K a=cα2=0.1×(2%)2=4×10-5.方法二:HAc H+ + Ac-起始浓度mol·L-1 0.1 0 0平衡浓度mol·L-1 0.098 0.002 0.002K a=[H+][Ac-]/[HAc]=0.0022/0.098=4.1×10-5(2)利用α=√K a/c 将K a=4.1×10-5和c=0.001mol·L-1代入得α=20%.(3)将α=1%和K a=4.1×10-5代入α=√K a/c 可得c=0.4mol·L-1[练习]教材P78的5题.解答提示:对0.2mol·L-1HAc,[H+]=√K a c 先查表(教材P172 pK a=4.76→K a=10-4.76=1.76×10-5)得K a 值. 将c和K a代入,结果是[H+]=1.88×10-3mol·L-1[练习]教材P78的3题.解答提示:先由质量分数计算NH3溶液的物质的量浓度:c=0.5mol·L-1.再查表P59氨水的K b=1.77×10-5,利用[OH-]=√K b c =2.97×10-3.利用[H+]=K W/[OH-]=3.367×10-12.则pH=11.47.此处也可查教材P172的NH4+的pK a=9.25,即K a=10-9.25,利用K W=K a K b得到K b=10-4.65=1.77×10-5[作业习题讲解]教材P78的8题(1)加NaAc溶液好.因为HCl电离出的H+可以和NaAc电离出的Ac-结合H++Ac- HAc,使[H+]降低.若加入HAc则其电离产生[H+],[H+]浓度不会有大的变化.(2)设原HCl溶液和加入的NaAc溶液各1LHCl+NaAc→NaCl+HAc反应后溶液中含[Ac-]=0.9mol·L-1,[HAc]=0.1mol·L-1HAc H++Ac-K a=[H+][Ac-]/[HAc]则[H+]=K a[HAc]/[Ac-]=1.76×10-5×0.1/0.9=1.956×10-6pH=5.7(3)设原HCl与加入的NaOH溶液各1LHCl+NaOH→NaCl+H2O 反应后[NaOH]=0.9mol·L-1[H+]=K W/[OH-]=10-14/0.9=1.11×10-14 pH=13.95(4)加入HAc溶液后,[HCl]=0.1mol·L-1,[HAc]=1mol·L-1.HAc的电离被抑制,则[H+]=0.1mol·L-1 pH=1[选学]三.多元弱酸和弱碱的解离平衡1.多元弱酸弱碱的含义凡在水溶液中释放出两个或多个质子的弱酸称为多元弱酸.能够接受两个或多个质子的碱称为多元弱碱.多元弱酸和弱碱是分步电离的.H2S H++HS- K a1=[H+][HS-]/[H2S]=9.1×10-8HS- H++S2- K a2=[H+][S2-]/[HS-]=1.1×10-12显然K a1>>K a2,当K a1/K a2≥100时,考虑第一步电离就可以了.我们一般也只考虑第一步电离.2.计算举例[例题]计算饱和H2S溶液(0.1mol·L-1)中的[H+]、[HS-]、[S2-]和H2S的解离度.(已知:K a1=9.1×10-8, K a2=1.1×10-12)(说明:有时需查表,例如教材P172的H2S的pKa1=7.05,pK a2=11.95→K a1=10-7.05=9.1×10-8,K a2=10-11.95=1.1×10-12) 解.(1)由于K a1>>K a2,则按一元弱酸处理.设[H+]=xmol·L-1H2S H++HS-平衡浓度mol·L-1 0.1-x x xK a1=[H+][HS-]/[H2S]=9.1×10-8由于c/K a1>500则可直接代入[H+]=[HS-]=√K a1c =9.5×10-5(2)计算[S2-]HS- H++S2- K a2=[H+][S2-]/[HS-]=1.1×10-12由于第二步解离极微弱,可认为[H+]=[HS-]则K a2=1.1×10-12mol·L-1(3)求H2S的解离度α=9.5×10-5/0.1=0.095%3.结论(1)计算多元弱酸溶液的[H+],按一元弱酸处理,[H+]=√K a1c(2)二元弱酸溶液中,酸根离子浓度近似等于K a2(3)需要高浓度的多元弱酸根时,用其盐.