(北京专用)2020版高考物理总复习精练:第七章第3讲动量守恒和能量守恒的综合应用精练(含解析)

合集下载

专题07 动量-三年(2020-2022)高考物理真题分项汇编(全国通用)(原卷版)

专题07 动量-三年(2020-2022)高考物理真题分项汇编(全国通用)(原卷版)
(1)求篮球与地面碰撞的碰后速率与碰前速率之比;
(2)若篮球反弹至最高处h时,运动员对篮球施加一个向下的压力F,使得篮球与地面碰撞一次后恰好反弹至h的高度处,力F随高度y的变化如图(b)所示,其中 已知,求 的大小;
(3)篮球从H高度处由静止下落后,每次反弹至最高点时,运动员拍击一次篮球(拍击时间极短),瞬间给其一个竖直向下、大小相等的冲量I,经过N次拍击后篮球恰好反弹至H高度处,求冲量I的大小。
(1)A与B的挡板碰撞后,二者的速度大小 与 ;
(2)B光滑部分的长度d;
(3)运动过程中A对B的摩擦力所做的功 ;
(4)实现上述运动过程, 的取值范围(结果用 表示)。
8、(2022·广东卷·T13)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型。竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态。当滑块从A处以初速度 为 向上滑动时,受到滑杆的摩擦力f为 ,滑块滑到B处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动。已知滑块的质量 ,滑杆的质量 ,A、B间的距离 ,重力加速度g取 ,不计空气阻力。求:
A 在 时间内,返回舱重力的功率随时间减小
B. 在 时间内,返回舱的加速度不变
C. 在 时间内,返回舱的动量随时间减小
D. 在 时间内,返回舱的机械能不变
2、(2022·湖南卷·T4)1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成。如图,中子以速度 分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为 和 。设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是( )
(1)第一次碰撞过程中,弹簧弹性势能的最大值;
(2)第一次碰撞过程中,弹簧压缩量的最大值;

北京专用2019版高考物理一轮复习检测:第七章动量第3讲动量守恒和能量守恒的综合应用 Word版含答案

北京专用2019版高考物理一轮复习检测:第七章动量第3讲动量守恒和能量守恒的综合应用 Word版含答案

第3讲动量守恒和能量守恒的综合应用基础巩固1、(2017北京朝阳期中,12,3分)小铁块置于薄木板右端,薄木板放在光滑的水平地面上,铁块的质量大于木板的质量。

t=0时使两者获得等大反向的初速度开始运动,t=t1时铁块刚好到达木板的左端并停止相对滑动,此时与开始运动时的位置相比较,下列示意图符合实际的是( )2、一中子与一质量数为A(A>1)的原子核发生弹性正碰。

若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A、 B、 C、D、3、(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块。

若射击下层,子弹刚好不射出;若射击上层,则子弹刚好能射穿一半厚度,如图所示。

则上述两种情况相比较( )A、子弹的末速度大小相等B、系统产生的热量一样多C、子弹对滑块做的功不相同D、子弹和滑块间的水平作用力一样大4、(2016北京东城零模,17)如图所示,在光滑的水平面上有两物体A、B,它们的质量均为m。

在物体B上固定一个轻弹簧处于静止状态。

物体A以速度v0沿水平方向向右运动,通过弹簧与物体B发生作用。

下列说法正确的是( )A、当弹簧获得的弹性势能最大时,物体A的速度为零B、当弹簧获得的弹性势能最大时,物体B的速度为零C、在弹簧的弹性势能逐渐增大的过程中,弹簧对物体B所做的功为mD、在弹簧的弹性势能逐渐增大的过程中,弹簧对物体A和物体B的冲量大小相等,方向相反5、(2017北京海淀零模,18)如图所示,在光滑水平地面上有A、B两个小物块,其中物块A的左侧连接一轻质弹簧。

物块A处于静止状态,物块B以一定的初速度向物块A运动,并通过弹簧与物块A发生弹性正碰。

对于该作用过程,两物块的速率变化可用速率-时间图像进行描述,在选项图所示的图像中,图线1表示物块A的速率变化情况,图线2表示物块B的速率变化情况。

则在这四个图像中可能正确的是( )6、(2017北京朝阳期中,18,6分)如图所示,光滑水平冰面上固定一足够长的光滑斜面体,其底部与水平面相切,左侧有一滑块和一小孩(站在冰车上)处于静止状态。

2024北京高三一模物理汇编:动量守恒定律章节综合

2024北京高三一模物理汇编:动量守恒定律章节综合

2024北京高三一模物理汇编动量守恒定律章节综合一、单选题1.(2024北京朝阳高三一模)如图所示,光滑水平地面上的P 、Q 两物体质量均为m ,P 以速度v 向右运动,Q 静止且左端固定一轻弹簧。

当弹簧被压缩至最短时( )A .P 的动量为0B .Q 的动量达到最大值C .P 、Q 系统总动量小于mvD .弹簧储存的弹性势能为214mv 2.(2024北京西城高三一模)2023年7月,由中国科学院研制的电磁弹射实验装置启动试运行,该装置在地面构建微重力实验环境,把“太空”搬到地面。

实验装置像一个“大电梯”,原理如图所示,在电磁弹射阶段,电磁弹射系统推动实验舱竖直向上加速运动至A 位置,撤除电磁作用。

此后,实验舱做竖直上抛运动,到达最高点后返回A 位置,再经历一段减速运动后静止。

某同学查阅资料了解到:在上述过程中的某个阶段,忽略阻力,实验舱处于完全失重状态,这一阶段持续的时间为4s ,实验舱的质量为500kg 。

他根据上述信息,取重力加速度210m /s g =,做出以下判断,其中正确的是( )A .实验舱向上运动的过程始终处于超重状态B .实验舱运动过程中的最大速度为40m/sC .向上弹射阶段,电磁弹射系统对实验舱做功大于5110J ⨯D .向上弹射阶段,电磁弹射系统对实验舱的冲量等于4110N s ⨯⋅3.(2024北京门头沟高三一模)把一压力传感器固定在水平地面上,轻质弹簧竖直固定在压力传感器上,如图甲所示。

0=t 时,将金属小球从弹簧正上方由静止释放,小球落到弹簧上后压缩弹簧到最低点,又被弹起离开弹簧,上升到一定高度后再下落,如此反复。

压力传感器中压力大小F 随时间t 变化图像如图乙所示。

下列说法正确的是( )A .1t 时刻,小球的动能最大B .12t t 时间内,小球始终处于失重状态 C .13t t 时间内,小球所受合力的冲量为0 D .23t t 时间内,小球机械能的增加量等于弹簧弹性势能的减少量4.(2024北京海淀高三一模)如图所示,在范围足够大的水平向右的匀强电场中,将一个带电小球以一定的初速度v 从M 点竖直向上抛出,在小球从M 点运动至与抛出点等高的位置N 点(图中未画出)的过程中,不计空气阻力,下列说法正确的是( )A .小球运动到最高点时的速度为零B .小球在M 点和N 点的动能相等C .小球上升过程和下降过程水平方向位移相同D .小球上升过程和下降过程动量的变化量相同5.(2024北京东城高三一模)如图所示,质量为M 、倾角为θ的光滑斜劈置于光滑水平地面上,质量为m 的小球第①次和第①次分别以方向水平向右和水平向左、大小均为0v 的初速度与静止的斜劈相碰,碰撞中无机械能损失。

