山东省济宁市学而优教育咨询有限公司高一数学测试题1
山东省济宁市学而优教育咨询有限公司高中数学测试题1新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题1 新人教A 版必修5第Ⅰ卷 (共60分)一、选择题(本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.) 1.若a ,b ∈R ,且ab >0,则下列不等式恒成立的是( ).A .a 2+b 2>2abB .a +b ≥2abC.1a +1b>2abD.b a +ab≥22. 数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
A .98 B .99 C .96 D .973.设变量x ,y 满足约束条件⎝ ⎛x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( ).A .⎣⎢⎡⎦⎥⎤-32,6 B.⎣⎢⎡⎦⎥⎤-32,-1 C .[-1,6]D.⎣⎢⎡⎦⎥⎤-6,324. 下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题aD .命题“若x 2>0,则x >1”的逆否命题5.如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是( )A .a n =2(n 2+n +1) B .a n =3·2nC .a n =3n +1D .a n =2·3n6.3x >是113x <的 ( ) A .必要不充分条件 B.充要条件C. 充分不必要条件D. 既非充分又非必要条件7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ). A .-12 B.12 C .-1 D .18.下列函数中,当x 取正数时,最小值为2 的是 ( )A. 4y x x =+B.1lg lg y x x=+C. y =223y x x =-+9已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞) C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞10.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( ) A.73B.37C.43D.3411.在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )12 D. 12-12. 数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -1第Ⅱ卷二.填空题: 本大题共4小题,每小题4分,满分16分.13.已知a >0,b >0,且a +2b =1.则1a +1b的最小值为______14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_____。
山东省济宁市学而优教育咨询有限公司高中数学测试题10新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题10 新人教A 版必修5第Ⅰ卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.在ABC ∆中, 已知060,34,4===B b a ,则角A 的度数为 ( ) A . 030 B .045 C .060 D .090 2.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .101 D . 102 3.已知0x >,函数4y x x =+的最小值是 ( ) A .5 B .4 C .8 D .6 4、各项均为正数的等比数列{}n a 的前n 项和为Sn ,若10s =2,30s =14,则40s 等于 A .80 B .26 C .30 D .16 5.不等式13()()022x x +-≥的解集是 ( )A. 13{|}22x x -≤≤B. 13{|}22x x x ≤-≥或C. 13{|}22x x -<<D. 13{|}22x x x <->或6.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 7.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆> 8.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23C.1D.39. 等差数列{}n a 的前m 项和为20,前2m 项和为70,则它的前3m 的和为( )A. 130B. 150C. 170D. 21010.在等比数列}{n a 中,公比q=2,且30303212=⋅⋅⋅⋅a a a a ,则30963a a a a ⋅⋅⋅⋅ 等于( ) A.102 B.202 C 162 D 152 第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.12. 在ABC ∆中,33a =,2b =,150C ︒=,则c = __________. 13.若不等式02>++b x ax 的解为,2131<<-x 则=a ,=b . 14.定义一种新的运算“*”对任意正整数n 满足下列两个条件:(1)111=*),1(21)1)(2(*+=*+n n 则=*12006____________15.若对于一切正实数x 不等式xx 224+>a 恒成立,则实数a 的取值范围是三、解答题(本大题共6小题,共75分.解答应写文字说明,证明过程或演算步骤.)16.(本小题满分12分)已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.17.(本小题满分12分)求下列不等式的解集:(1)2610x x --≥ (2) 21582≥+-x x x18.(本小题满分12分)如图,货轮在海上以35n mile/h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为︒152的方向航行.为了确定船位,在B 点处观测到灯塔A 的方位角为︒122.半小时后,货轮到达C 点处,观测到灯塔A 的方位角为︒32.求此时货轮与灯塔之间的距离.19.(本小题满分12分)已知等比数列{}13232423,2,n a a a a a a a +=+满足且是的等差中项. (I )求数列{}n a 的通项公式;(II )若212l ,,n n n n n n b a og a S b b b S =+=++⋅⋅⋅+求.20.(本小题满分13分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T .21.(本小题满分14分)某造纸厂拟建一座平 面图形为矩形且面积为162平方米的 三级污水处理池,池的深度一定(平面图如图所示), 如果池四周围墙建造单价为400元/米,中间两道隔 墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求 出最低总造价.AC B 北 北152o32 o122o【一】选择题(本大题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACBCACABBB【二】填空题(本大题共5小题,每小题5分,共25分,11、13题第一空3分,第二空2分) 11. 211n -3 12. 713.=a -6 ,=b 1 14 4011 15. a<24 16.