[选学]四.两性物质的解离平衡常见的两性物质有:多元弱酸的酸式酸根离子(HCO3-、HS-、H2PO4-、HPO42-)和弱酸弱碱盐(NH4Ac)及氨基酸等.1.酸式酸根离子(1)HCO3-作为酸:HCO3- H++CO32- K a2=[H+][CO32-]/[HCO3-]=5.6×10-11作为碱:HCO3-+H2O H2CO3+OH-K b2=[OH-][H2CO3]/[HCO3-]=K W/K a1=2.3×10-8K b2>>K a2.则溶液显碱性.经数学推导有:[H+]=√K a1K a2(2)H2PO4-作为酸:H2PO4- H++HPO42- K a2=[H+][HPO42-]/[H2PO4-]=6.23×10-8作为碱:H2PO4-+H2O OH-+H3PO4K b3=[OH-][H3PO4]/[H2PO4-]=K W/K a1=1.3×10-12K a2>>K b3.则溶液显酸性.经数学推导有:[H+]=√K a1K a2对HPO42-有:[H+]=√K a2K a3(3)弱酸弱碱盐①例如NH4Ac溶液,NH4+显酸性,Ac-显碱性NH4++H2O NH3+H3O+ K a(NH4+)=[NH3][H3O+]/[NH4+]=K W/K b(NH3)Ac-+H2O HAc+OH- K b(Ac-)=[HAc][OH-]/[Ac-]=K W/K a(HAc) 数学推导有:[H+]=√K W K a/K b =√K a K a’[H+]=√K W K a(HAc)/K b(NH3) =√K a(HAc)/K a(NH4+)②结论:K a K a’=K W为中性,K a K a’K W,为酸性.五.同离子效应和盐效应1.同离子效应例如向HAc中加入NaAc则HAc的解离平衡左移.同理向NH3溶液中加入NH4Cl则使NH3的解离平衡左移.HAc H++Ac- NH3+H2O NH4++OH-NaAc=Na++Ac- NH4Cl=NH4++Cl-向弱电解质溶液中加入与该弱电解质有共同离子的强电解质而使解离平衡左移,从而降低弱电解质的解离度的现象叫同离子效应.2.存在同离子效应时的计算[作业习题讲解]教材P79的10题.(1)混合后HCl和NaOH中和,余HCl0.05mol,[HCl]=0.1mol·L-1,pH=1(2)NH4Cl和NaOH恰好反应,得到的[NH3]=0.01/0.1=0.1mol·L-1利用[OH-]=√CK b =√0.1×1.77×10-5=1.33×10-3mol·L-1则[H+]=7.518×10-12mol·L-1则pH=11.12(3)NH4Cl和NaOH溶液反应后,余[NH4Cl]=0.067mol·L-1[NH3]=0.067mol·L-1NH3+H2O NH4++OH-K b=[NH4+][OH-]/[NH3]代入则K b=[OH-]=1.77×10-5mol·L-1则[H+]=K W/[OH-]=5.65×10-10mol·L-1则pH=9.25(4)NH4Cl和NaOH溶液反应后NaOH剩余,[NaOH]=0.005/0.075=0.067mol·L-1[NH3]=0.005/0.075=0.067mol·L-1OH-主要来源于NaOH,则[OH-]=0.067mol·L-1[H+]=K W/[OH-]=10-14/0.067=1.49×10-13mol·L-1 pH=12.82(5)反应后剩余NaOH0.01mol [NaOH]=0.01/0.05=0.2mol·L-1[H+]=5×10-4mol·L-1,pH=13.33.盐效应在弱电解质溶液的平衡体系中,加入不含弱电解质离子的强电解质,将促进弱电解质的电离,称为盐效应.解释:离子浓度加大,离子间互相牵制作用增强,离子结合成弱电解质分子的机会减小.同离子效应的同时也有盐效应,只不过是盐效应微弱.[复习思考题](教材P66的2-4题)2.相同浓度的盐酸和醋酸溶液的pH相等吗?相同pH值的盐酸和醋酸溶液的浓度相等吗?用相同浓度的NaOH溶液中和相同pH值的盐酸和醋酸溶液,哪个用量大?为什么?3.醋酸溶液稀释一倍,[H+]是原来的一半吗?为什么?4.在HAc溶液中分别加入HCl、NaAc、NaOH,对电离平衡有何影响.。

