第十章原子吸收光谱
原子吸收光谱法

低温原子化法:低温原子化法也称为化学原子化法 ,包括冷原子化法和氢化物发生法。
一般冷原子化法与氢化物发生法可以使用同一装置 。
冷原子化法:直接测量Hg 氢化物发生法:氢化物发生器生成金属或类金属元
素氢化物,进入原子化器。
第四节 干扰及其消除方法
物理干扰:由于溶液的物理性质(如粘度、表面张力、密度和蒸 气压等)的变化引起的试液抽吸过程、雾化过程和蒸发过程的比 例不同。消除物理干扰的主要方法是配制与被测试样相似组成的 标准溶液,或采用标准加入法。
电离干扰:在高温下,原子电离成离子,而使基态原子数目减少 ,导致测定结果偏低,此种干扰称电离干扰。消除办法是向试液 中加入过量比待测元素电离电位低的其他元素(通常为碱金属元 素)。例如,测钙时可加入过量的KCl溶液消除电离干扰。钙的 电离电位为6.1eV,钾的电离电位为4.3eV。由于K电离使钙离子 得到电子而生成原子。
{ C2H2:空气
> ¼ 富燃火焰 ≈¼ 中性火焰 化学计量火焰
< ¼ 贫燃火焰
根据燃气和助燃气的种类不同常用的有以下火焰:
乙炔-空气火焰; 氢-空气火焰; 乙炔-氧化亚氮火焰。
① Al,Ti,Ta,Zr等易形成难解离氧化物,不宜使用
② As 193.64,197.20nm;Se 196.09nm 不易使用 乙炔—空气火焰 是原子吸收测定中最常用的火焰,该火焰 燃烧稳定,重现性好,温度较高,可达23000C ,对大多数元
化学干扰:被测元素与共存组分发生化学反应,生成更稳定的 化合物,影响被测元素的原子化。由于PO43-的存在,钙与其形 成了磷酸钙、焦磷酸钙等化合物,这些化合物其键能很高,在 火焰中不易分解产生钙原子,结果偏低。消除方法:加入干扰 抑制剂的方法,如加入锶盐后Sr与PO43-反应生成比磷酸钙更加 稳定的化合物,从而释放出钙原子,消除了磷酸根离子对钙的 干扰。
仪器分析-光谱分析法概论(第十章)

三个主要过程:(1)能源提供能量;(2)能量与被测物
质相互作用;(3)产生被检测信号。
第一节
电磁辐射及其物质的相互作用
一、电磁辐射和电磁波谱
1. 波动性(干涉、衍射、反射和折射) 用波长(nm)、波数(cm-1)和频率(Hz)表示。 =c/ = 1 / = /c
波长是在波的传播路线上具有相同振动相位的相邻两点间的线性距
光学分析法光谱分析法非光谱分析法原子光谱分析法分子光谱分析法原子吸收光谱原子发射光谱原子荧光光谱x射线荧光光谱折射法圆二色性法x射线衍射法干涉法旋光法紫外光谱法红外光谱法分子荧光光谱法分子磷光光谱法核磁共振波谱法光谱分析法吸收光谱法发射光谱法原子光谱法分子光谱法原子发射原子吸收原子荧光x射线荧光原子吸收紫外可见红外可见核磁共振紫外可见红外可见分子荧光分子磷光核磁共振化学发光原子发射原子荧光分子荧光分子磷光x射线荧光化学发光第三节光谱分析仪器光学分析法三个基本过程
原 子 发 射
原 子 吸 收
原 子 荧 光
X 射 线 荧 光
紫 外 可 见
红 外 可 见
分 子 荧 光
分 子 磷 光
核 磁 共 振
化 学 发 光
原子光谱法 光谱分析法 吸收光谱法 原 子 吸 收 紫 外 可 见 红 外 可 见 核 磁 共 振
分子光谱法
发射光谱法
原 子 发 射
原 子 荧 光
分 子 荧 光
离;波数是每厘米长度中波的数目; 频率是每秒内的波动次数。
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小
2. 微粒性(光电效应、光的吸收和发射) 用每个光子具有的能量E作为表征。 E = h =h c / = h c h (普朗克常数) , h=6.6262×10-34J•s ※ 光量子的能量(E)与波长成反比, 而与频率(或波数) 成正比.