解:设公比为q , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分由已知得 ⎪⎩⎪⎨⎧=+=+45105131211q a q a q a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 3分 即⎪⎩⎪⎨⎧=+=+ 45)1(①10)1(23121 q q a q a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5分 ②÷①得 21,813==q q 即 , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 7分 将21=q 代入①得 81=a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 8分 1)21(83314=⨯==∴q a a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分231211)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s ┄┄┄┄┄┄┄┄┄┄ 12分17.解:(1)方程0162=--x x 的两解为31,2121-==x x ,根据函数图像可知原不等式2610x x --≥的解为}3121|{-≤≥x x x 或 ┄┄┄┄┄ 7分 (2)解:原不等式等价于:0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x ∴原不等式的解集为]6,5()3,25[ ┄┄┄┄ 14分18.在△ABC 中,∠B=152o-122o=30o,∠C=180o-152o+32o=60o,∠A=180o-30o-60o=90o,┄┄┄┄┄(4分) BC =235,┄┄┄┄┄(6分) ②∴AC=235sin30o=435.┄┄┄┄┄(12分) 答:船与灯塔间的距离为435n mile .19.20、解:(Ⅰ)12n n a S +=,12n n n S S S +∴-=,13n nS S +∴=. 又111S a ==,∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N .当2n ≥时,21223(2)n n n a S n --==≥,21132n n n a n -=⎧∴=⎨2⎩, ,,≥.………………… 5分 (Ⅱ)12323n n T a a a na =++++,………………………6分当1n =时,11T =;………………………7分 当2n ≥时,0121436323n n T n -=++++,…………①12133436323n n T n -=++++,………………………②………………………9分-①②得:12212242(333)23n n n T n ---=-+++++-213(13)222313n n n ---=+--11(12)3n n -=-+-.………………………12分1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥.………………………13分 又111T a ==也满足上式,1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N . ………14分 21.解:(1)设污水处理池的宽为x 米,则长为米. 则总造价,当且仅当x=(x >0),即x=10时取等号.∴当长为16.2 米,宽为10 米时总造价最低,最低总造价为38 880 元.(2)由限制条件知,∴10≤x ≤16设g(x)=x+.g (x )在上是增函数,∴当x=10时(此时=16), g(x)有最小值,即f(x)有最小值.∴当长为16 米,宽为10米时,总造价最低.。
山东省济宁市学而优教育咨询有限公司高中数学测试题10 新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题10 新人教A 版必修5第Ⅰ卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.在ABC ∆中, 已知060,34,4===B b a ,则角A 的度数为 ( )A . 030B .045C .060D .090 2.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .101 D . 102 3.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 4、各项均为正数的等比数列{}n a 的前n 项和为Sn ,若10s =2,30s =14,则40s 等于 A .80 B .26 C .30 D .16 5.不等式13()()022x x +-≥的解集是 ( )A. 13{|}22x x -≤≤B. 13{|}22x x x ≤-≥或C. 13{|}22x x -<<D. 13{|}22x x x <->或6.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 7.不等式20(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a <∆< B. 0,0a <∆≤ C. 0,0a >∆≥ D. 0,0a >∆> 8.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23C.1D.39. 等差数列{}n a 的前m 项和为20,前2m 项和为70,则它的前3m 的和为( )A. 130B. 150C. 170D. 21010.在等比数列}{n a 中,公比q=2,且30303212=⋅⋅⋅⋅a a a a Λ,则30963a a a a ⋅⋅⋅⋅Λ等于( )A.102B.202 C 162 D 152 第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.若数列{}n a 的前n 项和210(123)n S n n n =-=L ,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第 项.12. 在ABC ∆中,33a =,2b =,150C ︒=,则c = __________.13.若不等式02>++b x ax 的解为,2131<<-x 则=a ,=b . 14.定义一种新的运算“*”对任意正整数n 满足下列两个条件:(1)111=*),1(21)1)(2(*+=*+n n 则=*12006____________15.若对于一切正实数x 不等式xx 224+>a 恒成立,则实数a 的取值范围是三、解答题(本大题共6小题,共75分.解答应写文字说明,证明过程或演算步骤.)16.(本小题满分12分)已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.17.(本小题满分12分)求下列不等式的解集:(1)2610x x --≥ (2) 21582≥+-x x x18.(本小题满分12分)如图,货轮在海上以35n mile/h 的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为︒152的方向航行.为了确定船位,在B 点处观测到灯塔A 的方位角为︒122.半小时后,货轮到达C 点处,观测到灯塔A 的方位角为︒32.求此时货轮与灯塔之间的距离.19.(本小题满分12分)已知等比数列{}13232423,2,n a a a a a a a +=+满足且是的等差中项. (I )求数列{}n a 的通项公式;(II )若212l ,,n n n n n n b a og a S b b b S =+=++⋅⋅⋅+求.20.(本小题满分13分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T .21.