一种高纯度氧化铝的制备方法
高纯纳米氧化铝

高纯纳米氧化铝
高纯纳米氧化铝,作为一种重要的无机材料,具有许多优异的性能和广泛的应用领域。
本文将从其基本性质、制备方法、应用领域等方面进行介绍和探讨。
高纯纳米氧化铝,是指氧化铝的纳米级颗粒,其粒径一般在1-100纳米之间。
相比于传统的微米级氧化铝粉末,纳米氧化铝具有更高的比表面积和更好的化学活性。
由于其微观结构的特殊性,高纯纳米氧化铝表现出许多独特的物理和化学性质。
制备高纯纳米氧化铝的方法有很多种,常见的包括溶胶-凝胶法、气相沉积法、水热法等。
这些方法可以控制氧化铝颗粒的大小、形貌和分布,从而调控其性能。
高纯纳米氧化铝通常具有较高的结晶度和纯度,可以满足各种应用的需求。
高纯纳米氧化铝在许多领域都有着重要的应用价值。
在材料科学领域,它被广泛应用于制备高性能陶瓷、高强度复合材料等。
在电子工业中,高纯纳米氧化铝可以作为电介质、导电材料等。
此外,高纯纳米氧化铝还被用作催化剂、吸附剂、抗菌材料等,展现出广阔的应用前景。
总的来说,高纯纳米氧化铝作为一种重要的无机材料,具有许多优异的性能和潜在的应用价值。
随着科学技术的不断发展,相信高纯纳米氧化铝在更多领域会展现出其独特的魅力,为人类社会的进步
和发展做出更大的贡献。
希望未来能有更多的研究人员投入到高纯纳米氧化铝的研究和开发中,推动其应用范围的不断拓展,为人类创造更美好的生活。
高纯氧化铝粉末主制备方法有哪些?

气相法化学气相沉积法气相法制备高纯超细氧化铝粒子是以金属单质、卤化物、氢化物或者有机化合物为原料,进行气相热分解或其他化学反应来合成精细微粒,主要采用化学气相沉积法。
如意大利的科研人员利用室温下蒸汽压较高的烷基铝和N2O作为反应物,加入乙烯作为反应敏化剂,用CO2激光加热反应使之反应,合成了粒度为15-20nm的球形α-Al2O3颗粒。
激光诱导气相沉积法激光诱导气相沉积法是利用充满氖气、氙气和HCl的激光器提供能量,生成一定频率的激光,聚焦到移动旋转的铝靶上,融化铝靶产生氧化铝蒸汽,冷却后得到精细氧化铝粉体。
这种方法加热和冷却的速度都快,粒径分布均匀,反应污染小。
等离子气相合成法等离子气相合成法可分为高频等离子体法、直流电弧等离子体法、复合等离子体法等。
高频等离子体法能量的利用率低,生产出的产物稳定性也较弱;直流电弧等离子体法是利用电弧间的高温,在反应气体等离子化的过程中使电极蒸发或熔化;复合等离子体法是将前两种方法、融为一体,在产生直流电弧时不需电极,因而产物纯度高,生产效率提高的同时也提高了系统的稳定性。
惰性气体凝聚加原位加压法该法通常是在真空蒸发室内充入低压惰性气体,通过加热使原料气化或形成等离子体,与惰性气体原子碰撞而失去能量,然后骤冷使之凝结成超细粉体。
不过此法成本太高,不适合工业化生产。
固相法固相法是制备α-Al2O3粉体的常用方法,制备工艺简单,产量大,成本低,容易实现产业化生产。
但是固相法生产氧化铝粉体能耗高、效率低,制备的粉体颗粒不均且形态和功能都受到了工艺本身的很大限制,因此利用此方法很难得到颗粒细小、纯度高的α-Al2O3粉体。
目前,固相法主要分为机械粉碎法、非晶晶化法和热解法等。
机械粉碎法机械粉碎法是利用球磨机、行星磨、气流磨等粉碎设备将原料直接粉碎研磨成超细粉的方法。
目前应用较多的是球磨机,通过球磨机的振动和转动,为原料提供能量,使得原料受到硬球的强烈撞击,粉碎成细小颗粒,从而制备出精细粉体。
以粉煤灰为原料制备高纯氧化铝

当前,我国在对粉煤灰进行利用的过程中,主要的应用领域在建材方面,以此在利用价值方面,始终面临着使用剂量有限的问题。
在进行使用的过程中,基本上采用的为石灰石烧结法、酸浸取法,可以有效的在反应的过程中,提取粉煤灰当中的氧化铝成分,但是实际的效率较低,以此在本文的分析过程中,就针对粉煤灰的综合利用进行了相应的研究,以此提升氧化铝的实际提取效果。
一、实验工艺1.实验原料在本文的研究过程中,所采用的粉煤灰,是来自于某省份的电厂,其粉煤灰当中的含铝以及含硅成分都比较高,而其他的元素含量较少,以此有着较高的利用价值。
在本文的实验当中,选择使用硫酸铵、硫酸以及氨水,进行分析纯。
而在实验当中使用的水,都是二次蒸馏水。
2.实验内容在粉煤灰使用的过程中,需要将其磨细活化,而在通过这样的活化处理之后,就马上与硫酸铵进行一定比例的混合,需要在行星磨当中进行磨混处理。