动量守恒和能量守恒公式

动量守恒和能量守恒公式

动量守恒和能量守恒公式动量守恒(momentum conservation)和能量守恒(energy conservation)是物理学中两个非常重要的定律。

首先,我们来了解一下动量守恒。

动量是描述物体运动状态的物理量,它是质量(m)乘以速度(v),即p=mv。

根据牛顿第二定律,物体的动量变化率等于作用在物体上的力产生的冲量,即F=dp/dt,其中F是力,dp/dt是动量的变化率。

根据动量守恒定律,当物体间的外力为零时,物体的总动量保持不变。

当有两个物体发生碰撞时,这个系统的总动量在碰撞前后是守恒的。

换句话说,如果一个物体的动量增加,那么另一个物体的动量必然减小,这就是动量守恒的基本原理。

这个原理被广泛应用在各个领域,例如交通事故、运动中的球类运动和飞行器的设计等。

接下来,我们来讨论能量守恒。

能量是物体进行工作或引起变化的能力,是物理系统的基本属性。

根据能量守恒定律,一个系统的总能量在任意时刻都是保持不变的。

能量可以分为各种形式,包括动能、势能、热能等。

动能是物体运动的能量,由于速度和质量的平方成正比。

势能是物体由于位置而具有的能量,如重力势能和弹性势能。

热能是物体内部粒子运动产生的能量。

在一个封闭系统中,能量守恒定律表明,系统的总能量是一个恒定值,一旦系统能量从一种形式转化为另一种形式,总能量保持不变,只是能量在不同形式之间的转化。

例如,考虑一个物体自由下落的情况。

当物体下落时,势能转化为动能。

当物体触地时,物体的动能转化为热能和声能,但总能量不变。

总结一下,动量守恒和能量守恒是物理学中的两个重要定律。

动量守恒表明在一个封闭系统中,系统的总动量在任意时刻都保持不变。

能量守恒表明系统的总能量在各种能量形式之间转化时保持不变。

这些定律在解释和预测物理现象和事件方面起着关键的作用,并在许多领域的科学研究和技术应用中发挥着重要作用。

2020版高考物理课标Ⅲ专用专题七 碰撞与动量守恒

2020版高考物理课标Ⅲ专用专题七 碰撞与动量守恒

h=
v02 2g
-
M 2g 2 ρ2v02S 2

考查点 动量定理、能量守恒定律、物体平衡
解题关键 在流体中运用动量知识时一定要取Δt时间内的流体为研究对象。
栏目索引
栏目索引
考点二 动量守恒定律及其应用
5.(2017课标Ⅰ,14,6分)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中 重力和空气阻力可忽略) ( ) A.30 kg·m/s B.5.7×102 kg·m/s C.6.0×102 kg·m/s D.6.3×102 kg·m/s 答案 A 由于喷出过程中重力和空气阻力可忽略,则模型火箭与燃气组成的系统动量守 恒。燃气喷出前系统静止,总动量为零,故喷出后瞬间火箭的动量与喷出燃气的动量等值反向, 可得火箭的动量大小等于燃气的动量大小,则|p火|=|p气|=m气v气=0.05 kg×600 m/s=30 kg·m/s,A正 确。 易错点拨 系统中量与物的对应性 动量守恒定律的应用中,系统内物体至少为两个,计算各自的动量时,需注意速度与质量对应于 同一物体。
7.(2019课标Ⅰ,25,20分)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平 滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静 止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中 未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的v-t图 像如图(b)所示,图中的v1和t1均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加 速度大小为g,不计空气阻力。

(北京专用)2020版高考物理总复习第七章第3讲动量守恒和能量守恒的综合应用课件

(北京专用)2020版高考物理总复习第七章第3讲动量守恒和能量守恒的综合应用课件
算中子质量mn与氢核质量mH的比值。
(3)以铀235为裂变燃料的“慢中子”核反应堆中,裂变时放出的中子有
的速度很大,不易被铀235俘获,需要使其减速。在讨论如何使中子减速
的问题时,有人设计了一种方案:让快中子与静止的粒子发生碰撞。他 选择了三种粒子:铅核、氢核、电子。以弹性正碰为例,仅从力学角度 分析,哪一种粒子使中子减速效果最好,请说出你的观点并说明理由。
2-2 如图,在光滑水平桌面上,物体A和B用轻弹簧连接,另一物体C靠在 B左侧未连接,它们的质量分别为mA=0.2 kg,mB=mC=0.1 kg。现用外力作 用于C和A压缩弹簧,外力做功为7.2 J,弹簧仍在弹性限度内,然后由静止 释放。试求: (1)弹簧伸长最大时弹簧的弹性势能; (2)弹簧从伸长最大恢复到自然长度时,A、B速度的大小。
(1)力学的知识体系。力学研究的是物体的受力与运动变化的关系,其 知识脉络如下表:
(2)解决动力学问题的三个基本观点:动力学观点、动量观点、能量 观点。
二、动量和能量综合应用的基本模型
1.(多选)如图所示,一木块放在光滑水平面上,一子弹水平射入木块中,射 入深度为d,平均阻力为f。设木块滑行距离为s时开始匀速前进,下列判 断正确的是 ( BD ) A.子弹损失的动能等于fd
B.子弹损失的动能等于f(s+d)
C.总机械能的损失等于fs D.总机械能的损失等于fd
解析 设子弹的质量为m,木块的质量为M,系统动量守恒,有mv0=
(m+M)v,对子弹应用动能定理,有-f(s+d)= 12 mv2- 12 mv 02 ,对木块应用动能定
理,有fs= 12 Mv2,则子弹损失的动能为ΔEk子弹=f(s+d),而系统损失的机械能

(北京专用)2020版高考物理总复习第七章第3讲动量守恒和能量守恒的综合应用精练(含解析)

第3讲动量守恒和能量守恒的综合应用A组基础巩固1.(2017朝阳期中)小铁块置于薄木板右端,薄木板放在光滑的水平地面上,铁块的质量大于木板的质量。

t=0时使两者获得等大反向的初速度开始运动,t=t1时铁块刚好到达木板的左端并停止相对滑动,此时与开始运动时的位置相比较,下列示意图符合实际的是( )答案 A 铁块质量大于木板质量,系统所受合外力为零,动量守恒,根据初动量情况,可知末动量方向向左。