(本小题满分14分)某造纸厂拟建一座平 面图形为矩形且面积为162平方米的 三级污水处理池,池的深度一定(平面图如图所示), 如果池四周围墙建造单价为400元/米,中间两道隔 墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低,并求 出最低总造价.AB 北 北152o32 o122o【一】选择题(本大题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案ACBCACABBB分) 11. 211n -3 12. 713.=a -6 ,=b 1 14 4011 15. a<24 16.解:设公比为q , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分由已知得 ⎪⎩⎪⎨⎧=+=+45105131211q a q a q a a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 3分 即⎪⎩⎪⎨⎧=+=+ 45)1(①10)1(23121ΛΛΛΛΛq q a q a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5分 ②÷①得 21,813==q q 即 , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 7分 将21=q 代入①得 81=a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 8分 1)21(83314=⨯==∴q a a , ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10分231211)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s ┄┄┄┄┄┄┄┄┄┄ 12分 17.解:(1)方程0162=--x x 的两解为31,2121-==x x ,根据函数图像可知原不等式2610x x --≥的解为}3121|{-≤≥x x x 或 ┄┄┄┄┄ 7分 (2)解:原不等式等价于:0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x ∴原不等式的解集为]6,5()3,25[Y ┄┄┄┄ 14分18.在△ABC 中,∠B=152o-122o=30o,∠C=180o-152o+32o=60o,∠A=180o-30o-60o=90o,┄┄┄┄┄(4分) BC =235,┄┄┄┄┄(6分) ②∴AC=235sin30o=435.┄┄┄┄┄(12分)答:船与灯塔间的距离为435n mile.19.20、解:(Ⅰ)12n na S+=Q,12n n nS S S+∴-=,13nnSS+∴=.又111S a==Q,∴数列{}n S是首项为1,公比为3的等比数列,1*3()nnS n-=∈N.当2n≥时,21223(2)nn na S n--==g≥,21132n nnan-=⎧∴=⎨2⎩g,,,≥.………………… 5分(Ⅱ)12323n nT a a a na=++++L,………………………6分当1n=时,11T=;………………………7分当2n≥时,0121436323nnT n-=++++g g L g,…………①12133436323nnT n-=++++g g L g,………………………②………………………9分-①②得:12212242(333)23n nnT n---=-+++++-L g213(13)222313n n n ---=+--g g11(12)3n n -=-+-g .………………………12分1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥.………………………13分 又111T a ==Q 也满足上式,1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N . ………14分 21.解:(1)设污水处理池的宽为x 米,则长为米.则总造价,当且仅当x=(x>0),即x=10时取等号.∴当长为16.2 米,宽为10 米时总造价最低,最低总造价为38 880 元. (2)由限制条件知,∴10≤x≤16设g(x)=x+.g(x)在上是增函数,∴当x=10时(此时=16), g(x)有最小值,即f(x)有最小值.∴当长为16 米,宽为10米时,总造价最低.。
山东省济宁市学而优教育咨询有限公司高中数学周练(24)

山东省济宁市学而优教育咨询有限公司高中数学周练(24)(无答案)新人教A 版必修5一、选择题(共10题,每题5分,共50分)1.下列语句是命题的是( ▲ )A .这是一幢大楼B .0.5是整数C .指数函数是增函数吗?D .x >52.θ是任意实数,则方程4sin 22=+θy x 的曲线不可能是 ( ▲ )A .椭圆B .双曲线C .抛物线D .圆3.下列命题中正确的是( ▲ )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题; ②“等腰三角形都相似”的逆命题;③“若m>0,则方程x 2+x -m=0有实根”的逆命题; ④“若x -123是有理数,则x 是无理数”的逆否命题A .①④B .①③④C .②③④ D.①②③ 4.已知P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=,F 1,F 2分别是双曲线的左右焦点,若|PF 1|=5,则|PF 2|等于( ▲ )A . 1或9B . 5C . 9D . 135. 设A 、B 两点的坐标分别为(-1,0),(1,0),条件甲:0>⋅BC AC ; 条件乙:点C 的坐标是方程x 24 + y 23 =1 (y ≠0)的解. 则甲是乙的( ▲ ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 6. 设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ▲ )A.2±B.43±C.12±D.34± 7. 命题“对任意的x R ∈,3210x x -+≤”的否定是( ▲ )A .不存在x R ∈,3210x x -+≤B .存在x R ∈,3210x x -+≤C .对任意的x R ∈,3210x x -+>D .存在x R ∈,3210x x -+>8. 若直线1-=kx y 与双曲线422=-y x 始终有公共点,则k 的取值范围是( ▲ ) A .[]1,1- B .5⎡-⎢⎣⎦ C .55⎡⎢⎣⎦ D .以上都不对9. 如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a b y a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( ▲ )A. 3B.5C.25 D. 31+ 10.离心率为黄金比512-的椭圆称为“优美椭圆”.设22221(0)x y a b a b+=>>是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个顶点,则FBA ∠等于( ▲ ) A.60o B.75o C.90o D.120o第Ⅱ卷 (共100分)二、填空题(每题5分,共25分) 11.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是___▲____ 12. P 是双曲线2214x y -=上的一点,12F F ,是双曲线的两个焦点,且123F PF π∠=,则12F PF ∆ 的面积是___▲____13. 已知经过抛物线24y x =焦点F 的直线与抛物线相交于A ,B 两点,若A ,B 两点的横坐标之和为3,则AB =___▲____ 14. 已知由双曲线22194x y -=右支上的点M 和左右焦点12F F 构成三角形,则∆M 12F F 的内切圆与边12F F 的切点坐标是 ▲ 15. 