之后将充分研磨之后,就可以有效的在进行高温下的煅烧处理。
之后在完成了煅烧之后,便可以取出,加入一定量的硫酸。
并保持在90摄氏度的环境下,进行浸入4个小时左右。
之后需要进行过滤处理,将其28%的氨水加入其中,以此将pH值调整为2.接着继续搅拌12个小时左右。
这样就可以过滤出固体,之后再将其冷风吹干,进而进行XRD方面的具体分析。
之后将其冷却到室温的时候,就可以滤出晶体,之后在将其试验重复三次之后,就可以得到纯净度较高的硫酸铝铵中间体。
在本实验当中,采用的是化学滴定分析法,对其溶液当中的铁离子、硅离子进行含量测定的过程中,采用的是光度法进行测定。
而在中间体进行分析的过程中,是采用热重失重的方式进行分析,进而充分的对其分解条件进行分析。
二、结果分析在本文的实验过程中,需要在最佳的条件下,进行烧结混合料。
之后发现,其粉煤灰当中的氧化铝,在提取率方面,达到了95%左右的效果,而在烧结之后,在进行浸入以及之后的pH值调节之后,使得氧化铝的纯净度,可以达到大于99.9%的程度。
制备高纯纳米氧化铝粉体的方法

制备高纯纳米氧化铝粉体的方法高纯纳米氧化铝粉体的制备方法有很多,大致可分为固相法、液相法、气相法等。
各种方法都有其一定优势,但是也存在不足,因此一般根据实际产品要求来选择不同的制备方法。
1.固相法固相法主要是将铝或铝盐研磨煅烧,发生固相反应后直接得到纳米氧化铝的方法。
该法可分为:机械粉碎法、固相反应法;机械粉碎法是用各种超细粉碎机将原料直接粉碎成超细粉。
常见的超细粉碎机有:球磨机、行星磨、塔式粉碎机和气流磨粉碎机等;应用较多的是球磨机,但该法很难使粒径达到100nm以下。
固相法制备超细粉比较简单,但是生成的粉体容易产生团聚并且粉末粒度不易控制。
固相反应法又可大致化学溶解法、非晶晶化法、燃烧法。
a)化学溶解法化学溶解法主要包括碳酸铝铵热解法、喷雾热解法、铵明矾热解法三种;铵明矾热解法是通过用硫酸铝铵与硫酸铵反应制得明矾,再根据产品纯度要求再多次重结晶精制,最后将精制的铵明矾加热分解成Al2O3,其反应过程为: 2Al(OH)3+3H2SO4 → Al2(SO4)3 + 6H2O Al2(SO4)3 + (NH4)2SO4 + 24H2O → 2NH4Al(SO4)2·12H2O 2NH4Al(SO4)2·12H2O → Al2O3 + 2NH3 + 4SO3 + 13H2O 煅烧过程收集的炉气可制成硫酸铵循环使用。
该方法工艺简单,但由于生产周期长,难于应用于实际规模化生产。
对铵明矾热解法改进后形成了碳酸铝铵热解法,通过前驱体NH4AlO(OH)HCO3的合成和热解得到高纯度超细氧化铝。
李江[6]等应用分析纯硫酸铝铵和碳酸氢铵为原料,采用湿化学法制备单分散超细NH4Al2(OH)2CO3先驱沉淀物,在1100℃下灼烧得到平均粒径为20nm的α-Al2O3纳米粉体。
该方法不产生腐蚀性气体,无热分解时的溶解现象,有利产品粒径的控制并且能简化操作,适合于工艺化生产。
喷雾热解法是将金属盐溶液以雾状喷入高温气氛中,从而使其中的水分蒸发,金属盐发生分解,析出固相,直接制备出纳米氧化铝陶瓷粉好方法。
氧化铝含铝废渣经硫酸钠水解焙烧提取铝制备氧化铝

氧化铝含铝废渣经硫酸钠水解焙烧提取铝制备氧化铝氧化铝(Al2O3)是一种常见的无机化合物,被广泛应用于陶瓷、电子、建筑材料等领域。
氧化铝的制备过程中,常用的原料是含铝废渣,通过硫酸钠(Na2SO4)的水解焙烧来提取铝,制备氧化铝。
本文将详细介绍氧化铝含铝废渣经硫酸钠水解焙烧提取铝制备氧化铝的相关理论基础和实验步骤。
一、理论基础:1.1 氧化铝(Al2O3)的性质和应用:氧化铝是由氧化铝矿石制备而成的,是一种白色结晶固体。
它具有良好的物理和化学性质,具有高的熔点、硬度和化学稳定性,可在高温下保持稳定的形态。
因此,氧化铝被广泛应用于陶瓷、电子、建筑材料等领域。
1.2 含铝废渣的特点和利用:含铝废渣是含有一定氧化铝含量的固体废弃物,通常是铝冶炼过程中的副产物。
含铝废渣的特点是含有较高的氧化铝含量,但同时也含有其他杂质,如铁、钙、硅等。
因此,含铝废渣不能直接用于制备氧化铝,需要进行水解焙烧提取铝的处理过程。
1.3 硫酸钠的水解反应:硫酸钠在水中进行水解反应,生成硫酸和氢氧化钠。
其反应方程式如下:Na2SO4 + 2H2O → 2H2SO4 + 2NaOH二、实验步骤:2.1 处理含铝废渣:首先,将含铝废渣进行预处理。