具体运动情况如以下分析:根据牛顿第二定律f=ma可知,铁块的加速度较小,因此,铁块向左以较小的加速度匀减速运动,木板以较大的加速度向右匀减速运动,木板的速度先减为零,然后反向运动,当两者速度相等时,停止相对运动,由动量守恒可得出v<v0,因整个过程中木板所受摩擦力始终向左且不变,则木板的加速度不变,又木板初速度向右、末速度向左,则知木板先向右做匀减速运动,后向左做匀加速运动,因v<v0,则知木板向右减速的位移大于向左加速的位移,选项A正确,选项B、C、D错误。

2.一中子与一质量数为A(A>1)的原子核发生弹性正碰。

若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.-B.- C. D.-答案 A 设中子质量为m,则原子核的质量为Am。

设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=-v0,故=-,A正确。

3.(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块。

若射击下层,子弹刚好不射出;若射击上层,则子弹刚好能射穿一半厚度,如图所示。

则上述两种情况相比较( )A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功不相同D.子弹和滑块间的水平作用力一样大,知B正答案AB 由动量守恒定律有mv=(m+M)v共,得v共=,A正确;由能量守恒定律有Q=mv2-(m+M)共确;由动能定理有M-0=W,知C错误;产生的热量Q=f·Δs,因Δs不同,则f也不同,故D错误。

2020年高考物理二轮复习动量和能量第3讲动量和能量的综合应用

2020版高考物理二轮复习第1部分专题2动量与能量第3讲动量和能量的综合应用[高考统计·定方向] (教师授课资源)考点考向五年考情汇总1.动量定理和动量守恒定律考向1.动量定理的应用2019·全国卷Ⅰ T162019·全国卷Ⅱ T252018·全国卷Ⅰ T142018·全国卷Ⅱ T152017·全国卷Ⅲ T202016·全国卷Ⅰ T35(2)考向2.动量守恒定律的应用2018·全国卷Ⅱ T242017·全国卷Ⅰ T14考向 3.动量定理与动量守恒定律的综合应用2018·全国卷Ⅰ T242.碰撞类问题考向1.完全弹性碰撞2019·全国卷Ⅲ T252019·全国卷Ⅰ T252016·全国卷Ⅱ T35(2)2016·全国卷Ⅲ T35(2)考向2.非完全弹性碰撞3.动量、动力学和能量观点的综合应用考向1.“冲击板块”类综合问题考向2.“传送带”类综合问题动量定理和动量守恒定律(5年9考)❶分析近五年的高考题可以看出,自2017年动量纳入必考后,单独考查动量和动量守恒时以选择题为主,也出现较简单的计算题,命题点以对动量、冲量概念的理解及动量定理、动量守恒定律的简单应用为主。

但也呈现出与其它知识综合的趋势(例如2019·全国卷Ⅱ·T25)。

❷2020年备考应关注动量守恒与动力学知识的综合题的训练。

1.(2019·全国卷Ⅰ·T16)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。

若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106N,则它在1 s时间内喷射的气体质量约为()A.1.6×102 kg B.1.6×103 kg C.1.6×105 kg D.1.6×106 kg2.(2018·全国卷Ⅱ·T15)高空坠物极易对行人造成伤害。

(北京专用)2020版高考物理总复习第七章第4讲实验:验证动量守恒定律课件


示。分别测量出OP、OM'、ON'的长度。若在实验误差允许范围内,满 足关系式m1·OP=m1·OM'+m2·ON',则可以认为两小球碰撞前后在OP方向 上动量守恒。
解析 (1)为了保证两小球相碰之后都能平抛出去,则m1>m2。需测量小 球的质量和平抛运动的水平位移,所以需要天平和刻度尺。
(2)实验过程存在误差,为了减小误差,可以取小球的落点平均位置来
OP、ON的长度。在实验误差允许范围内,若满足关系式
,则可以认为两球碰撞前后在OP方向上的总动量守恒;若碰撞是
弹性碰撞,那么还应满足关系式
。(用测量的量
表示)
(4)在OP、OM、ON这三个长度中,与实验所用小球质量无关的是
,与实验所用小球质量有关的是

(5)某同学在做这个实验时,记录下小球三个落点的平均位置M、P、N,
O点的距离如图所示,实验中已测得入射小球的质量为m1,若碰撞过程中
动量守恒,则被碰小球的质量 m2=

答案 解析
(s2 s1)m1 s3
设小球做平抛运动的竖直高度为h,则飞行时间由h= 1 gt2得t=
2
2h 。由平抛知识可知入射小球m1碰前速度v0= s2 ,碰后落到M点,因而碰
g
t
后速度v1= st1 。被碰球m2碰后速度v2= st3 ,由碰撞中动量守恒知m1v0=m1v1+
答案 D 在此装置中,应使入射球的质量大于被碰球的质量,防止入射 球碰后反弹或静止,故A错;入射球每次必须从斜槽的同一位置由静止滚 下,保证每次碰撞都具有相同的初动量,故B错;两球做平抛运动时都具有 相同的起点,故应验证的关系式为:m1·OP=m1·OM+m2·ON,D对,C、E错。