设双曲线22221(0,0)x y a b a b-=>>的离心率[2,2]e ∈,则两条渐近线夹角的正弦值的取值范围是▲三、解答题(本大题共6小题,共74分.解答应写文字说明,证明过程或演算步骤.)16.(本小题满分12分) 设命题:431p x -≤,命题2:(21)(1)0q x a x a a -+++≤,若p ⌝是q ⌝的必要非充分条件,求实数a 的取值范围.17.(本小题满分12分)(1)已知椭圆的长轴是短轴的3倍,且过点(30)A ,,并且以坐标轴为对称轴,求椭圆的标准方程.(2)设双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,在第一象限的交点A 的纵坐标为4,求此双曲线的方程.18.(本小题满分12分)已知直线:2l y x m =+和椭圆22:14x C y +=. (1)m 为何值时,l 和C 相交、相切、相离;(2)m 为何值时,l 被C 所截线段长为2017.19.(本小题满分12分)直线y = kx -2与抛物线22y x =相交于A ,B 两点,O 为坐标原点.⑴若k = 1,求证:OA ⊥OB ;⑵求弦AB 中点M 的轨迹方程.20.(本小题满分13分)已知椭圆22221(0)x y C a b a b +=>>:的离心率为6,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于AB ,两点,坐标原点O 到直线l 的距离为3,求AOB △面积的最大值.21.(本小题满分14分)已知M(-3,0)﹑N(3,0),P 为坐标平面上的动点,且直线PM 与直线PN 的斜率之积为常数m(m ≥-1,m ≠0).(1)求P 点的轨迹方程并讨论轨迹是什么曲线?(2)若59m =-, P 点的轨迹为曲线C,过点Q(2,0)斜率为1k 的直线1l 与曲线C 交于不同的两点A ﹑B,AB 中点为R,直线OR(O 为坐标原点)的斜率为2k ,求证12k k 为定值;(3)在(2)的条件下,设QB AQ λ=u u u r u u u r ,且[2,3]λ∈,求1l 在y 轴上的截距的变化范。
山东省济宁市学而优教育咨询有限公司高中数学周练(1)(无答案)新人教A版必修5

高一下学期第一次学分认定考试数学试题一.选择题:(每小题5分,共12小题,共60分请将唯一正确的选项填入答题卡内)1. 若 0sin >θ, 0cos <θ, 则θ所在的象限是 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2. 设平面向量()()3,5,2,1a b ==-r r ,则2a b -=r r ( )A 、()7,3B 、()7,7C 、()1,7D 、()1,33.满足函数x y sin =和x y cos =都是增函数的区间是( )A .]22,2[πππ+k k , Z k ∈B .]2,22[ππππ++k k , Z k ∈C .]2,22[πππk k -,Z k ∈ D .]22,2[ππππ--k k ,Z k ∈4.459和357的最大公约数是( )A. 3B. 9C. 17D. 515.3,4a b ==r r ,向量34a b +r r 与34a b -r r 的位置关系为( ) A.垂直 B.平行 C.夹角为3π D.不平行也不垂直 6.如果执行右面的框图,输入5N =,则输出的数等于( )A .54B .45C .65D .567. 已知33cos sin =-αα则 =-)22cos(απ( ) A . 32- B .32 C .35- D .35 8.已知52)tan(=+βα,41)4tan(=-πβ则)4tan(πα+=( ) A .183 B .2213 C .223 D .619.已知35sin()cos cos()sin αβααβα---=,那么2cos β的值为 ( ) A 、725 B 、1825C 、725-D 、1825- 10.在△ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足2PA PM =u u u r u u u u r ,则()PA PB PC ⋅+=u u u r u u u r u u u r ( )A 、49 B 、43- C 、43 D 、49-11.给出一个算法的程序框图如右图所示:该程序框图的功能是( ) A.求出a,b,c 三个数中的最大值 .B .求出a ,b ,c 三个数中的最小值C.将a ,b ,c 按从小到大排列 D .将a ,b ,c 按从大到小排列12.已知向量a =)cos 3,(sin x x ,向量)sin ,(sin x x b =ρ,求函数f (x )= .a b r r在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1 B 132+ C. 32 D.1+3二、填空题(本大题共4小题,每小题4分,共16分.)13.若角α的终边经过点(12)P -,,则tan 2α的值为14. b a ρϖ,的夹角为ο120,1,3a b ==r r ,则5a b -=r r15.已知函数⎩⎨⎧<-≥=.222log 2x x x x y ,,,右图表示的是给定x 的值,求其对应的函数值y 的程序框图,①处应填写 ②处应填写 .16.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C .则 ①图象C 关于直线11π12x =对称;②图象C 关于点2π03⎛⎫ ⎪⎝⎭,对称;③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数;④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 如下结论中正确的序号是三、解答题:(本大题共6小题,共74分.解答应写文字说明,证明过程或演算步骤.)17.(本小题满分12分) 已知:21)4tan(=+απ.(1)求αtan 的值;(2)求ααα2cos 1cos 2sin 2+-的值.18.(本小题满分12分) 已知函数2()2cos 2sin f x x x =+ (Ⅰ)求()3f π的值;(Ⅱ)求()f x 的最大值和最小值19. (本小题满分12分) 已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (1) 若|c |52=,且a c //,求c 的坐标;(2)若|b |=,25且b a 2+与b a -2垂直,求a 与b 的夹角θ.20. (本小题满分12分) 已知的函数)0(),2sin(2)(<<-+=ϕπϕx x f , )(x f 的一条对称轴是8π=x( 1 ) 求ϕ的值; ( 2)求使()0f x ≥成立的x 的取值集合;(3)说明此函数图象可由x y sin =的图象经怎样的变换得到.21. (本小题满分13分) 已知向量()sin ,2a θr =-与()1cos b θr =,互相垂直,其中(0,)2πθ∈. (1)求sin cos θθ和的值;(2)若10sin(),0102πθϕϕ-=<<,求cos ϕ的值.22.(本小题满分13分)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-r r r 。
山东省济宁市学而优教育咨询有限公司高中数学测试题11新人教A版必修5

