《正、余弦定理》教学设计

合集下载

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计正弦定理和余弦定理的实际运用举例教学设计简介本教学设计旨在教授正弦定理和余弦定理的实际运用方法。

通过实例演示和练题的形式,帮助学生理解和掌握这两个几何定理的应用场景。

教学目标- 理解正弦定理和余弦定理的概念和原理- 掌握正弦定理和余弦定理在实际问题中的应用方法- 进一步发展解决几何问题的能力教学内容正弦定理- 介绍正弦定理的概念和公式(a/sinA = b/sinB = c/sinC)- 解释正弦定理的几何意义和运用场景- 演示实际问题中如何利用正弦定理求解未知变量余弦定理- 介绍余弦定理的概念和公式(c² = a² + b² - 2abcosC)- 解释余弦定理的几何意义和运用场景- 演示实际问题中如何利用余弦定理求解未知变量实际运用举例- 提供几个实际问题的案例,涉及三角形的边长和角度- 分步引导学生运用正弦定理和余弦定理解决这些问题- 给予学生充足的练机会,以加深对定理应用的理解和熟练度教学步骤1. 引入:复三角形的基本概念和知识点2. 正弦定理:- 介绍正弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用正弦定理求解未知变量- 学生模仿演示并完成相关练题3. 余弦定理:- 介绍余弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用余弦定理求解未知变量- 学生模仿演示并完成相关练题4. 实际运用举例:- 提供几个实际问题的案例,涉及三角形的边长和角度- 分组或个人完成案例分析和解决过程- 学生通过小组或个人报告展示解决思路和结果5. 总结与讨论:- 综合讨论学生的解决思路和方法的优劣- 引导学生总结出正弦定理和余弦定理在解决实际问题中的重要性和应用价值教学评估1. 参与度评估:观察学生在课堂中的积极参与程度和问题解答能力2. 练成绩评估:通过练题的完成情况和准确度,进行学生对正弦定理和余弦定理的理解和应用评估3. 案例分析评估:评估学生在实际问题解决中的思考能力和解决方法的合理性参考资源1. 《高中数学教材》2. 互动教学软件和课件3. 个人和小组练习题。

正弦、余弦定理教案

正弦、余弦定理教案

A
1200 C B
例 2 如图, 在三角形 ABC 中, 已知 a=3,b=2,c= 19 ,求此三角形各个角的大小及其面积。 (精确到 0.1) 。 A
C
B
例 3 已知 ABC 的顶点为 A(6,5),B(-2,8)和 C(4,1),求 A (精确到 0.1 )

四、课堂练习: 已知 ABC 的三个角 A,B, C 所对的边分别为 a,b,c,根据下列条件,分别解三角形(保留根号 或精确到 0.01)
三.三角形中正弦定理的证明: 法 1:从特殊到一般,穷举法: 直角三角形中特性: 锐角三角形中有无特性? 钝角三角形如何? C B
A
法 2:在三角形的外接圆中论证:
分学习小组探讨,教师适当点拨。
四、 定理应用: 例 1:已知Δ ABC 中, 0 (1)a=20 , A=30 , (2)a=20 , b=40 , (3)a=20 , b=40 , (4)a=20 , b=30 , (5)a=20 , b=25 , (6)a=20 , b=15 ,
a ,sinB=____________,sinc=___________。 2R
(3)a:b:c=__________________________. (4)Δ ABC 面积 S=_______________=_______________=________________。 二、公式应用: (30 分钟) 1.在△ABC 中,若 sin A sin B ,则 A 与 B 的大小关系为( A. A B B. A B C. A ≥ B ) )
0 0 0 0
学生完成后,教师订正答案
六、课后作业:见作业 1。
七、课后反思
第 2 课时 知识与技能

正弦定理教案优秀5篇

正弦定理教案优秀5篇

正弦定理教案优秀5篇《正弦定理、余弦定理》教学设计篇一一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。

二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。

数学必修5》(A 版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。

三、教学目标:1、知识目标:把握正弦定理,理解证实过程。

2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。

(2)增强学生的协作能力和数学交流能力。

(3)发展学生的创新意识和创新能力。

3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。

(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。

四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己→←所学知识应用于对任意三角形性质的深入探讨。

让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。

《正弦定理和余弦定理》教案

《正弦定理和余弦定理》教案
情感:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点:正弦定理的探索和证明及其基本应用
教学难点:已知两边和其中一边的对角解三角形时判断解的个数
授课类型:新授课
⑹ , , ,求
四、课堂练习:
1在△ABC中, ,则k为( )
A2RBRC4RD (R为△ABC外接圆半径)
2△ABC中,sin2A=sin2B+sin2C,则△ABC为( )
A直角三角形B等腰直角三角形C等边三角形D等腰三角形
五、小结:
(1)定理的表示形式: ;
或 , ,
(2)正弦定理的应用范围:
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
(证法一)如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则 ,
C
同理可得 ,ba
从而 A c B
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
过点a作jac??????c由向量的加法可得abaccb??????????则acjab?jcb???????????????abjabjacjcb???????????????????j??00cos900cos90???????jab?????jcbacsincsinaac即sinsinacac同理过点c作?????jbc可得sinsinbcbc从而sinsinababsincc证法三
三、讲解范例
例1.在 中,已知 , , cm,解三角形。

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案正文:正弦定理和余弦定理的运用教案一、教学目标1. 理解正弦定理和余弦定理的含义和基本公式;2. 掌握正弦定理和余弦定理在解决三角形相关问题中的应用方法;3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学重点1. 正弦定理的推导和应用;2. 余弦定理的推导和应用。