2020高考物理一轮总复习 第七章 讲义新人教版【共4套56页】

本套资源目录2020高考物理一轮总复习第七章第1讲库仑定律电场力的性质讲义含解析新人教版2020高考物理一轮总复习第七章第2讲电场能的性质讲义含解析新人教版2020高考物理一轮总复习第七章第3讲电容器与电容带电粒子在电场中的运动讲义含解析新人教版2020高考物理一轮总复习第七章链接高考7电场中的力电综合问题讲义含解析新人教版库仑定律电场力的性质全国卷3年考情分析[基础知识·填一填][知识点1] 电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷.2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电.判断正误,正确的划“√”,错误的划“×”.(1)质子的电荷量为一个元电荷,但电子、质子是实实在在的粒子,不是元电荷.(√) (2)两个完全相同的带电金属球接触时,先发生正、负电荷的中和,然后再平分.(√) (3)点电荷就是体积和带电荷量很小的带电体.(×) (4)任何带电体所带的电荷量都是元电荷的整数倍.(√) [知识点2] 库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的 电荷量的乘积 成正比,与它们的距离的二次方成 反比 ,作用力的方向在它们的连线上.2.公式: F =kq 1q 2r2 ,式中的k =9.0×109 N·m 2/C 2,叫做静电力常量. 3.适用条件:(1) 点电荷 ;(2)真空.判断正误,正确的划“√”,错误的划“×”. (1)根据F =kq 1q 2r 2可知,当r →0时,有F →∞.(×) (2)静电力常量的数值是由实验得出的.(√)(3)不能看做点电荷的两个带电体之间没有库仑力.(×) [知识点3] 静电场 电场强度1.静电场:静电场是客观存在于电荷周围的一种 物质 ,其基本性质是对放入其中的电荷有 力的作用 .2.电场强度(1)意义:描述电场强弱和方向的物理量. (2)公式①定义式:E = Fq,是矢量,单位:N/C 或V/m.②点电荷的场强:E = k Q r2 ,Q 为场源电荷,r 为某点到Q 的距离. ③匀强电场的场强:E = U d.(3)方向:规定为 正电荷 在电场中某点所受电场力的方向.判断正误,正确的划“√”,错误的划“×”.(1)电场中某点的电场强度与试探电荷在该点所受的电场力成正比.(×) (2)电场中某点的电场强度方向即为正电荷在该点所受的电场力的方向.(√)(3)在点电荷产生的电场中,以点电荷为球心的同一球面上各点的电场强度都相同.(×)(4)在真空中,电场强度的表达式E =kQ r2中的Q 就是产生电场的点电荷的电荷量.(√) [知识点4] 电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的 切线 方向表示该点的电场强度方向.2.电场线的特点(1)电场线从 正电荷 或无限远处出发,终止于无限远处或 负电荷 . (2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越 大 . (4)电场线上某点的切线方向表示该点的场强方向. (5)沿电场线方向 电势降低 . (6)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示)判断正误,正确的划“√”,错误的划“×”. (1)相邻两条电场线之间的区域没有电场.(×) (2)非匀强电场的电场线有可能是平行的直线.(×) (3)电势降落的方向不一定沿电场线的方向.(√)[教材挖掘·做一做]1.(人教版选修3-1 P3实验改编)如图所示,两个不带电的导体A 和B ,用一对绝缘柱支持使它们彼此接触.把一带正电荷的物体C 置于A 附近,贴在A 、B 下部的金属箔都张开( )A .此时A 带正电,B 带负电B.此时A电势低,B电势高C.移去C,贴在A、B下部的金属箔都闭合D.先把A和B分开,然后移去C,贴在A、B下部的金属箔都闭合解析:C [由静电感应可知,A左端带负电,B右端带正电,A、B的电势相等,选项A、B错误;若移去C,则两端的感应电荷消失,故贴在A、B下部的金属箔都闭合,选项C正确;先把A和B分开,然后移去C,则A、B带的电荷仍然存在,故贴在A、B下部的金属箔仍张开,选项D错误.]2.(人教版选修3-1 P5演示实验改编)在探究两电荷间相互作用力的大小与哪些因素有关的实验中,一同学猜想可能与两电荷的间距和电荷量有关.他选用带正电的小球A和B,A球放在可移动的绝缘座上,B球用绝缘丝线悬挂于玻璃棒C点,如图所示.实验时,先保持两球电荷量不变,使A球从远处逐渐向B球靠近,观察到两球距离越小,B球悬线的偏角越大;再保持两球距离不变,改变小球所带的电荷量,观察到电荷量越大,B球悬线的偏角越大.实验表明:两电荷之间的相互作用力,随其距离的__________ 而增大,随其所带电荷量的________ 而增大.此同学在探究中应用的科学方法是________ (选填“累积法”“等效替代法”“控制变量法”或“演绎法”).解析:对B球进行受力分析,球受重力、电场力和线的拉力,线与竖直方向间的夹角变大时,说明电场力变大.电荷量不变时,两球距离变小,悬线偏角变大,电场力变大;距离不变时,电荷量变大,线的偏角变大,电场力变大.答案:减小增大控制变量法3.(人教版选修3-1 P15第6题改编)用一条绝缘细绳悬挂一个带电小球,小球质量为m,所带电荷量为+q.现加一水平方向的匀强电场,平衡时绝缘绳与铅垂线成θ夹角,如图所示.那么这个匀强电场电场强度为( )A.mgqB.mgqsin θC.mgqtan θ D.mgqcos θ 答案:C4.(人教版选修3-1 P15第7题改编)如图所示, 真空中有两个点电荷Q 1=+4.0×10-8C 和Q 2=-1.0×10-8C ,分别固定在x 坐标轴的x =0和x =6 cm 的位置上.那么( )A .x 坐标轴上,电场强度为零的位置为x =12 cm 处B .x 坐标轴上,电场强度为零的位置为x =-12 cm 处C .x 坐标轴上,电场强度方向沿x 轴正方向的区域是0<x <6 cmD .x 坐标轴上,电场强度方向沿x 轴正方向的区域是x >12 cm 答案:A考点一 库仑定律的理解及应用[考点解读]1.库仑定律适用于真空中静止点电荷间的相互作用.2.对于两个均匀带电绝缘球体,可将其视为电荷集中在球心的点电荷,r 为球心间的距离.3.对于两个带电金属球,要考虑表面电荷的重新分布,如图所示.(1)同种电荷:F <k q 1q 2r 2. (2)异种电荷:F >kq 1q 2r 2. 4.不能根据公式错误地认为r →0时,库仑力F →∞,因为当r →0时,两个带电体已不能看成点电荷了.5.两个点电荷间相互作用的库仑力满足牛顿第三定律,大小相等、方向相反. 6.库仑力存在极大值,由公式F =k q 1q 2r 2可以看出,在两带电体的间距及电荷量之和一定的条件下,当q 1=q 2时,F 最大.[典例赏析][典例1] (多选)如图所示,把A 、B 两个相同的导电小球分别用长为0.10 m 的绝缘细线悬挂于O A 和O B 两点.用丝绸摩擦过的玻璃棒与A 球接触,棒移开后将悬点O B 移到O A 点固定.两球接触后分开,平衡时距离为0.12 m .已测得每个小球质量是8.0×10-4kg ,带电小球可视为点电荷,重力加速度g 取10 m/s 2,静电力常量k =9.0×109N·m 2/C 2,则( )A .两球所带电荷量相等B .A 球所受的静电力为1.0×10-2N C .B 球所带的电荷量为46×10-8 C D .A 、B 两球连线中点处的电场强度为0[解析] ACD [两相同的小球接触后电荷量均分,故两球所带电荷量相等,选项A 正确;对A 球受力分析,由几何关系,两球排斥开后,悬线与竖直方向的夹角为37°,根据平行四边形定则可得:F =mg tan 37°=8.0×10-4×10×0.75 N=6.0×10-3N ,选项B 错误;根据库仑定律:F =k q A q B l 2=k q 2Bl 2,解得q B =Fl 2k=6×10-3×0.1229×109C =46×10-8C ,选项C 正确;A 、B 带等量的同种电荷,故在A 、B 两球连线中点处的电场强度为0,选项D 正确.]电荷分配原则及库仑力的理解1.完全相同的带电体接触后电荷的分配原则(1)若两带电体带同种电荷q 1、q 2,则接触后电荷量平均分配,即q 1′=q 2′=q 1+q 22.(2)若两带电体带异种电荷q 1、q 2,则接触后电荷量先中和后平分,即q 1′=q 2′=|q 1+q 2|2,电性与带电荷量大的带电体相同. 2.库仑力方向的判断方法根据“同种电荷相斥、异种电荷相吸”判断库仑力的方向,作用力的方向沿两电荷连线方向.[题组巩固]1.(2019·河南安阳调研)两个分别带有电荷量-Q 和+5Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F ,两小球相互接触后将其固定距离变为r2,则两球间库仑力的大小为( )A.5F16 B.F5 C.4F 5D.16F 5解析:D [两球相距r 时,根据库仑定律F =kQ ·5Qr 2,两球接触后,带电荷量均为2Q ,则F ′=k 2Q ·2Q ⎝ ⎛⎭⎪⎫r 22,由以上两式可解得F ′=16F5,D 正确.]2.