第十章原子吸收光谱法

电 离干 扰
定义: 指待测元素在原子化过程中发生 电离而引起的干扰效应 消除办法: ➢ 低温火焰 ➢ 加入消电离剂
物理干扰
定义:指试样在转移、蒸发和原子化 过程中,由于试样任何物理特性(如密 度、粘度、表面张力)的变化而引起的 原子吸收强度下降的效应 消除办法:配制与被测试样组成相近 的标准溶液或采用标准加入法;或浓 度高,可稀释
标准曲线线性范围窄 每种元素一个灯,多元素同时测定 更换不同光源较烦
第二节 基 本 原 理
原子的吸收 原子吸收与原子浓度的
关系及其测量方法
原子的吸收
υ= ΔE /h
共振吸收线---原子的最外层电子从基 态跃到第一激发态所产生的吸收谱线, 最灵敏的谱线
通过测量原子对其共振线的吸收强度 而进行定量的分析方法
光 学干 扰
光谱线干扰 背景干扰
在光谱带内存在非吸收线
谱线重叠 分子吸收
光散射、折射
化学干扰
原因: 待测元素不能全部从它的化合物中解 离出来 消除办法: ➢ 选择合适的原子化条件 ➢ 加入释放剂 ➢ 加入保护剂
定量方法
标准曲线法---吸光度值 应在0.2-0.8之间 标准加入法 内标法
第六节 应用示例
空心阴极灯(HCL)的特点
优点: ➢ 辐射强度大 ➢ 稳定 ➢ 谱线宽度窄 ➢ 灯易于更换
缺点: ➢ 每测一个元素换一个相应元素的灯
原 子 化 器(一)
作用:原子化器的功能在于将试 样转化为所需的基态原子 要求: ➢ 原子化效率高记忆效应小 ➢ 背景影响和噪音低 ➢ 装置简单耐用,易清洗
原 子 化 器(二)
狭缝宽度---碱金属、碱土金属可较大,过渡 元素与稀土元素应较小
原子吸收

原子吸收光谱原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。
此法是20世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
该法主要适用样品中微量及痕量组分分析。
查看精彩图册目录基本原理原子吸收光谱分析谱线轮廓发展历史特点灵敏度高精密度好选择性好,方法简便准确度高,分析速度快应用广泛原子吸收光谱分析的基本原理原子吸收光谱的产生原子吸收光谱的谱线轮廓原子吸收光谱的测量原子吸收分光光度计的组成光源原子化器分光器检测系统干扰及其消除方法物理干扰化学干扰电离干扰光谱干扰分子吸收干扰原子吸收光谱应用近年研究展望展开基本原理原子吸收光谱分析谱线轮廓发展历史特点灵敏度高精密度好选择性好,方法简便准确度高,分析速度快应用广泛原子吸收光谱分析的基本原理原子吸收光谱的产生原子吸收光谱的谱线轮廓原子吸收光谱的测量原子吸收分光光度计的组成光源原子化器分光器检测系统干扰及其消除方法物理干扰化学干扰电离干扰光谱干扰分子吸收干扰原子吸收光谱应用近年研究展望展开编辑本段基本原理原子吸收光谱原理图每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。
当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。
特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:式中K为常数;C为试样浓度;I0v为原始光源强度;Iv为吸收后特征谱线的强度。
原子吸收光谱法课件

欢迎来到原子吸收光谱法课件!本课件将为您介绍原子吸收光谱法的定义和 原理,并探讨其在科学实验室中的常见仪器,以及样品制备和操作步骤。
原子吸收光谱法的定义和原理
原子吸收光谱法是一种分析方法,通过测量样品中特定元素的吸收光谱来定 量分析该元素的浓度。基于原子对特定波长的吸收特性,该方法被广泛应用 分析食品中的微量元素和有害物质,确 保食品安全和质量合规。
3 药物研发
用于药物制剂中活性成分的浓度分析,确保 药品质量和疗效。
4 金属分析
用于金属合金、地质样品等材料中金属元素 的定量分析,检测材料成分。
优缺点分析
优点