山东省济宁市学而优教育咨询有限公司高中数学测试题11 新人教A 版必修5第Ⅰ卷(共50分)一、选择题(每小题5分,共50分) 1ABC ∆中,2a=,b =3B π=,则sin A 的值是( )A .12 B.2 C.2 D .12或22.已知1,,,a b c ,4成等比数列,则实数b 为( )A .4B .2-C .2±D .2 3.在等差数列{}n a 中,若3692120a a a ++=,则11S 等于( )A .330B .340C .360D .380 4.在△ABC 中,角A,B,C 的对应边分别为,,a b c若222ac b +-=,则角B 的值为( )A .6πB .3πC .6π或56πD .3π或23π5.在ABC ∆中,已知2sin cos sin A B C =,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 61+1的等比中项是( )A .1B .1-C .1±D .127. 已知{}n a 是等差数列,451555a S ==,,则过点34(3,),(4,)P a Q a 的直线斜率为()A .4 B.C .-4 D .- 8. △ABC 中,已知,2,60a x bB ︒===,如果△ABC 有两组解,则x 的取值范围( )A .2x>B .2x <C.2x <<D .2x <≤9.已知各项均为正数的等比数列{}n a 的首项13a =,前三项的和为21,则345a a a ++=()A .33B .72C .189D . 8410.已知数列{}n a 满足112(0)2121(1)2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,若157a =,则2014a 的值为( )A .67 B .57 C .37 D .17第Ⅱ卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分) 11. 在△ABC 中,若∠A:∠B:∠C=1:2:3,则::a b c =.12.在等比数列{}n a 中,若110,a a 是方程23260x x --=的两根则47a a ⋅=______13.在ABC ∆中,已知2a =,120A =︒,则sin sin a bA B+=+.14.已知数列{}n a 的前n 项和32n n S =+,求n a =_______。
2024届山东省济宁市数学高一上期末检测试题含解析
2024届山东省济宁市数学高一上期末检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中BC =AB =2,则原平面图形的面积为()A.322B.32C.122D.622.函数cos y x =的定义域为[],a b ,值域为3[1,]2-,则b a -的取值范围是() A.5[,]6ππ B.55[,]63ππ C.[]6,ππD.11[,]6ππ 3.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为 ( ) A.(1,2) B.(2,1) C.(22,)D.(1,1)4.一个容量为1 000的样本分成若干组,已知某组的频率为0.4,则该组的频数是 A.400 B.40 C.4 D.6005.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是( )A.的最小正周期为B.在区间上单调递减C.图象的一条对称轴为直线D.图象的一个对称中心为6.若点()1,3A --、()2,B a 、()3,1C 在同一直线上,则=a () A.0 B.1 C.2D.1-7.已知集合{|43}M x x =-<<,{|5N x x =<-或3}x ≥,则M N ⋃=() A.{|5x x <-或}4x >- B.{|53}x x -<< C.{|54}x x -<<-D.{|5x x <-或3}x >8.命题“∀x >0,x 2-x ≤ 0 ”的否定是() A.∃x >0,x 2-x ≤ 0 B.∃x > 0,x 2-x >0 C.∀x > 0,x 2-x > 0 D.∀x ≤0,x 2-x > 09.已知0.23a =,13log 0.4b =,2log 0.2c =,则()A.a b c >>B.b c a >>C.c b a >>D.b a c >>10.已知,,R a b c ∈,且a b >,则下列不等式一定成立的是( ) A.22a b > B.11a b< C.||||a c b c >D.c a c b -<-二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在矩形ABCD 中,AB =2,AD =1.设123456t AB BC CD DA AC BD λλλλλλ=+++++ ①当1234561,1λλλλλλ===-===时,t =___________; ②若{}1,1,1,2,3,4,5,6i i λ∈-=,则t 的最大值是___________ 12.已知函数()2cos 3sin cos f x x x x =.(1)当函数()f x 取得最大值时,求自变量x 的集合;(2)完成下表,并在平面直角坐标系内作出函数()f x 在[]0,π的图象. x 0 πy13.若关于x 的不等式3231012xkx x x ->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________14.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________. 15.已知点(1,1),(1,5)A B -,若12AC AB =,则点C 的坐标为_________. 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某行业计划从新的一年2020年开始,每年的产量比上一年减少的百分比为(01)<<x x ,设n 年后(2020年记为第1年)年产量为2019年的a 倍. (1)请用a ,n 表示x .(2)若10%x =,则至少要到哪一年才能使年产量不超过2019年的25%? 参考数据:lg 20.301≈,lg30.477≈. 17.已知向量()2,6a =-,10b =.(1)若a 与b 共线且方向相反,求向量b 的坐标. (2)若a b +与b 垂直,求向量a ,b 夹角θ的大小. 18.若函数f (x )满足f (log a x )=21a a -·(x -1x)(其中a >0且a ≠1). (1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围 19.已知函数()2=-a f x x x,且()922f =.(1)求实数a 的值;(2)判断函数()f x 在()1,+∞上的单调性,并证明.20.已知3sin()cos cos 22()3sin()cos(2)sin tan()2f ππθπθθθππθπθθπθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=⎛⎫---+-- ⎪⎝⎭. (1)化简()fθ;(2)若()3f πθ-=-,求3sin 2cos 5cos 2sin θθθθ-+的值;(3)解关于θ的不等式:2f πθ⎛⎫≥⎪⎝⎭21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x(单位:月)的关系有两个函数模型(01)xy ka k a =>>,与12(00)y px k p k =+>>,可供选择(1)试判断哪个函数模型更合适并说明理由,求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg30.4711≈≈)参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、C【解析】先求出直观图中,∠ADC =45°,AB =BC =2,AD =DC =4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC =45°,AB =BC =2,DC ⊥BC,∴AD =DC =4,∴原来的平面图形上底长为2,下底为4,高为42的直角梯形, ∴该平面图形的面积为()124421222+⨯⨯=. 故选:C 2、B【解析】观察cos y x =在[]0,2π上的图象,从而得到b a -的取值范围. 