三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电荷量为q ,球2的带电荷量为nq ,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F .现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F ,方向不变.由此可知( )A .n =3B .n =4C .n =5D .n =6解析:D [由于各球之间的距离远大于小球的直径,小球带电时可视为点电荷.由库仑定律F =kQ 1Q 2r 2知两点电荷间距离不变时,相互间静电力大小与两球所带电荷量的乘积成正比.又由于三小球相同,则接触时平分总电荷量,故有F =k ·q ·nqr2=k ·nq2·q +nq 22r2,解得n =6,D 正确.]考点二 电场强度的理解和计算[考点解读]1.电场强度的性质[典例赏析][典例2] 直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图所示.M 、N 两点各固定一负点电荷,一电荷量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( )A.3kQ4a2,沿y 轴正向 B.3kQ4a2,沿y 轴负向 C.5kQ4a2,沿y 轴正向 D.5kQ4a2,沿y 轴负向 [思考探究](1)“G 点处的电场强度恰好为零”的含义是什么?提示:“G 点处的电场强度恰好为零”说明M 、N 两处的负电荷在G 点产生的场强与点电荷Q 在G 点的场强大小相等、方向相反.(2)如何求H 点处场强的大小?提示:根据两等量负点电荷的场强的对称性和矢量合成的平行四边形定则,可求得H 点的合场强.[解析] B [因正电荷Q 在O 点时,G 点的场强为零,则可知两负点电荷在G 点形成的电场的合场强与正电荷Q 在G 点产生的场强等大反向,大小为E 合=k Q a2;若将正电荷移到G 点,则正电荷在H 点的场强为E 1=k Q (2a )2=kQ4a 2,方向沿y 轴正向,因两负电荷在G 点的合场强与在H 点的合场强等大反向,则H 点处场强为E =E 合-E 1=3kQ4a 2,方向沿y 轴负向,故选B.]电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是: (1)确定分析计算场强的空间位置.(2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向. (3)依次利用平行四边形定则求出矢量和.[题组巩固]1.如图所示,在水平向右、大小为E 的匀强电场中,在O 点固定一电荷量为Q 的正电荷,A 、B 、C 、D 为以O 为圆心、半径为r 的同一圆周上的四点,B 、D 连线与电场线平行,A 、C 连线与电场线垂直.则( )A .A 点的电场强度大小为E 2+k 2Q 2r4B .B 点的电场强度大小为E -k Q r2 C .D 点的电场强度大小不可能为0 D .A 、C 两点的电场强度相同解析:A [+Q 在A 点的电场强度沿OA 方向,大小为k Q r2,所以A 点的合电场强度大小为E 2+k 2Q 2r 4,A 正确;同理,B 点的电场强度大小为E +k Q r 2,B 错误;如果E =k Qr2,则D点的电场强度为0,C 错误;A 、C 两点的电场强度大小相等,但方向不同,D 错误.]2.如图,真空中xOy 平面直角坐标系上的A 、B 、C 三点构成等边三角形,边长L =2.0 m .若将电荷量均为q =+2.0×10-6C 的两点电荷分别固定在A 、B 点,已知静电力常量k =9.0×109N·m 2/C 2,求:(1)两点电荷间的库仑力大小; (2)C 点的电场强度的大小和方向.解析:(1)根据库仑定律,A 、B 两点电荷间的库仑力大小为F =k q 2L2 ①代入数据得F=9.0×10-3 N.②(2)A、B两点电荷在C点产生的场强大小相等,均为E1=k qL2③A、B两点电荷形成的电场在C点的合场强大小为E=2E1cos 30°④由③④式联立并代入数据得E≈7.8×103 N/C场强E的方向沿y轴正方向.答案:(1)9.0×10-3 N (2)7.8×103 N/C 方向沿y轴正方向考点三电场线的理解与应用[考点解读]1.两种等量点电荷的电场分析沿连线先变小后变大[典例3] (多选)如图所示,实线为不知方向的三条电场线,从电场中M点以相同速度飞出a、b两个带电粒子,仅在电场力作用下的运动轨迹如图中虚线所示.则( )A.a一定带正电,b一定带负电B.a的速度将减小,b的速度将增大C.a的加速度将减小,b的加速度将增大D.两个粒子的电势能都减少[解析]CD [因为电场线方向未知,不能确定a、b的电性,所以选项A错误;由于电场力对a、b都做正功,所以a、b的速度都增大,电势能都减少,选项B错误,D正确;粒子的加速度大小取决于电场力的大小,a向电场线稀疏的方向运动,b向电场线密集的方向运动,所以选项C正确.]电场线与轨迹问题判断方法1.“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从两者的夹角情况来分析曲线运动的情况.2.“三不知时要用假设法”——电荷的正负、场强的方向或等势面电势的高低、电荷运动的方向,若已知其中的任意一个,可顺次向下分析判定各待求量;若三个都不知,则要用假设法分别讨论各种情况.[题组巩固]1.(2019·沧州模拟)(多选)两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则( )A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低解析:ACD [由题图看出,a点处电场线比b点处电场线密,则a点的场强大于b点的场强,故A正确;电场线从正电荷到负电荷,沿着电场线电势降低,所以b点的电势比a 点的高,所以B错误;负电荷在c点的合场强为零,c点只有正电荷产生的电场强度,在d 点正电荷产生的场强向上,两个负电荷产生的场强向下,合场强是它们的差值,所以c点的电场强度比d点的大,所以C正确;D项,可以根据电势这样理解:正电荷在d、c两点产生的电势相等,但两个负电荷在d点产生的电势高于c点,所以c点的总电势低于d点,所以D正确.]2.(2019·茂名模拟)如图所示为两个等量点电荷的电场线,图中A点和B点、C点和D 点皆关于两电荷连线的中点O对称,若将一电荷放在此电场中,则以下说法正确的是( )A.电荷在O点受力最大B.电荷沿直线由A到B的过程中,电场力先增大后减小C.电荷沿直线由A到B的过程中,电势能先增大后减小D.电荷沿直线由C到D的过程中,电场力先增大后减小解析:D [根据电场线的疏密特点,在AB直线上,O点电场强度最小,则受到的电场力最小,而在CD直线上,O点的电场强度最大,则受到电场力最大,因此电荷在O点受力不是最大,故A错误.根据电场线的疏密可知,从A到B的过程中,电场强度先减小后增大,则电场力也先减小后增大;同理从C到D的过程中,电场强度先增大后减小,则电场力也先增大后减小,故B错误,D正确.电荷沿直线由A到B的过程中,无法确定电荷做功的正负,因此无法确定电势能变化,故C错误.]考点四电场中的平衡和加速问题[考点解读]1.电场力方向:正电荷受力方向与场强方向相同,负电荷受力方向与场强方向相反.2.恰当选取研究对象,用“整体法”或“隔离法”进行分析.3.基本思路(1)平衡问题利用平衡条件列式求解.(2)非平衡问题利用牛顿第二定律求解.4.库仑力作用下电荷的平衡问题与力学中物体的平衡问题相同,可以将力进行合成与分解.5.列平衡方程,注意电荷间的库仑力与电荷间的距离有关.[考向突破][考向1] “三个自由点电荷平衡”的问题(1)平衡的条件:每个点电荷受到另外两个点电荷的合力为零或每个点电荷处于另外两个点电荷产生的合场强为零的位置.(2)[典例4] 如图所示,足够大的光滑绝缘水平面上有三个带电质点,A和C围绕B做匀速圆周运动,B 恰能保持静止,其中A 、C 和B 的距离分别是L 1和L 2.不计三个质点间的万有引力,则A 和C 的比荷(电荷量与质量之比)之比应是( )A.⎝ ⎛⎭⎪⎫L 1L 22B.⎝ ⎛⎭⎪⎫L 2L 12C.⎝ ⎛⎭⎪⎫L 1L 23D.⎝ ⎛⎭⎪⎫L 2L 13[解析] C [根据B 恰能保持静止可得kq A q B L 21=k q C q B L 22; A 做匀速圆周运动, k q A q BL 21-kq C q A (L 1+L 2)2 =m A ω2L 1,C 做匀速圆周运动,k q C q B L 22-k q C q A (L 1+L 2)2=m C ω2L 2,联立解得A 和C 的比荷(电荷量与质量之比)之比应是⎝ ⎛⎭⎪⎫L 1L 23,选项C 正确.][考向2] 电场力作用下的平衡问题库仑力作用下平衡问题的分析方法与纯力学平衡问题的分析方法是相同的,只是在原来受力的基础上多了电场力.