高选择性和准确度,能够定量分析微量元素。适用于多种样品类型。
缺点
需要专用设备和经验操作,成本较高。对于某些元素和化合物可干扰。
技术的进展和未来发展趋势
原子吸收光谱法的技术不断发展,提高了灵敏度和分析速度。未来的发展趋 势包括更小型化的仪器、多元素分析和在线监测技术的推广。
总结和要点
• 原子吸收光谱法是一种常用的定量分析方法。 • 不同类型的原子吸收光谱仪器适用于不同的分析需求。 • 样品制备和操作步骤对结果的准确性至关重要。 • 应用领域广泛,包括环境监测、食品安全和药物研发。 • 优点包括高准确度和选择性,缺点包括设备成本和干扰因素。 • 技术的进展将进一步提高分析性能和便捷性。
常见的原子吸收光谱仪器
火焰原子吸收光谱仪
适用于常见金属元素的分析,如 铁、铜和锌。操作简单,常用于 实验室环境。
石墨炉原子吸收光谱仪
适用于痕量金属元素的分析,如 铅和汞。能够提高灵敏度和准确 度,但操作较为复杂。
电感耦合等离子体原子发 射光谱仪
适用于多元素的快速分析,可检 测从微量到痕量的元素含量。具 有高灵敏度和低检测限。
原子吸收光谱法(AAS)

局限性:测不同的元素需不同的元 素灯,不能同时测多元素,难熔元 素、非金属元素测定困难。
原子吸收光谱法基本原理
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 激发态基态,发射出一定频率的辐射。 产生共振吸收线(也简称共振线) 发射光谱
原子吸收光谱法基本原理
A kc
原子吸收分光度计
原子吸收分光度计
原子吸收分光度计
光源
原子化器
单色器
检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
光 源
提供待测元素的特征光谱。获得较高的 灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态:
跃迁吸收能量不同——具有特征性。
(2)各种元素的基态第一激发态
最易发生,吸收最强,最灵敏线。特征谱线。
(3)利用原子蒸气对特征谱线的吸收可以进行定量分析
原子吸收光谱法基本原理
从光源发射出具有待测元素特征 谱线的光,通过试样蒸气时,被蒸气 中待测元素的基态原子所吸收,吸收 的程度与被测元素的含量成正比。故 可根据测得的吸光度,求得试样中被 测元素的含量。
将待测试样在专门的氢化物生成器中产生氢
化物,送入原子化器中检测。
单色器
•作用:将待测元素的吸收线与邻近线分开
•组件:色散元件 ( 棱镜、光栅 ) ,凹凸镜、 狭缝等
检测系统
•作用: 将待测元素光信号转换为电信号, 经放大数据处理显示结果。 •组件: 检测器、放大器、对数变换器、显 示记录装置。
10原子吸收法
注意! 目前尚不能准确测定半宽度较小的积分值。
2020/3/22
青岛理工大学
11
2、峰值吸收:
条件:仅考虑多普勒变宽。
K0
2
ln D
2
e2 mc
N
f
意义 若测定温度不变,D为常数,对一定待测元素,
f亦为常数。
因此,在T<3000K时,K0∝N(正比关系)。
关键 测出K0值。 必须使用“锐线光源”。
青岛理工大学
9
表:10-1 列出几种元素的共振线的Nj∕N0值。
物理意义 Nj/N0值是比较小的【小于1%】, 可认为基态原子数实际代表待测元素的原子总数。
2020/3/22
青岛理工大学
10
三、原子吸收光谱法的定量基础
1、积分吸收
条件:原子蒸气所吸收的全部能量 (吸收线下所包括的整个面积。)
e2
表示 火焰蒸发和分解不同化合物的能力
(1)air-C2H2(常用)
火焰的类型 (2)N2O-C2H2(常用)
(3)air-H2
注 意
(1)火焰的类型关系到测定的灵敏度、 稳定性、干扰等;
(2)对不同的元素应选用不同的恰当的火焰。
2020/3/22
第十章 原子吸收分光光度法
2020/3/22
青岛理工大学
1
原子吸收光谱法