将废渣进行破碎、磁选等处理,去除其中的石块和磁性杂质。
然后,将处理后的含铝废渣与硫酸钠按一定比例混合均匀。
2.2 硫酸钠水解焙烧:将混合好的含铝废渣与硫酸钠放入反应釜中,加入适量的水,搅拌均匀。
然后,将反应釜加热,控制温度在120-150摄氏度,持续反应一段时间。
在这个过程中,硫酸钠发生水解反应,生成硫酸和氢氧化钠,并与废渣中的氧化铝发生反应。
2.3 过滤和洗涤:经过水解焙烧后,废渣中的氢氧化钠溶解在水中,而氧化铝则固定在废渣中。
将反应混合物过滤,将固体废渣和液体分离开。
然后,对固体废渣进行多次的水洗,以去除其中的杂质。
2.4 煅烧和氧化:将洗涤干净的固体废渣放入炉中进行煅烧和氧化处理。
首先,将固体废渣进行预热,控制温度在200-350摄氏度,去除其中的水分。
高纯氧化铝制备

⾼纯氧化铝制备摘要超细氧化铝因其具有⾼熔点和⾼硬度、良好的耐磨、耐蚀、耐热及绝缘等性能被⼴泛⽤于制作结构和功能材料。
本论⽂采⽤了两种⾼温煅烧的⽅法煅烧分析纯硫酸铝铵和碳酸铝铵制备氧化铝粉体,研究硫酸铝铵在800℃,900℃,1000℃,1100℃温度下煅烧和碳酸铝铵在1000℃,1100℃下煅烧出粉末的分散性能以及形貌特征,得出了如下的研究结论:煅烧硫酸铝铵(1)硫酸铝铵在800℃,900℃下煅烧(保温30分钟)出的产物为硫酸铝粉末,900℃下煅烧出的硫酸铝粉末粒度⽐800℃下煅烧出来的⼩。
(2)硫酸铝铵在1000℃下煅烧(保温30分钟)产物为氧化铝粉末,硫酸铝氨完全转化为氧化铝粉末。
(3)硫酸铝铵在1100℃下煅烧(保温30分钟)产物为3种不同的氧化铝粉末,分别是:θ,γ和α型,θ,γ型部分转化成α型的粉末。
煅烧炭酸铝铵(1)关键词:氧化铝;硫酸铝氨;⾼温煅烧Abstract第⼀章综述..................................................................- 3 - 1.1引⾔.........................................................................................................................................- 3 - 1.2氧化铝粉末............................................................................................................................- 4 - 1.3.氧化铝粉末的⽤途................................................................................................................- 5 -(1)陶瓷材料和复合材料: ................................................................................................- 5 - (2)表⾯防护层材料............................................................................................................- 5 - (3)催化剂及其载体............................................................................................................- 5 - (4)⽣物及医学的应⽤........................................................................................................- 6 - 1.7固体颗粒在液体中的聚集状态.............................................................................................