【详解】解:观察cos y x =在[]0,2π上的图象,当32y =时,6x π=或116π,当1y =-时,x π=, ∴b a -的最小值为:566πππ-=,b a -的最大值为:111056663ππππ-==,∴b a -的取值范围是55[,]63ππ故选:B【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合思想,属基础题 3、D【解析】设出P 点坐标(x ,y ),利用正弦函数和余弦函数的定义结合4π的三角函数值求得x ,y 值得答案 【详解】设点P 的坐标为(x ,y),则由三角函数的定义得π42π42sin cos ⎧=⎪⎪⎨⎪=⎪⎩即π214π2 1.4x cos y sin ⎧==⎪⎪⎨⎪==⎪⎩,故点P 的坐标为(1,1).故选D【点睛】本题考查任意角的三角函数的定义,是基础的计算题 4、A【解析】频数为10000.4400⨯= 考点:频率频数的关系 5、D【解析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案. 【详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A 错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D 正确.故选:D. 6、A【解析】利用AB AC k k =结合斜率公式可求得实数a 的值.【详解】因为()1,3A --、()2,B a 、()3,1C 在同一直线上,则AB AC k k =,即3132131a ++=++,解得0a =. 故选:A. 7、A【解析】应用集合的并运算求M N ⋃即可.【详解】由题设,M N ⋃={|43}x x -<<⋃{|5x x <-或3}{|5x x x ≥=<-或}4x >-. 故选:A 8、B【解析】根据含有一个量词命题否定的定义,即可得答案. 【详解】命题“∀x >0,x 2-x ≤ 0 ”的否定是:“∃x > 0,x 2-x >0 ”. 故选:B 9、A【解析】比较a 、b 、c 与中间值0和1的大小即可﹒【详解】0.20331a =>=,()1113331log 0.4log 1log 013b ⎛⎫∈ ⎪⎝⎭=,=,,22log 0.2log 10c =<=,∴a b c >>﹒ 故选:A ﹒ 10、D【解析】对A ,B ,C ,利用特殊值即可判断,对D ,利用不等式的性质即可判断. 【详解】解:对A ,令1a =,2b =-,此时满足a b >,但22a b <,故A 错; 对B ,令1a =,2b =-,此时满足a b >,但11a b>,故B 错; 对C ,若0c ,a b >,则||||a c b c =,故C 错;对D ,a b >a b ∴-<-,则c a c b -<-,故D 正确. 故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11、 ①.0 ②.【解析】利用坐标法可得t =.【详解】由题可建立平面直角坐标系,则()()()()0,0,2,0,2,1,0,1A B C D ,∴()()()()()()()123456135624562,00,12,00,12,12,12222,λλλλλλλλλλλλλλ++-+-++-=-+--++, ∴()()22135624564t λλλλλλλλ=-+-+-++∴当1234561,1λλλλλλ===-===时,()()221356245640t λλλλλλλλ=-+-+-++=,因为{}1,1,1,2,3,4,5,6i i λ∈-=,要使t 最大,可取1234561,1,1,1,1,1λλλλλλ===-=-==-,即135624564,2λλλλλλλλ-+-=-++=时, t 取得最大值是17故答案为:0;21712、(1),6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(2)答案见解析【解析】( 1 )由三角恒等变换求出解析式,再求得最大值时的x 的集合, ( 2)由五点法作图,列出表格,并画图即可. 【小问1详解】21131()cos 3cos cos 22sin(2),2262x x x x x x f x =+=+=++π 令2262x k πππ+=+,函数()f x 取得最大值,解得,6=+∈x k k Z ππ,所以此时x 的集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【小问2详解】 表格如下:x 06π 512π 23π 1112ππ26x π+6π 2π π32π 2π136πy1321212-121作图如下,13、[]0,1【解析】根据题意显然可知0k ≥,整理不等式得:102k x x <-,令()102f x x x=-,求出()f x 在()0,2x ∈的范围即可求出答案.【详解】由题意知:2302kx x x +->,即22>-k x x 对任意的()0,2x ∈恒成立,0k ∴≥当()0,2x ∈,3231012x kx x x->+-得:233210kx x x x <+--, 即200+21x kx <-对任意的()0,2x ∈恒成立,即210210=2x k x x x-<-对任意的()0,2x ∈恒成立,令()102f x x x=-,()f x 在()0,2x ∈上单减,所以()()21f x f >=,所以1k ≤ 01k ∴≤≤.故答案为:[]0,1 14、4360x y --=【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立280210x y x y ==+-⎧⎨-+⎩ ,解得32x y ⎧⎨⎩==∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2), ∵直线4x-3y-7=0的斜率为43, ∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=43(x-3) 即为4x-3y-6=0 故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题 15、(0,3)【解析】设点C 的坐标,利用12AC AB =,求解即可 【详解】解:点(1,1)A ,(1,5)B -,(2,4)AB =-, 设(,)C a b ,(1)1,AC a b =--,12AC AB =, (1a ∴-,11)(2,4)2b -=-,解得0a =,3b =点C 的坐标为(0,3), 故答案为:(0,3)【点睛】本题考查向量的坐标运算,向量相等的应用,属于基础题三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)*1)x n N =∈(2)2033【解析】(1)每年的产量比上一年减少的百分比为(01)<<x x ,那么n 年后的产量为2019年的(1)nx -,即得;(2)将 10%x =代入(1)中得到式子,解n ,n 取正整数。
山东省济宁市学而优教育咨询有限公司高中数学测试题9新人教A版必修5