又名原子吸收分光光度法,简称原子吸收分 析法。基于测量蒸气中基态原子对特征电磁辐射 的吸收,以测定化学元素的方法。
关键
① 空心阴极灯发射特征谱线; ② 试样蒸气吸收特征谱线而使其减弱; ③ 测定特征谱线减弱程度。
2020/3/22
2020/3/22
青岛理工大学
原子吸收光谱工作原理
原子吸收光谱工作原理原子吸收光谱法的原理:蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。
当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。
原子吸收光谱是由于电子在原子基态和第一激发态之间跃迁产生的。
每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。
因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。
原子吸收光谱检测方法:1、氢化物发生法氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。
这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。
如土壤监测中运用流动注射氢化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。
这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。
2、石墨炉原子吸收光谱法石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。
横向加热石墨炉解决了温度分布不均匀的问题。
石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。
3、火焰原子吸收光谱法目前,火焰原子吸收光谱法还是应用最为广泛的方法。
因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。
原子吸收习题
1.分析化学何先莉、赵淑珍、武少华,北京工业大学出版社,1996年9月,(1997年9月第2次印刷)P323:第十章原子吸收光谱法习题1.原子核吸收分光光度计主要由哪几部分组成?每部分的作用是什么?在构造上与分光光度计有什么不同?为什么?2.什么是积分吸收?峰值吸收?实际分析中为什么可以用峰值吸收代替积分吸收?3.何为锐线光源?在原子吸收中为什么要用锐线光源?4.计算2000K和3000K时Cu324.75nm的多普勒宽度为多少?5.浓度为0.2μg/ml的镁溶液,在原子核吸收分光光度计测得吸光度为0.220,试计算镁元素的特征浓度。
(0.004μg/ml/1%)6.原子吸收光谱法测定某元素的特征浓度的0.1μg/ml/1%吸收,为使测量误差最小,需要得到0.436的吸收值,求在此情况下待测溶液的浓度应为多少?7.某原子吸收分光光度计测定某元素的光谱通带为 1.0nm,而该仪器的倒线色散率为2.0nm/mm,应选择的狭缝宽度为多少?8.使用取血清2ml用纯水稀释到50ml,测其吸光值为0.213,求血清中Mg的含量(以mg/L 表示)。
(13.5mg/L)9.用原子吸收法测某废液中Cd含量,从废液排放口准确量取水样100.0ml,经适当酸化处理后,准确加入10ml甲基异丁基酮(MIBK)溶液萃取浓缩,被测元素在波长228.8nm 下进行测定,测得吸光值为0.182,在同样条件下,测得Cd标准系列的吸光度如下:用作图法求该厂废液中Cd的含量(以mg/L表示),并判断是否超标(国家规定Cd的排放标准是0.1mg/L)?10.用原子吸收光谱法测某聚醚样品中K的含量,称取聚醚样10.0mg溶解后,转移至50ml 容量瓶中,稀释至刻度。