- 8 - 1.8超细颗粒的分散⼿段以及稳定机理.....................................................................................- 9 - 1.9超细粉体的形貌控制...........................................................................................................- 10 -1.10本课题研究的⽬的和意义.................................................................................................- 10 -2.1 实验原理 ............................................................................................................................. - 11 - 2.2 实验⽅案设计...................................................................................................................... - 11 - 2.3流程图..................................................................................................................................- 12 - 2.4实验⽤到的仪器和药品.......................................................................................................- 13 - 2.5 检测⽅法.............................................................................................................................- 13 -(1) X射线衍射法...........................................................................................................- 13 - (2)粒度分析法................................................................................................................- 13 -第三章实验结果与讨论..............................................- 15 - 3.1 粒度分析结果......................................................................................................................- 15 - 3.2 X射线衍射测试结果............................................................................................................- 17 -.....................................................................................................................................................- 18 -第四章结论..............................................................- 19 -第⼀章综述1.1引⾔随着炼铝⼯业的迅速发展,氧化铝⽣产已经发展成为⼀个⼤型的⼯业部门。
直接水解法生产高纯氧化铝工艺研究

直接水解法生产高纯氧化铝工艺研究摘要:研究了直接水解法生产高纯氧化铝工艺,包括原料预处理、碱处理过程、Al2O3熔液脱水过程和水解反应过程。
通过考察反应温度、反应时间、 pH值和反应气体成分等对氧化铝纯度的影响,确定了生产高纯氧化铝的工艺条件。
氧化铝原料主要由铝矾土组成,具有很强的碱性特征。
氧化铝在常温常压下呈酸性,一般以浓硫酸或盐酸为催化剂进行分解。
铝土矿中氧化铝的含量为99.999%-99.99%。
由于氧化铝本身在高温下具有较强的氧化能力和还原作用,因而通常将高纯氧化铝用于生产氧化铝材料。
关键词:直接水解法;高纯氧化铝;制备方法前言我国已探明铝土矿储量大约为40亿 t,约占世界铝土矿总储量的1/3左右;按中国铝工业协会(CNAA)统计,我国电解石开采量已经达到每年500万 t;但目前我国只有一家电解石矿厂在生产氧化锌。
氧化铝是重要的基础化工材料,它与很多金属化合物都具有良好的化学性能。
作为一种金属化合物,它与铁、铜、铝等组成多元合金,在化学、材料工业上有广泛而重要的应用;它还是催化剂和触媒材料中重要的组分之一,广泛应用于冶金、石油化工、陶瓷和玻璃等工业部门。
铝土矿经过氧化焙烧过程生成氧化铝及其化合物。
为了使氧化铝产品纯度更高且符合市场需要,必须采用各种方法对铝土矿中含有物进行脱除和提纯。
1、工艺流程用来提取氧化铝的矿石在铝土矿精矿粉磨后,再经过球磨机粉碎,采用直接水解法生产高纯氧化铝。
将粉碎后的矿石与硫酸和水按一定比例配成混合溶液,再加入石灰水使溶液 pH值达到5.5左右。
采用直接水解法制备高纯氧化铝,通过调节 PH值可控制原料中Al2O3的含量。
当 pH大于8.5时,Al2O3含量降低并接近于0。
当 pH低于8时铝酸的分解不完全,产生大量的 CaO、 MgO和CaSO4等杂质物质,影响后续产品质量。
2原料Al2O3的化学性质活泼,不稳定,在100℃以上容易分解生成三氧化二铝和四氧化三铝等氧化物及氢氧化铝和氧化钙等碱性氧化物。
一种高纯纳米氧化铝的制备方法与流程

一种高纯纳米氧化铝的制备方法与流程随着纳米材料在材料科学领域的广泛应用,高纯纳米氧化铝作为一种重要的纳米材料,具有广泛的应用前景。
在工业生产中,高纯纳米氧化铝的制备方法和工艺流程对其性能和应用具有决定性的影响。
本文将介绍一种高纯纳米氧化铝的制备方法与流程,以期为相关领域的研究和应用提供参考。
一、原料准备1. 纯度较高的氧化铝粉末作为起始原料,需要满足工业标准要求,纯度不低于99.99。
2. 溶剂的选择:优质的溶剂对制备高纯纳米氧化铝至关重要,通常选择高纯度的乙醇或丙酮作为溶剂。
二、制备步骤1. 氧化铝粉末预处理将纯度较高的氧化铝粉末置于密闭容器中,进行干燥处理,去除其表面的水分和杂质。
干燥的温度和时间需要根据实际情况进行调整,确保氧化铝粉末的干燥度达到要求。
2. 氧化铝粉末的分散取适量的氧化铝粉末,加入预先准备的溶剂中,在搅拌下进行分散处理。
分散的时间和速度需要控制在一定范围内,确保氧化铝粉末在溶剂中均匀分散。
3. 氧化铝粉末的球磨处理将分散均匀的氧化铝粉末置于球磨机中进行球磨处理,球磨的时间和速度需要进行实验确定,通常在较低的速度下进行长时间的球磨,以确保氧化铝粉末的颗粒尺寸得以均匀细化。
4. 氧化铝粉末的煅烧处理将球磨处理后的氧化铝粉末置于高温煅烧炉中进行煅烧处理,煅烧的温度和时间需要根据实际情况进行调整,通常在高温下进行一定时间的煅烧,以使氧化铝粉末得到完全的结晶和晶粒的长大。
5. 纳米氧化铝的分离和提纯将煅烧处理后的产物置于溶剂中进行萃取处理,将未反应的氧化铝粉末和煅烧过程中生成的杂质分离出来,得到较纯的纳米氧化铝颗粒。
6. 纳米氧化铝的干燥和成型将分离和提纯后的纳米氧化铝颗粒进行干燥处理,使其达到工业要求的水分含量。
根据实际需求,可以对纳米氧化铝颗粒进行成型处理,制备成片状、粉末状或其他形态的纳米氧化铝产品。
三、总结通过以上步骤的有序进行,可以获得较高纯度和良好分散性的纳米氧化铝颗粒,适用于电子材料、催化剂、涂料、高温陶瓷等领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明书摘要
一种高纯度氧化铝的制备方法,包括以下几个步骤:(1)丁醇和金属铝反应;(2)减压蒸馏;(3)水解;(4)一次煅烧;(5)球磨;(5)二次煅烧。