山东省济宁市学而优教育咨询有限公司高中数学测试题9新人教A版必修5第I卷(共60分)一、选择题(本题共12小题,每题5分,共60分)1. 在中,分别为三个内角所对的边,设向量,若向量,则角的大小为()A. B. C. D.2. 已知各项不为零的等差数列满足,数列是等比数列,且,则等于()A. 16B.8C.4D.23. 下列命题中正确的是A.若,贝UB. 若,,贝UC.若,,则D.若,,贝U4. 设是等差数列的前项和,且,则A. B. C. D.5. 若不等式对任意都成立,则的取值范围是A. B. C. D.6. 实数满足条件,则的最大值是A. B. C. D.7. 在中,,,,那么满足条件的A.有一个解 B .有两个解 C .无解 D .不能确定8. 若等差数列与等比数列满足,则前项的和为A. B. C. D.9. 下列函数中,最小值为4的是A. B.C. D.10. 等比数列的前项和为,且4, 2,成等差数列.若=1,则A. B. C. D.A. 11 B. 19 C. 20第n卷(共90 分)D. 21二、填空题(本题共4小题,每题4分,共16分)13.不等式的解集是_____________14•设,若是与的等比中项,则的最小值为____________________ .15. 有以下四个命题:①对于任意实数,;②设是等差数列的前项和,若为一个确定的常数,则也是一个确定的常数;③在三角形中,若,恒有;④对于任意正实数,若,,则的最小值为.其中正确命题的是___________________ (把正确的答案题号填在横线上)16. 钝角三角形的三边长分别为,该三角形的最大角不超过,则的取值范围是_________________ .三、解答题(本大题共6小题,共74分.解答应写文字说明,证明过程或演算步骤.)17. (本小题满分12分)解关于的不等式.18.(本小题满分12分)在中,内角对边的边长分别是,已知,19、(本小题满分12分)已知函数.(I )求函数的最小正周期和最小值;(II )中,A,B,C的对边分别为a,b,c,已知,求a,b的值.,,求的面积.(12分)11.在中,角、、的对边分别为、、,且,,,则边的值为A. B. C. D.12.已知等差数列中,有,且该数列的前项和有最大值,则使得成立的的最大值为20、(本小题满分12分)已知数列的前项和与满足(1) 求数列的通项公式;(2) 求数列的前项和.21. (本小题满分12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆车的平均速度(千米/小时)之间的函数关系为:。
山东省济宁市学而优教育咨询有限公司高中数学测试题7 新人教A版必修5
山东省济宁市学而优教育咨询有限公司高中数学测试题7 新人教A 版必修5本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
第I 卷(选择题 共50分)一、选择题(每小题5分,10小题,共50分)1、在ABC ∆中,︒===452232B b a ,,,则A 为( ) A .︒︒︒︒︒︒30.15030.60.12060D C B 或或2、若数列{a n }的前n 项和223n S n n =-+,那么这个数列的前3项依次为( )A .1,1,3-B .2,1,0C .2,1,3D .2,1,63、已知-9,a 1, a 2,-1四个实数成等差数列,-9,b 1, b 2, b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于 ( )A .-8B .8C .98-D .984、在中ABC ∆,B a A b cos cos =,则三角形的形状为( ) A 直角三角形 B 锐角三角形 C 等腰三角形 D 等边三角形5、等差数列{}n a 的前n 项和是n S ,若10173=+a a ,则=19S ( )A .55B .95C .100D .1906、在△ABC 中,AB =5,BC =7,AC =8,则BC AB ⋅的值为( )A .79B .69C .5D .-57、设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( ) A.0<m <3 B.1<m <3 C.3<m <4 D.4<m <68、等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和是( ) A .1-n S B .n n q S - C .nn q S -1 D .11--n n q S9、在ABC ∆中,1660=︒=b A ,,面积3220=S ,则a 等于( )A.B. 75C. 49D. 5110、已知{a n }是等比数列,且0n a >,243546225a a a a a a ++=,,那么35a a +的值等于( )A .5B .10C .15D .20第II 卷(非选择题 共100分)二、填空题(每小题5分,5小题,共25分)11、在ABC ∆ 中,若B A C B A sin sin sin sin sin 222=-+,则=C _________ 12、在等比数列{}n a 中,08,204321=+=+a a a a ,则=10S __________13、如果a 、x 1、x 2、b 成等差数列,a 、y 1、y 2、b 成等比数列,那么1212x x y y +等于 (结果用含a 、b 的代数式表示)14、设等差数列{}n a 中,931,,a a a 又成等比数列,则1392410a a a a a a ++=++__________15、已知{a n }的前n 项和为()()1159131721143n n S n -=-+-+-++--…,则152231s s s +-的值是三、解答题(本大题共6小题,共75分.解答应写文字说明,证明过程或演算步骤.) 16、(本小题满分12分)已知a=c =2,B =150°,求边b 的长及S ∆.17、(本小题满分12分)已知{}n a 是等差数列,其中1425,16a a ==(1)数列{}n a 从哪一项开始小于0 (2)求13519a a a a ++++值。
山东省济宁市学而优教育咨询有限公司高中数学周练19无新人教A版必修5
山东省济宁市学而优教育咨询有限公司高中数学周练(19)(无答案)新人教 A 版必修5一、选择题(每题5分,共50分)1ABC中,a2,b6,B3,则sinA的值是()1B.2C.3.13A.2D或22222.已知1,a,b,c,4成等比数列,则实数b为()A.4B.2C.2D.23.在等差数列{a}中,若a2a a120,则S等于()n3691 1A.330B.340C.360D.3804.在△ABC中,角A,B,C的对应边分别为a,b,c若a2c2b23ac,则角B的值为()A.B.C.5D.或23或366635.在ABC中,已知2sinAcosB sinC,那么ABC必定是()A.直角三角形B.等腰三角形C.等腰直角三角形 D .正三角形6.21与21)的等比中项是(A.1B.11C.1D.7.已知{a}是等nA.4B.C.-8.△ABC中,已A.x2339.已知各项均为正数的等比数列{a}的首项a3,前三项的和为21,则a a a=(n1345A.33B.72C.189D.84)) 2a(0a1)n n2,若a1510.已知数列{a n}满足a n11(1,则a2014的值为()2a a1)7 n2nA.6B.5C.3D.17777第Ⅱ卷(共100分)二、填空题(本大题共5小题,每题5分,共25分)11.在△ABC中,若∠A:∠B:∠C=1:2:3,则a:b:c.12.在等比数列a n中,若a1,a10是方程3x22x60的两根则a4a7=______13.在ABC中,已知a2,A120,则a b.sinA sinB14.已知数列a n的前n项和S n32n,求a n=_______。
15.在-9和3之间插入n个数,使这n 2个数构成和为-21的等差数列,则n__.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(满分12分)等差数列{a}的前n项和记为S.已知a30,a50.n n1020(Ⅰ)求通项a;(Ⅱ)若S242,求n.n n17.(满分12分)在△ABC中,BC=a,AC=b,a,b是方程x223x20的两个根,且2cosA B 1.求:(1)角C的度数;(2)AB的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:(每题5分,共60分)
1.已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )
A .1 B
C .2
D .4
2.已知sinα=
135
,且α是第二象限角,那么tanα的值为( ) A .125- B .125 C .512 D .5
12
-
3.已知||=5,b =(1,2),且∥,则的坐标为( ).