吸取相同体积的试液于25ml容量瓶中,分别加入不同体积的11.用原子吸收光谱法测定Cu的浓度,取10ml未知Cu试液,放入25ml容量瓶中,稀释至刻度,测得吸光度为0.302,另取10.0ml未知液和2.00ml、50μg/ml的Cu标准溶液,也放入25ml容量瓶中稀释至刻度,测得吸光度为0.760,求未知液中Cu的浓度。
原子吸收光谱法知识要点
第十章原子吸收光谱法知识要点1.基本概念及原理原子吸收光谱法是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法。
它具有灵敏度高、选择性好、测定范围广泛、操作简便和分析速度快的特点。
原子受到外界能量激发时,最外层电子可能跃迁到不同的能级,即不同的激发态。
电子在基态与激发态之间的跃迁称为共振跃迁。
电子吸收能量从基态跃迁到能量最低激发态(第一激发态)时所产生的谱线为主共振吸收线,电子从能量最低激发态跃迁回基态释放能量所产生的谱线为主共振发射线。
二者统称为主共振线,一般是元素的最易发生、吸收最强、最灵敏的谱线。
不同元素的主共振线不相同而各有其特征性,称其为元素的特征谱线。
原子吸收线并不是严格的几何线,而是具有一定宽度和轮廓的谱线。
吸收系数随波长(或频率)的分布曲线称为吸收谱线轮廓,通常用中心频率%和半宽度△v这两个物理量来描述。
中心频率v0是最大吸收系数所对应的频率,其能量等于产生吸收的两量子能级间真实的能量差,而该处的最大吸收系数又称为峰值吸收系数K。
;半宽度△v是指峰值吸收系数一半即K0/2处所对应的频率范围,它用以表征谱线轮廓变宽的程度。
2.要求掌握的重点及难点(1)原子吸收光谱仪的基本结构原子吸收光谱仪分单光束型和双光束型,由光源、原子化系统、分光系统和检测系统四大部分构成。
光源为锐线光源,多用空心阴极灯,要求其能发射待测元素的特征锐线光谱,同时强度要大、稳定性要好、寿命长。
原子化器分为火焰原子化器和非火焰原子化器。
火焰原子化器由雾化器、雾化室和燃烧器等部分组成,火焰原子化系统结构简单、操作方便,准确度和重现性较好,满足大多数元素的测定,应用较为广泛,但其原子化效率低,试样用量大;非火焰原子化器包括石墨炉原子化器,石墨炉原子化器由电源、炉体和石墨管组成,石墨炉原子化器的原子化效率和测定灵敏度比火焰原子化器高得多,试样用量少,特别适合试样量少,又需测定其中痕量元素的情况,但是其精密度不如火焰法,测定速度较火焰法慢,另外装置较复杂、费用较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收与分光光度法的比较
项目 原子吸收法 分光光度法
分析原理
相 同 能级
吸收原理
电子跃迁
吸收原理
电子跃迁
定量分析的依据
光谱
A=kbc
原子光谱
A=kNb(A=KC)
分子光谱
不 同
光源
单色器位置
锐线光源
原子化器和 检测器之间
连续光源
光源和吸收池 之间
光 谱 法
按能量交换方向分
按作用结果不同分
吸收光谱法 发射光谱法 原子光谱→线状光谱 分子光谱→带状光谱
电磁波谱区
波谱区
Γ射线区 X 射线区 远紫外区 近紫外区 可见光区 近红外区
波长范围
<0.005nm 0.005-10nm 10-200nm 200-400nm 400-780nm 0.78-2.5µ m
试 样 预混合室 废液排放口
雾化器
非火焰原子化装置 (1)石墨炉原子化器 测定过程:①干燥阶段,②灰化阶段, ③原子化阶段,④烧净阶段
(2)氢化物原子化器
分光系统
组成: 分光系统:由色散元件、凹面镜和狭缝组成 作用: 将待测元素的共振线与邻近谱线分开 单色器的位置: 放在原子化器后的光路中
检测系统
10-2原子吸收光谱法的基本原理
共振线和吸收线: 共振线吸收线:
电子从基态跃迁到能量最低的激发态为共振跃迁, 所产生的谱线
共振线发射线:
当电子从第一激发态跃会基态时,则发射出同 样频率的谱线
特征谱线:
各种元素的原子结构和外层电子排步不同,不同元素 的原子从基态 第一激发态时,吸收和发射的能量 不同,其共振线不同,各有其特征性.