本发明通过制备丁醇铝,再经过水解和煅烧,步骤少,丁醇可重复利用多次,制备出来的氧化铝纯度高,采用ICP-MS检测达到5N;平均粒径小,为0.01-0.03μm;比表面积为3-6 m2/g,本发明减压蒸馏可提高丁醇铝的纯度,从而提高氧化铝的纯度;采用离子交换树脂进一步除杂,保证氧化铝晶粒的形成,提高氧化铝的纯度,制备过程无污染、能耗低,绿色环保,适合工业化生产。
权利要求书
1.一种高纯度氧化铝的制备方法,其特征在于,包括以下几个步骤:(1)将丁醇和金属铝加入合成塔中,加入催化剂硫酸铝,在温度为90℃-110℃的条件下,优选90-100℃,反应1-2h,得到丁醇铝;将丁醇铝通过离子交换树脂;其中,丁醇和金属铝的摩尔比为4:1,硫酸铝的重量为丁醇和金属铝总重量的0.5-1.5%;
(2)将步骤(1)中得到的丁醇铝移入减压蒸馏塔中,加热到150℃-180℃,减压蒸馏后得到高纯度的丁醇铝;
(3)将纯水加热至50-80℃,加入步骤(2)中得到的丁醇铝和催化剂硬脂酸,在搅拌的条件下进行水解反应,通过水解得到水合氧化铝,其中纯水与丁醇铝的摩尔比为2:1,硬脂酸的重量为丁醇铝重量的1-2%;
(4)将步骤(3)中得到的水合氧化铝在80℃-120℃的条件下烘干脱去表层水后,置于高温煅烧炉中加热到800℃-1100℃,保持3-4h,自然冷却得到氧化铝;
(5)将得到的氧化铝通过湿法球磨法粉碎,其中氧化铝、水和球的重量比为1:4:7;
(6)经过球磨的氧化铝在80℃-120℃,富氧的条件下烘干脱水后,置于高温煅烧炉中加热到1200℃-1300℃,保持3-4h,快速冷却至500-600℃,然后自然冷却得到高纯度氧化铝。
2.根据权利要求1所述的一种高纯度氧化铝的制备方法,其特征在于,所述金属铝的纯度大于等于99%。
3. 根据权利要求1所述的一种高纯度氧化铝的制备方法,其特征在于,所述丁醇为异丁醇。
4. 根据权利要求1所述的一种高纯度氧化铝的制备方法,其特征在于,离子交换树脂的用量为丁醇铝重量的20-40%。
5. 根据权利要求1所述的一种高纯度氧化铝的制备方法,其特征在于,丁醇铝通过离子交换树脂的时间为2-3h。
一种高纯度氧化铝的制备方法
技术领域
本发明涉及一种氧化铝的制备方法,具体涉及一种高纯度氧化铝的制备方法
背景技术
随着高科技产业的飞速发展,对高纯氧化铝粉体的需求日趋增长,市场前景十分广阔。
目前,我国高压钠灯管产量已高达1 亿只,氧化铝IC 基板年需求量超过100 万平方米。
蓝宝石IC 基板、金卤灯、汽车灯管和数码视窗等产品也陆续投入市场,据初步估算,仅我国市场对高纯氧化铝粉体的年需求量即可高达10,000 吨以上,金额高达80 亿元人民币,而国际市场规模则更为可观。
我国目前制备高纯氧化铝的方法主要有两种方法,一种是碳酸铝胺热分解方法,该法制备的氧化铝粉体纯度达不到5N 水平,另一种方法是烧结法,但是烧结法步骤繁多,操作复杂。
发明内容
本发明目的是:提供一种简单快捷的高纯度氧化铝的制备方法。
本发明的技术方案是:
一种高纯度氧化铝的制备方法,包括以下几个步骤:
(1)将丁醇和金属铝加入合成塔中,加入催化剂硫酸铝,在温度为90℃-110℃的条件下,优选90-100℃,反应1-2h,得到丁醇铝;将丁醇铝通过离子交换树脂;其中,丁醇和金属铝的摩尔比为4:1,硫酸铝的重量为丁醇和金属铝总重量的0.5-1.5%;反应方程式为4Al+6C4H10O=2Al2(C4H9O)3+3H2;
(2)将步骤(1)中得到的丁醇铝移入减压蒸馏塔中,加热到150℃-180℃,减压蒸馏后得到高纯度的丁醇铝;
(3)将纯水加热至50-80℃,加入步骤(2)中得到的丁醇铝和催化剂硬脂酸,在搅拌的条件下进行水解反应,通过水解得到水合氧化铝,其中纯水与丁醇铝的摩尔比为2:1,硬脂酸的重量为丁醇铝重量的1-2%;反应方程式为Al2(C4H9O)3+3H2O=Al2(OH)3+3C4H10O;
(4)将步骤(3)中得到的水合氧化铝在80℃-120℃的条件下烘干脱去表层水后,置于高温煅烧炉中加热到800℃-1100℃,保持3-4h,自然冷却
得到氧化铝;
(5)将得到的氧化铝通过湿法球磨法粉碎,其中氧化铝、水和球的重量比为1:4:7;
(6)经过球磨的氧化铝在80℃-120℃,富氧的条件下烘干脱水后,置于高温煅烧炉中加热到1200℃-1300℃,保持3-4h,快速冷却至500-600℃,然后自然冷却得到高纯度α-氧化铝。