A .(1,2) 或(-1,-2)
B .(-1,-2)
C .(2,1)
D .(1,2)
4.函数x y 2cos =的奇偶性是 ( ) A 奇函数 B 偶函数 C 既是奇函数,又是偶函数 D 既不是奇函数,又不是偶函数 5.函数⎥⎦⎤
⎢⎣
⎡∈=32,6,sin ππx x y ,则y 的取值范围是 ( ) A .[]1,1-
B .⎥⎦⎤
⎢⎣⎡1,21 C .⎥⎦⎤⎢⎣⎡23,21
D .⎥⎦
⎤⎢⎣⎡1,23 6.设向量||4,||3,60a b a,b ==<>=︒,则||a+b 等于 ( ) A .37 B .13 C
D
7.若α是第二象限的角,则
2
α
所在的象限是 ( )
A .第一、二象限
B .第一、三象限
C .第二、四象限
D .第二、三象限
8.已知032),,(),3,4(),2,5(=+-=--=-=c b a y x c b a 若则等于( )
A .)3
8
,1( B .)38,313(
C .)34,313(
D .)3
4,313(-- 9.若||1,||2,a b c a b ===+
,且c a ⊥ ,则向量a 与b 的夹角为 ( )
(A )300 (B )600 (C )1200 (D )1500
10.若βα,为第一象限角,且βα>,则 ( ) A .βαsin sin >
B .βαsin sin <
C .βαsin sin =
D .β
αsin sin ,大小关系不能确定
11.若|a |=1,|b |=2,|a b +
a 与
b 的夹角的余弦值为( )
A .12-
B .12 C
. D
12.给出下列四个命题: ①若0a ≠ ,则对任意的非零向量b ,都有0a b ⋅=
; ②若0a ≠ ,0a b ⋅= ,则0b = ; ③若0a = ,a b a c ⋅=⋅ ,则b c =
;
④对任意向量,,a b c
都有()()
a b c a b c ⋅⋅≠⋅⋅ , 其中正确的命题个数是( )
A 3
B 2
C 1
D 0 二、填空题:(每题4分,共16分)
13.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 . 14.已知
()()()()
2cos sin 4cos sin 3=+---++απαααπ,则αtan = ;ααcos sin 的值___ __;
15.已知b a b a k b a 3)2,3(),2,1(-+-==与且平行,则k 的值为_________; 16.如图1-1是()sin y A x ωϕ=+的图象,则其解析式是__________________; 三、解答题(本题6个小题,共74分)
17.(本小题满分12分)若cos α=2
3
,α是第四象限角,
求sin(2)sin(3)cos(3)
cos()cos()cos(4)
απαπαππαπααπ-+--------的值
18.(本小题满分12分) 已知:函数f(x)=2cosx+sin 2x (4
π
-<x≤
2
π
) 求:f(x)的最小值,以及此时x 的值
19.(本小题满分12分)已知向量(cos ,sin ),[0,]a θθθπ=∈
,向量1)b =-
(1)当//a b ,求θ. (2)当a b ⊥时,求θ.
图1-1
(3)求|2|a b -的最大和最小值.
20.(本小题满分12分)设e 1,e 2是两个不共线的非零向量.
(1)若AB
= e 1+e 2,BC =2 e 1+8e 2,CD =3(e 1-e 2),
求证:A ,B ,D 三点共线;
(2)试求实数k 的值,使向量ke 1+e 2和e 1+ke 2共线.
21、(本小题满分12分)已知ABC ∆所在平面内一点P ,满足:AP 的中点为Q ,
BQ 的中点为R ,CR 的中点为P 。
设b a ==,,如图,试用b a
,表示向量.
A Q
22、(本题满分14分)四边形ABCD 中,)3,2(),,(),1,6(--===y x (1)若//,试求x 与y 满足的关系式;
(2)满足(1)的同时又有⊥,求y x ,的值及四边形ABCD 的面积。
参考答案
13-3; 14.51,526; 15.-31; 16.2sin(2)3
y x π=+,x ∈R
三解答题: 17.原式=
sin sin (cos )sin (1cos )tan cos (cos )cos cos (1cos )ααααααααααα+--==-=
-----2
. 18.22()cos 2cos 1(cos 1)2f x x x x =-++=--+,cosx ∈,
当x =
2π
时,cosx=0,f (x )的最小值是1. 19.(1)θ=3
2π; (2)θ=3π
; (3)最大值为4,最小值为2(3-1)
20.(1)提示:BD
=BC +CD
=5(e 1+e 2);(2)k =±1. 21.解:])(2
1
[21)(21++=+=
8
12141++=
214187+= b a
7472+=∴
22.解:),(y x BC =
∴ )2,4()2,4()(+---=-+-=++-=-=y x y x (1)// 则有0)4()2(=--⋅-+-⋅x y y x
化简得:02=+y x '2 (2))1,6(++=+=y x BC AB AC )3,2(--=+=y x CD BC BD
又⊥ 则 0)3()1()2()6(=-⋅++-⋅+y y x x
化简有:015242
2=--++y x y x '4
A B Q
R P
联立⎩⎨
⎧=--++=+0
15240
22
2y x y x y x 解得⎩⎨
⎧=-=36y x 或⎩
⎨⎧-==12
y x '6 // BD AC ⊥ 则四边形ABCD 为对角线互相垂直的梯形
当⎩⎨
⎧=-=3
6
y x )0,8()4,0(-==BD AC
此时162
1
==S ABCD 当⎩⎨
⎧-==1
2
y x )4,0()0,8(-==BD AC
此时162
1
==S ABCD '8。