D 7.162 10 0
7
T Ar
V0 - 谱线中心频率 T - 热力学温度 Ar - 相对原子质量
*C与N 的关系
基态原子N0可以代表待测原子总数(忽略受热激发的原子数Nj) 浓度与基态原子数成正比 C ∝ N
10-3原子吸收光谱仪
火焰原子吸收光谱仪示意图
光源-空心阴极灯
作用:法射待测元素的特征光谱 要求:(1)发射待测元素的共振线 (2)发射锐线光谱 (3)强度大、稳定、寿命长 空心阴极灯:
0.5-0.025
2.5×10-2-1.2×10-4 1.200m
1.2×10-6-1.2×10-9
电子自旋或核自旋能级
原子光谱与分子光谱
原子光谱:由原子外层或内层电子受到辐射后,在 不同能级之间的跃迁所产生的各种光谱线的集合, 每条谱线代表了一种跃迁。 *原子光谱线是线性光谱线 *元素由第一激发态到基态的跃迁,所产生的谱线 最强,称为共振线(元素的特征谱线) 分子光谱:产生于分子中电子能级、振动和转动能 级的变化。 分子激发时仅产生转动能级跃迁---远红外吸收光谱 振动能级跃迁---红外吸收光谱 电子能级跃迁---紫外-可见光谱 *分子光谱时连续光谱(带状光谱) *分子发生电子跃迁时,必然存在振动和转动能级 的变化。
原子化器系统
M*
脱溶剂 离解 激发
MX(试液)
MX(气态)
M
电离
+
X
M+
火焰原子化装置 (1)雾化器:将试液雾化 (2)燃烧器:形成火焰,是进入火焰的试样微粒原子化 (3)火焰:提供一定能量,促使试样雾滴蒸发、干燥 并经过热离解或还原在作用,产生大量基态原子
火焰原子化装置
助燃气 燃烧器
燃气
组成: 检测器、放大器、读数和记录系统
仪器类型
10-4定量分析方法标注
标准曲线法(共存组分间互不干扰)
配一组浓度合适的标准溶液系列由第浓度到高浓度 分别测定吸光度;以浓度为横坐标,吸光度为纵坐标 作图,绘制A-c标准曲线,在相同条件下,测定试样吸 光度,有A-c标准其曲线求得溶液中待测元素浓度
A
K d
v -频率; c-光速;
e2
mc
Nf
Kv - 积分吸收系数;(积分吸收很难求) e-电子电荷; m-电子质量;
N-单位体积原子蒸汽吸收辐射的原子数(基态原子数) f -振子强度,表示能被光源辐射激发的每个原子的平均电子数 (一定条件下,一定元素,f可视为一定值)
峰值吸收系数K0
第十章原子吸收光谱
10-1概述
10-2原子吸收光谱法的基本原理
10-3原子吸收光谱仪
10-4定量分析方法
10-5原子吸收光谱法中干扰及其抑制
10-6灵敏度、检出极限、测定条件的选择
*10-7原子光谱与分子光谱
10-1概述
原子光谱法:
根据原子外层电子跃迁所产生的光谱进行分析 的方法。
原子吸收光谱法:
由于基态原子电离而造成的干扰,使火焰中待测 元素的基态原子数量减少,测定结果偏低。 消除方法:降低火焰温度;加入比待测元素更易 电离的物质;
化学干扰:
待测元素与试样中共存组分或火焰成分发生化学 反应,引起原子化程度改变所总称的干扰。 消除方法:加入释放剂;加入保护剂;加入基体改进 剂;
物理干扰:
试样的物理性质改变所引起的干扰(粘度、 密度、表面张力)
2
原子吸收法的定量基础
A=kNb
A=KC
*K0=KV的条件: 光谱源发射线的中心频率与吸收线中心频率一致 (波长应是待测元素的特征谱线) 发射谱线的半宽度必须比吸收线的半宽度小得多 (光源应发出锐线光谱)
*△vD –多普勒变宽 由于原子在空间作做无规则的热运动产生多普勒效 应而引起的,又称热变宽。
10-7原子光谱与分子光谱
电磁波谱