化学五大平衡常数

化学五大平衡常数

化学五大平衡常数化学五大平衡常数是指酸解离常数、碱解离常数、水解常数、金属离子配合物稳定常数、氧化还原电极电位常数。

这些常数经常出现在化学反应的研究中,相应的数值反映了不同平衡反应的强度和趋势。

下面将就这些平衡常数逐一展开阐述。

1. 酸解离常数(Ka)酸解离常数是指为了溶解H+离子而发生的酸溶解反应,其平衡常数表达式为 Ka=[H+][A-]/ [HA]。

在一定温度和溶剂中,Ka越大,酸性就越强,说明酸越容易给出H+离子,溶液的pH值会降低。

而Ka值越小,则说明酸性越弱,酸解离反应越难发生。

2. 碱解离常数(Kb)碱解离常数是指为了溶解OH-离子而发生的碱溶解反应,其平衡常数表达式为Kb=[OH-][BH+]/ [B]。

同样地,在一定温度和溶剂中,Kb越大,碱性就越强,说明碱越容易给出OH-离子,溶液的pH值会升高。

而Kb值越小,则说明碱性越弱,碱解离反应越难发生。

3. 水解常数(Kw)水解常数是指水在溶液中自身发生水解反应,平衡常数表达式为Kw=[H+][OH-]。

其中,Kw在25℃下大约为1.0×10^-14,是温度不变的常数。

当溶液中酸性强时,[H+]大,[OH-]小,反之亦然。

这方面比较特殊的情况是在中性溶液下,[H+]=[OH-]=1.0×10^-7,pH=7。

4. 金属离子配合物稳定常数(Kf)金属离子与配位体反应生成配合物时,稳定常数Kf反映了这种反应的强度和趋势。

金属离子配合物稳定程度越高,Kf值就越大,反之亦然。

配合物对某些应用如化学分析和工业化学等方面也比较重要。

5. 氧化还原电极电位常数(E)氧化还原电极的电位可以用氧化还原电极电位来描述,其表达式为:E=E°- (RT/nF)lnQ。

其中,E°是氧化还原反应在标准状态下的电极电位,R为气体常数,T为温度(K),n为电子数,F为法拉第常数,Q为反应物浓度的乘积。

通常来说,当E>0,则反应趋势为氧化,是氧化反应;当E<0,则反应趋势为还原,是还原反应。

碱解离常数kb公式

碱解离常数kb公式

碱解离常数kb公式
碱的解离常数通常用Kb表示,计算公式为Kb = [BH+][OH-]/[B]。

其中,[BH+]、[OH-]和[B]分别表示碱的氢离子浓度、氢氧根离子浓度和碱的浓度。

Kb越大,pKb越小,碱性越强。

对于一对共轭酸碱对而言,通过公式推导可知pKa+pKb=pKw=14(25℃)。

例如当NH3做碱时pKb为4.75,生成共轭酸NH4+,NH4+的pKa为9.25,两者之和为14。

但人们有时依然习惯用pKa表示碱性的强弱,此处的pKa并不代表碱的pKa,而是指其共轭酸的pKa,共轭酸的pKa越大,则碱的pKb 越小,碱的碱性越强。

当然对于有些分子即可做酸,也可做碱,例如苯胺做酸时会电离产生H+,其pKa=28,此时的pKa指其作为酸的pKa。

当苯胺做碱时,其pKa=4.6,此时的Pka实际指的是其共轭酸的pKa。

以上信息仅供参考,如需了解关于化学公式的更多信息,建议查阅化学书籍或咨询化学专家。

标准解离常数

标准解离常数

标准解离常数标准解离常数是化学中一个非常重要的概念,它是描述溶液中弱酸或弱碱的离解程度的一个参数。

在化学反应中,溶液中的弱酸或弱碱会发生离解反应,产生离子,而标准解离常数就是描述这个反应的离解程度的一个参数。

标准解离常数通常用Kw表示,它是水的离解常数,也就是水分子自离解成氢离子和氢氧根离子的反应的平衡常数。

在标准条件下,即温度为25℃,Kw的值为1.0×10^-14。

这个值是由水的自离解反应的平衡常数计算得出的,反应式为:H2O ⇌ H+ + OH-根据化学反应的平衡常数公式,Kw = [H+][OH-],其中[H+]表示溶液中的氢离子浓度,[OH-]表示溶液中的氢氧根离子浓度。

在标准条件下,Kw的值是一个常数,它表示水的离解程度非常小,只有10^-7摩尔左右。

除了水的离解常数Kw之外,还有许多其他的标准解离常数,比如弱酸的解离常数Ka和弱碱的解离常数Kb。

弱酸的解离常数Ka表示弱酸在水中离解成氢离子和其共轭碱的反应的平衡常数,反应式为:HA ⇌ H+ + A-其中HA表示弱酸,A-表示弱酸的共轭碱。

Ka的值越大,说明弱酸的离解程度越大,反之则越小。

弱碱的解离常数Kb表示弱碱在水中离解成氢氧根离子和其共轭酸的反应的平衡常数,反应式为:B + H2O ⇌ BH+ + OH-其中B表示弱碱,BH+表示弱碱的共轭酸。

Kb的值越大,说明弱碱的离解程度越大,反之则越小。

标准解离常数是描述溶液中弱酸或弱碱的离解程度的一个重要参数,它可以用来计算溶液中的氢离子或氢氧根离子的浓度,从而帮助我们了解化学反应的过程和性质。

在实际应用中,我们可以通过测量溶液的pH值来计算溶液中的氢离子或氢氧根离子的浓度,从而进一步计算出溶液的解离常数。

标准解离常数是化学中一个非常重要的概念,它可以帮助我们了解溶液中弱酸或弱碱的离解程度,从而进一步研究化学反应的过程和性质。

在实际应用中,我们需要掌握计算标准解离常数的方法,以便更好地应用它来解决化学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档