具体步骤如下:[典例5] 如图所示,带电体P 、Q 可视为点电荷,电荷量相同.倾角为θ,质量为M 的斜面体放在粗糙水平面上,将质量为m 的物体P 放在粗糙的斜面体上,当物体Q 放在与P 等高(PQ 连线水平)且与物体P 相距为r 的右侧位置时,P 静止且受斜面体的摩擦力为0,斜面体保持静止,静电力常量为k ,则下列说法正确的是( )A .P 、Q 所带电荷量为 mgk tan θr 2B .P 对斜面的压力为0C .斜面体受到地面的摩擦力为0D .斜面体对地面的压力为(M +m )g[解析] D [以P 为研究对象,分析P 受力如图所示,由平衡条件得F =mg tan θ,N=mg cos θ,由库仑定律得F =kq 2r2,联立解得q =mgr 2tan θk,A 错误;由牛顿第三定律得P 对斜面的压力与N 等大反向,不为零,B 错误;分析物体P 和斜面体整体受力,易知地面对斜面的静摩擦力f =F =mg tan θ,地面对斜面体的支持力N ′=(M +m )g ,所以C 错误,D 正确.][考向3] 电场力作用下的动力学问题 解决与电场力有关的动力学问题的一般思路:(1)选择研究对象(多为一个带电体,也可以是几个带电体组成的系统).(2)对研究对象进行受力分析,包括电场力、重力(电子、质子、正负离子等基本粒子在没有明确指出或暗示时一般不计重力,带电油滴、带电小球、带电尘埃等带电体一般计重力).(3)分析研究对象所处的状态是平衡状态(静止或匀速直线运动)还是非平衡状态(变速运动等).(4)根据平衡条件或牛顿第二定律列方程求解.[典例6] (2019·北京四中期末)如图所示,在一足够大的空间内存在着水平向右的匀强电场,电场强度大小E =3.0×104N/C.有一个质量m =4.0×10-3kg 的带电小球,用绝缘轻细线悬挂起来,静止时细线偏离竖直方向的夹角θ=37°.取g =10 m/s 2,sin 37°=0.60,cos 37°=0.80,不计空气阻力的作用.(1)求小球所带的电荷量及电性;(2)如果将细线轻轻剪断,求细线剪断后,小球运动的加速度大小;(3)从剪断细线开始经过时间t =0.20 s ,求这一段时间内小球电势能的变化量. [解析] (1)小球受到重力mg 、电场力F 和细线的拉力T 的作用, 如图所示,由共点力平衡条件有:F =qE =mg tan θ解得:q =mg tan θE=1.0×10-6C 电场力的方向与电场强度的方向相同,故小球所带电荷为正电荷.(2)剪断细线后,小球做匀加速直线运动,设其加速度为a ,由牛顿第二定律有: mgcos θ=ma解得:a =gcos θ=12.5 m/s 2.(3)在t =0.20 s 的时间内,小球的位移为:l =12at 2=0.25 m小球运动过程中,电场力做的功为:W =qEl sin θ=mgl sin θtan θ=4.5×10-3 J所以小球电势能的减少量为:ΔE p =4.5×10-3J.[答案] (1)1.0×10-6C 正电荷 (2)12.5 m/s 2(3)减少4.5×10-3J思想方法(十二) 非点电荷电场强度的叠加及计算◆方法1 等效法:在保证效果相同的前提下,将复杂的电场情景变换为简单的或熟悉的电场情景.[典例1] (2019·济南模拟)MN 为足够大的不带电的金属板,在其右侧距离为d 的位置放一个电荷量为+q 的点电荷O ,金属板右侧空间的电场分布如图甲所示,P 是金属板表面上与点电荷O 距离为r 的一点.几位同学想求出P 点的电场强度大小,但发现问题很难,经过研究,他们发现图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中是两等量异号点电荷的电场线分布,其电荷量的大小均为q ,它们之间的距离为2d ,虚线是两点电荷连线的中垂线.由此他们分别对甲图P 点的电场强度方向和大小做出以下判断,其中正确的是( )A .方向沿P 点和点电荷的连线向左,大小为2kqd r3B .方向沿P 点和点电荷的连线向左,大小为2kq r 2-d2r3C .方向垂直于金属板向左,大小为2kqd r3D .方向垂直于金属板向左,大小为2kq r 2-d2r3[解析] C [据题意,从乙图可以看出,P 点电场方向为水平向左;由图乙可知,正、负电荷在P 点电场的叠加,其大小为E =2k qr 2cos θ=2k q r 2·d r =2k qd r3,故选项C 正确.]◆方法2 对称法:利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.[典例2] 下列选项中的各14圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各14圆环间彼此绝缘.坐标原点O 处电场强度最大的是( )[解析] B [将圆环分割成微元,根据对称性和矢量叠加,D 项O 点的场强为零,C 项等效为第二象限内电荷在O 点产生的电场,大小与A 项的相等,B 项正、负电荷在O 点产生的场强大小相等,方向互相垂直,合场强是其中一个的2倍,也是A 、C 项场强的2倍,因此B 项正确.]◆方法3 填补法:将有缺口的带电圆环补全为圆环,或将半球面补全为球面,从而化难为易、事半功倍.[典例3] (2019·石家庄质检)均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球面顶点与球心O 的轴线,在轴线上有M 、N 两点,OM =ON =2R .已知M 点的场强大小为E ,则N 点的场强大小为( )A.kq2R 2-E B.kq 4R 2 C.kq4R2-E D.kq4R2+E [解析] A [左半球面AB 上的正电荷产生的电场等效为带正电荷量为2q 的整个球面的电场和带电荷量-q 的右半球面的电场的合电场,则E =k 2q(2R )2-E ′,E ′为带电荷量-q 的右半球面在M 点产生的场强大小.带电荷量-q 的右半球面在M 点的场强大小与带正电荷量为q 的左半球面AB 在N 点的场强大小相等,则E N =E ′=k 2q (2R )2-E =kq 2R2-E ,则A 正确.]◆方法4 微元法:将带电体分成许多元电荷,每个元电荷看成点电荷,先根据库仑定律求出每个元电荷的场强,再结合对称性和场强叠加原理求出合场强.[典例4] 如图所示,均匀带电圆环所带电荷量为Q ,半径为R ,圆心为O ,P 为垂直于圆环平面中心轴上的一点,OP =L ,试求P 点的场强.[解析] 设想将圆环看成由n 个小段组成,当n 相当大时,每一小段都可以看成点电荷,其所带电荷量Q ′=Qn,由点电荷场强公式可求得每一小段带电体在P 处产生的场强为E =kQ nr 2=kQn (R 2+L 2). 由对称性知,各小段带电体在P 处场强E 的垂直于中心轴的分量E y 相互抵消,而其轴向分量E x 之和即为带电环在P 处的场强E P ,E P =nE x = nk Qn (R 2+L 2)cos θ=kQL(R 2+L 2)32. [答案] k QL(R 2+L 2)32电场能的性质[基础知识·填一填][知识点1] 静电力做功和电势能 1.静电力做功(1)特点:静电力做功与 路径 无关,只与电荷量和电荷移动过程始、末位置间的电势差有关.(2)计算方法①W =qEd ,只适用于匀强电场,其中d 为带电体沿 电场方向 的位移. ②W AB =qU AB ,适用于 任何电场 . 2.电势能(1)定义:电荷在电场中具有的 势能 ,称为电势能.(2)说明:电势能具有相对性,通常取无穷远或大地为电势能零点. 3.静电力做功与电势能变化的关系(1)静电力做的功等于电荷电势能的 减少量 ,即W AB =E p A -E p B .(2)通过W AB =E p A -E p B 可知:静电力对电荷做多少正功,电荷电势能就 减少 多少;静电力对电荷做多少负功,电荷电势能就 增加 多少.(3)电势能的大小:由W AB =E p A -E p B 可知,若令E p B =0,则E p A =W AB ,即一个电荷在电场中某点具有的电势能,数值上等于将其从该点移到零势能位置过程中静电力所做的功.[知识点2] 电势 等势面 1.电势(1)定义:电荷在电场中某一点的 电势能 与它的电荷量的比值. (2)定义式:φ=E p q.(3)矢标性:电势是 标 量,有正负之分,其正(负)表示该点电势比零电势高(低). (4)相对性:电势具有 相对性 ,同一点的电势因选取零电势点的不同而不同. 2.等势面(1)定义:电场中 电势相等 的各点组成的面. (2)四个特点①在同一等势面上移动电荷时电场力 不做功 .②电场线一定与等势面垂直,并且从电势 高 的等势面指向电势 低 的等势面. ③等差等势面越密的地方电场强度 越大 ,反之 越小 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 动量守恒和能量守恒的综合应用A 组 基础巩固1.(2017朝阳期中)小铁块置于薄木板右端,薄木板放在光滑的水平地面上,铁块的质量大于木板的质量。