所述的一种高纯度氧化铝的制备方法,所述金属铝的纯度大于等于99%。
所述的一种高纯度氧化铝的制备方法,所述丁醇为异丁醇。
所述的一种高纯度氧化铝的制备方法,离子交换树脂的用量为丁醇铝重量的20-40%。
所述的一种高纯度氧化铝的制备方法,丁醇铝通过离子交换树脂的时间为2-3h。
采用硫酸铝作为丁醇和金属铝反应的催化剂,缩短了反应的时间,从原本的6-8h至1-2h;采用硬脂酸作为水解反应的催化剂,能降低反应的温度。
本发明的优点是:
1.通过制备丁醇铝,再经过水解和煅烧,步骤少,丁醇可重复利用多次,制备出来的氧化铝纯度高,采用ICP-MS检测达到5N;平均粒径小,为0.01-0.03μm;比表面积为3-6 m2/g。
2.两次煅烧可以显著降低氧化铝粒径,提高比表面积。
3.减压蒸馏可提高丁醇铝的纯度,从而提高氧化铝的纯度;采用离子交换树脂进一步除杂,保证氧化铝晶粒的形成,提高氧化铝的纯度。
4.过程无污染、能耗低,绿色环保,适合工业化生产。
具体实施方式
实施例1
一种高纯度氧化铝的制备方法,包括以下几个步骤:
(1)将异丁醇和金属铝加入合成塔中,加入催化剂硫酸铝,在温度为110℃的条件下,反应1h,得到异丁醇铝;将异丁醇铝通过离子交换树脂;其中,异丁醇和金属铝的摩尔比为4:1,硫酸铝的重量为丁醇和金属铝总重量的0.5%;离子交换树脂的用量为异丁醇铝重量的40%;异丁醇铝通过离
子交换树脂的时间为3h。
(2)将步骤(1)中得到的异丁醇铝移入减压蒸馏塔中,加热到150℃,减压蒸馏后得到高纯度的异丁醇铝;
(3)将纯水加热至80℃,加入步骤(2)中得到的异丁醇铝和催化剂硬脂酸,在搅拌的条件下进行水解反应,通过水解得到水合氧化铝,其中纯水与异丁醇铝的摩尔比为2:1,硬脂酸的重量为异丁醇铝重量的2%;
(4)将步骤(3)中得到的水合氧化铝在120℃的条件下烘干脱去表层水后,置于高温煅烧炉中加热到800℃,保持3h,自然冷却得到氧化铝;
(5)将得到的氧化铝通过湿法球磨法粉碎,其中氧化铝、水和球的重量比为1:4:7;
(6)经过球磨的氧化铝在120℃,富氧的条件下烘干脱水后,置于高温煅烧炉中加热到1300℃,保持3h,快速冷却至500℃,然后自然冷却得到高纯度а-氧化铝。
所述的一种高纯度氧化铝的制备方法,所述金属铝的纯度大于等于99%。
本实施例中,制备出来的氧化铝纯度达到5N;平均粒径为0.01μm;比表面积为6 m2/g。
对比例1
对比例1与实施例1条件相同,只是丁醇铝没有通过离子交换树脂,最后制备出来的氧化铝纯度为3N;平均粒径为0.01μm;比表面积为6 m2/g。
实施例2
一种高纯度氧化铝的制备方法,包括以下几个步骤:
(1)将丁醇和金属铝加入合成塔中,加入催化剂硫酸铝,在温度为90℃的条件下,反应2h,得到丁醇铝,将丁醇铝通过离子交换树脂;其中,丁醇和金属铝的摩尔比为4:1,硫酸铝的重量为丁醇和金属铝总重量的1.5%;离子交换树脂的用量为丁醇铝重量的20%,丁醇铝通过离子交换树脂的时间为2h;
(2)将步骤(1)中得到的丁醇铝移入减压蒸馏塔中,加热到180℃,减压蒸馏后得到高纯度的丁醇铝;
(3)将纯水加热至50℃,加入步骤(2)中得到的丁醇铝和催化剂硬
脂酸,在搅拌的条件下进行水解反应,通过水解得到水合氧化铝,其中纯水与丁醇铝的摩尔比为2:1,硬脂酸的重量为丁醇铝重量的1%;
(4)将步骤(3)中得到的水合氧化铝在80℃的条件下烘干脱去表层水后,置于高温煅烧炉中加热到1100℃,保持3h,自然冷却得到氧化铝;
(5)将得到的氧化铝通过湿法球磨法粉碎,其中氧化铝、水和球的重量比为1:4:7;
(6)经过球磨的氧化铝在80℃,富氧的条件下烘干脱水后,置于高温煅烧炉中加热到1200℃,保持4h,快速冷却至600℃,然后自然冷却得到高纯度а-氧化铝。
所述的一种高纯度氧化铝的制备方法,所述金属铝的纯度大于等于99%。
本实施例中,制备出来的氧化铝纯度达到5N;平均粒径为0.03μm;比表面积为3 m2/g。
对比例2
对比例1与实施例1条件相同,只是只经过一次煅烧,制备出来的氧化铝纯度达到5N;平均粒径为0.1μm;比表面积为1m2/g。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。
本发明要求保护范围由所附的权利要求书及其等效物界定。