电磁辐射 从射线到无线电波,以接近光速传播的能量 电磁波谱 电磁辐射按波长(频率、波数、能量)大小的顺 序排列所得到的波谱图 电磁波与物质的相互作用 物质能都选择性地吸收特定频率的辐射能,从基 态或低能级跃迁到高能级,并可以在通过光的形势将 吸收的能量释放出来,跃迁回到低能级或基态。 光作用于物质是,还可以发生折射、反射、衍 射、偏振及散射等现象。(非光谱分析)
原子吸收法的定量基础:
原子吸收服从朗伯定律:
若将入射强度为I0的不同频率的光通过原子蒸汽, 吸收后其透过光的强度Iv与原子蒸汽的厚度b的关系, 服从朗伯定律。
I v = I0 e
-Kv b
I0
b 原子蒸汽
Iv
由于物质对不同频率的入射光的吸收具有选择性, 因而透过光的强度Iv和吸收系数Kv将随着入射光的频 率而变化。
基于测量试样所产生的原子蒸汽中基态原子对其 特征谱线的吸收,从而定量测定化学元素的方法。
测定过程:
光源 原子化器 单色器 检出系统
原子吸收光谱法的特点:
(1)灵敏度高(可测到10-9-19-12 g· -1) mL (2)选择性好,准确度高。 (3)测定范围广(可直接测定70多种元素) (4)操作简便,分析速度快。
电磁波谱:
γ射线→ X 射线→紫外光→可见光→红外光→微波→无线电波 高能辐射区 γ射线 能量最高,来源于核能级跃迁 χ射线 来自内层电子能级的跃迁 光学光谱区 紫外光 来自原子和分子外层电子能级的跃迁 可见光 红外光 来自分子振动和转动能级的跃迁 波谱区 微波 来自分子转动能级及电子自旋能级跃迁 无线电波 来自原子核自旋能级的跃迁
C
标准加入法
取等量的试样溶液,分别加入浓度为0、c1、c2、c3 的标准溶液,稀释到同一体积后,在相同条件下分别测 定吸光度。以加入的被测元素浓度为横坐标,对应吸光 度为纵坐标,绘制A-c曲线图,延长曲线至与横坐标相 交处,即为试样溶液中待测元素浓度。
A
0
C
10-5原子吸收光谱法中干扰及其抑制
电离干扰
石墨炉中常用特征浓度表示灵敏度 特征浓度:能产生1%的吸收或能产生0.0044吸光度
是待测元素的质量。
0.0044m mc A
单位:µ (1%)-1 g·
例:已知镁溶液的浓度为0.4 µg· mL-1,用空气-乙炔
火焰原子吸收法测得吸光度为0.225,求镁的特征浓度
0.004 0.4 c0 0.008 g (mL 1%) 1 0.225
Iv的变化规律
原子蒸汽在v0 I
I0
Kv的变化规律
0 I 与 的关系
原子蒸汽在v0频率处有吸收
中心频率(波长)- 最大吸收系数所对应的 频率(波长) 吸收轮廓(半宽度 )- 吸收系数一半所对应的频 率(波长)
积分吸收:
原子蒸汽所吸收的全部能量,在原子吸收光谱法中 称为积分吸收(吸收线下面所包括的整个面积)
检出极限
仪器能以适当的臵信度检出的待测元素的最小浓 度或最小量。(空白溶液吸光度信号标准偏差的3倍 所对应的待测元素浓度或质量) 检出极限是衡量仪器性能的一项重要综合指标 火焰原子吸收法: 石墨炉原子吸收法:
DL
3Sb Sc
mDL
3S b Sm
测定条件的选择:
分析线 通常选择待测元素的共振线作为分析线 空心阴极灯电流 保证稳定和强度,尽量选用较低的灯电流 狭缝宽度 无邻近干扰谱线时,狭缝适当增宽 火焰 根据用途选择火焰的类型(富然、贫燃)和状态 观测高度(燃烧头高度) 调整光束与火焰的燃烧头高度,保证灵敏度和稳 定性
光子能量/eV 能级跃迁类型
>2.5×105 2.5×105-1.2×102 1.2×102-6.2 6.2-3.1 3.1-1.7 1.7-0.5 原子核能级
内层电子能级
原子的电子能级或 分子的成键能级 分子振动能级
中红外区
远红外区 微波区
2.5-50µ m
50-1000µ m 0.1-100cm
K0 2 ln 2 e2 Nf D mc
Iv = I e
若能用K0代替Kv
-Kv b A lg T lg I 0 Iv 0