t=0时使两者获得等大反向的初速度开始运动,t=t 1时铁块刚好到达木板的左端并停止相对滑动,此时与开始运动时的位置相比较,下列示意图符合实际的是( )答案 A 铁块质量大于木板质量,系统所受合外力为零,动量守恒,根据初动量情况,可知末动量方向向左。

具体运动情况如以下分析:根据牛顿第二定律f=ma 可知,铁块的加速度较小,因此,铁块向左以较小的加速度匀减速运动,木板以较大的加速度向右匀减速运动,木板的速度先减为零,然后反向运动,当两者速度相等时,停止相对运动,由动量守恒可得出v<v 0,因整个过程中木板所受摩擦力始终向左且不变,则木板的加速度不变,又木板初速度向右、末速度向左,则知木板先向右做匀减速运动,后向左做匀加速运动,因v<v 0,则知木板向右减速的位移大于向左加速的位移,选项A 正确,选项B 、C 、D 错误。

2.一中子与一质量数为A(A>1)的原子核发生弹性正碰。

若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A. B. C. D.A +1A -1A -1A +14A (A +1)2(A +1)2(A -1)2答案 A 设中子质量为m,则原子核的质量为Am 。

设碰撞前后中子的速度分别为v 0、v 1,碰后原子核的速度为v 2,由弹性碰撞可得mv 0=mv 1+Amv 2,m =m +Am ,解得v 1=v 0,故=,A 正确。

12v 2012v 2112v 221-A 1+A |v 0v 1|A +1A -13.(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块。

若射击下层,子弹刚好不射出;若射击上层,则子弹刚好能射穿一半厚度,如图所示。

则上述两种情况相比较( )A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功不相同D.子弹和滑块间的水平作用力一样大答案 AB 由动量守恒定律有mv=(m+M)v 共,得v 共=,A 正确;由能量守恒定律有Q=mv 2-(m+M),知B mv M+m 1212v 2共正确;由动能定理有M -0=W,知C 错误;产生的热量Q=f·Δs,因Δs 不同,则f 也不同,故D 错误。

12v 2共4.(2017海淀零模)如图所示,在光滑水平地面上有A 、B 两个小物块,其中物块A 的左侧连接一轻质弹簧。

物块A 处于静止状态,物块B 以一定的初速度向物块A 运动,并通过弹簧与物块A 发生弹性正碰。

对于该作用过程,两物块的速率变化可用速率-时间图像进行描述,在选项图所示的图像中,图线1表示物块A 的速率变化情况,图线2表示物块B 的速率变化情况。

则在这四个图像中可能正确的是( )答案 B 由图像知速度方向都为正。

B 通过弹簧与A 发生弹性碰撞,B 减速,A 加速,某一时刻两者速度相等,之后A 继续加速,B 继续减速,v B <v A ,当弹簧恢复到原长时,A 、B 间无相互作用,两者同时开始匀速运动,所以选B 。

5.在光滑的水平面上有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度-时间图像如图所示。

下列关系正确的是( )A.m a >m bB.m a <m bC.m a =m bD.无法判断答案 B 由图可知b 球碰前静止,设a 球碰后速度大小为v 1,b 球速度大小为v 2,物体碰撞过程中动量守恒,机械能守恒,所以有m a v 0=m a (-v 1)+m b v 2,m a =m a +m b ,解得v 1=v 0,v 2=v 0,由图可知,a 球12v 2012v 2112v 22m a -m b m a +m b 2m a m a +m b 碰后速度反向,故m a <m b ,故A 、C 、D 错误,B 正确。

6.(2018海淀期中)如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M=6.0 kg 的物块A 。

装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。

传送带的皮带轮逆时针匀速转动,使传送带上表面以u=2.0 m/s 匀速运动。

传送带的右边是一半径R=1.25 m 位于竖直平面内的光滑圆轨道。

质量m=2.0 kg 的物块B 从圆轨1414道的最高处由静止释放。

已知物块B 与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l=4.5 m 。

设物块A 、B 之间发生的是正对弹性碰撞,第一次碰撞前,物块A 静止。

取g=10 m/s 2。

求:(1)物块B 滑到圆轨道的最低点C 时对轨道的压力大小;14(2)物块B 与物块A 第一次碰撞后弹簧的最大弹性势能;(3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B 经第一次与物块A 碰撞后在传送带上运动的总时间。

答案 (1)60 N (2)12 J (3)8 s解析 (1)设物块B 沿光滑圆轨道下滑到最低点C 时的速度大小为v 0。

由机械能守恒知mgR=m 1412v 20得v 0==5 m/s2gR 设物块B 滑到圆轨道的最低点C 时受到的支持力大小为F,由牛顿第二定律得:F-mg=m 14v 20R解得F=60 N由牛顿第三定律得:物块B 滑到圆轨道的最低点C 时对轨道的压力大小为F 1=60 N14(2)设物块B 在传送带上滑动过程中因受摩擦力所产生的加速度大小为a,则μmg=ma设物块B 通过传送带后运动速度大小为v,有v 2-=-2alv 20联立解得v=4 m/s由于v>u=2 m/s,所以v=4 m/s 即物块B 与物块A 第一次碰撞前的速度大小设物块A 、B 第一次碰撞后的速度分别为v 2、v 1,取向左为正方向,由动量守恒定律和机械能守恒定律得mv=mv 1+Mv 2mv 2=m +M 1212v 2112v 22解得v 1=-v=-2 m/s,v 2=2 m/s12弹簧具有的最大弹性势能等于碰后物块A 的初动能E pm =M =12 J12v 22(3)物块B 经第一次与物块A 碰撞后物块B 沿光滑水平面向右匀速运动设物块B 在传送带上向右运动的最大位移为l'由动能定理得-μmgl'=0-m 12v 21得l'=2 m<4.5 m所以物块B 不能通过传送带运动到右边的圆轨道上。

当物块B 在传送带上向右运动的速度为零后,14将会沿传送带向左加速运动。

可以判断,物块B 运动到左边光滑水平面上时的速度大小为v 1'=2 m/s,方向向左,继而与物块A 发生第二次碰撞。

设第1次碰撞到第2次碰撞之间,物块B 在传送带上运动的时间为t 1由动量定理得μmgt 1=2mv 1'解得t 1==×v=2××4 s=4 s2v 1'μg 2μg 1212设物块A 、B 第二次碰撞后的速度分别为v 4、v 3,取向左为正方向,由动量守恒定律和机械能守恒定律得mv 1'=mv 3+Mv 4mv =m +M 12'2112v 2312v 24解得v 3=-v 1'=-1 m/s12当物块B 在传送带上向右运动的速度为零后,将会沿传送带向左加速运动。

可以判断,物块B 运动到左边光滑水平面上时的速度大小为v 3'=1 m/s,继而与物块A 发生第3次碰撞。

设第2次碰撞到第3次碰撞之间,物块B 在传送带上运动的时间为t 2由动量定理得μmgt 2=2mv 3'解得t 2==×v 1'=××v=2××4 s=2 s 2v 3'μg 2μg 122μg 1212122……可知:物块B 与物块A 第n 次碰撞后物块B 在传送带上运动的时间为t n =×4 s(n=1,2,3…),t 1、t 2、12n -1t 3…构成无穷等比数列,公比q=12由无穷等比数列求和公式得t 总=t 1,可知,当n→∞时,t 总=×4 s=8 s1-q n1-q 11-12则物块B 经第一次与物块A 碰撞后在传送带上运动的总时间为8 s7.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。

P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。

物体P 置于P 1的最右端,质量为2m 且可看做质点。

P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起。

P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。

P 与P 2之间的动摩擦因数为μ。

求(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;(2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p 。

答案 (1) v 0 (2)-L m v 0234v 2032μg 116v 20解析 (1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒:mv 0=2mv 1,解得v 1=v 02最终三个物体具有共同速度,根据动量守恒:3mv 0=4mv 2,解得v 2=v 034(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:·2m +·2m -·4m =2mgμ(L+x)×212v 2112v 2012v 22解得x=-Lv 2032μg 在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p =2mgμ(L+x)解得E p =m 116v 20B 组 综合提能1.(多选)(2018西城期末)如图甲所示,一轻弹簧的两端与质量分别是m 1和m 2的两物块相连,它们静止在光滑水平地面上。

现给物块m 1一个瞬时冲量,使它获得水平向右的速度v 0,从此时刻开始计时,两物块的速度随时间变化的规律如图乙所示。

则下列判断正确的是( )A.t1时刻弹簧长度最短B.t2时刻弹簧恢复原长C.在t1~t3时间内,弹簧处于压缩状态D.在t2~t4时间内,弹簧处于拉长状态答案 ABD m1与m2速度相同时,动能损失最多,此时弹簧弹性势能最大,0~t1时间内,相当于m1追 m2,两物块相距越来越近,t1时刻弹簧最短;t1~t2时间内,m2一直加速向右运动,m1先向右减速,后反向向左加速,两物块相距越来越远;由v-t图像中斜率表示加速度,可知t2时刻两物块的加速度为零,即弹簧恢复原长;t2~t3时间内,m2继续向右运动,两物块相距越来越远,弹簧伸长,t3时刻两物块共速,弹性势能最大,弹簧最长;t3~t4时间内,两物块均向右运动,且m1加速,m2减速,m1的速度大于m2的速度,两物块逐渐靠近,说明弹簧处于拉长状态。

相关文档
最新文档