三、教学难点1. 正弦定理和余弦定理的理解和记忆;2. 通过具体问题实际运用,使学生深入理解定理的应用方法。

四、教学准备1. 教材:三角函数学科教材;2. 工具:投影仪、黑板、粉笔、直尺、量角器。

五、教学过程Ⅰ. 导入(10分钟)1. 教师简要复习三角比的概念和计算方法;2. 教师引导学生思考:在已知某一角的情况下,如何确定三角形的边长呢?Ⅱ. 正弦定理的推导和应用(20分钟)1. 教师通过投影仪展示正弦定理的基本公式:a/sinA = b/sinB =c/sinC;2. 教师讲解正弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用正弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅲ. 余弦定理的推导和应用(20分钟)1. 教师通过投影仪展示余弦定理的基本公式:c² = a² + b² - 2abcosC;2. 教师讲解余弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用余弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅳ. 正弦定理和余弦定理的综合应用(25分钟)1. 教师给出一些复合问题,要求学生结合正弦定理和余弦定理解决问题;2. 学生分组讨论、解答问题,并在黑板上展示解题过程;3. 教师组织学生展示解题思路和方法,并针对不同解题方法进行及时点评。

Ⅴ. 拓展应用(15分钟)1. 教师布置一些拓展性应用题,要求学生在课后完成;2. 学生自主学习拓展内容,并在下节课讲解时与教师进行互动讨论。

Ⅵ. 总结与作业(10分钟)1. 教师对本节课的要点进行总结,并强调正弦定理和余弦定理的重要性;2. 布置作业:完成课后习题,复习和巩固所学知识。

正弦定理和余弦定理教案设计

正弦定理和余弦定理教案设计

正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为内切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).角一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.解:由正弦定理,得a sinA =b sinB ,即3sinA =2sin45°,∴ sinA =32.∵ a>b ,∴ A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =bsinC sinB =6+22;当A =120°时,C =180°-45°-120°=15°, c =bsinC sinB =6-22.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________. 答案:(1) 2 2 (2) 无解 (3) 45°或135°解析:(1) 已知两角和一边只有一解,由∠B =30°,∠C =105°,得∠A =45°.由正弦定理,得b =asinB sinA =4sin30°sin45°=2 2.(2) 由正弦定理得sinB =bsinC C =32>1,∴ 无解.(3) 由正弦定理BC sinA =AB sinC ,得6sinA =312,∴ sinA =22.∵ BC>AB ,∴ A>C ,∴ ∠A =45°或135°.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin A cos A =2,sin 2A +cos 2A =1,联立解得sin A =255, 再由正弦定理得a sin A =b sin B ,代入数据解得a =210.答案 255210双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°解析 由正弦定理知:sin A sin A =cos Bsin B,∴sin B =cos B ,∴B =45°.答案 B余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°.答案 C2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C 3.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________.解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角.答案 150° 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.解:(1) 由余弦定理知:cosB =a 2+c 2-b22ac,cosC =a 2+b 2-c 22ab .将上式代入cosB cosC =-b 2a +c,得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得a 2+c 2-b 2=-ac.∴ cosB =a 2+c 2-b 22ac =-ac 2ac =-12.∵ B 为三角形的内角,∴ B =23π.(2) 将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2accosB ,得b 2=(a +c)2-2ac -2accosB ,∴ 13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ ac =3. ∴ S △ABC =12acsinB =334.备选变式(教师专享)5,(2014·南京期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.解:(1) 由余弦定理及已知条件,得a 2+b 2-ab =4.因为△ABC 的面积等于3,所以12absinC =3,得ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4, 解得a =2,b =2.(2) 由题意得sin(B +A)+sin(B -A)=4sinAcosA ,所以sinBcosA =2sinAcosA.当cosA =0时,A =π2,所以B =π6,所以a =433,b =233.当cosA ≠0时,得sinB =2sinA ,由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得a =233,b =433.所以△ABC 的面积S =12absinC =233.【训练1】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断.解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )],即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cosB sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B ,即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C .答案 B【例2】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6,a =433,b =233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根. 实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3,根据正弦定理a sin A =bsin B 得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B, ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A=22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2014·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a . (1)求ba ;(2)若c 2=b 2+3a 2,求B .[尝试解答] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A . 故sinB =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.3.(4) △ABC 的面积公式① S =12a ·h(h 表示a 边上的高);② S =12absinC =12acsinB =12bcsinA =abc 4R ;③ S =12r(a +b +c)(r 为内切圆半径);④ S =P (P -a )(P -b )(P -c ),其中P =12(a +b +c).角一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换题型1 正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c.变式训练 在△ABC 中,(1) 若a =4,B =30°,C =105°,则b =________. (2) 若b =3,c =2,C =45°,则a =________.(3) 若AB =3,BC =6,C =30°,则∠A =________.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =______;a=________.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2 C.1063D .5 62.在△ABC 中,若sin A a =cos Bb,则B 的值为( ).A .30°B .45°C .60°D .90°余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .1.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°2.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 33.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 题型2 余弦定理解三角形4 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cosB cosC =-b2a +c.(1) 求角B 的大小;(2) 若b =13,a +c =4,求△ABC 的面积.备选变式(教师专享)5,(2014·南京期末)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,已知c =2,C =π3.(1) 若△ABC 的面积等于3,求a 、b ;(2) 若sinC +sin(B -A)=2sin2A ,求△ABC 的面积.【训练1】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.考向三 利用正、余弦定理判断三角形形状【例1】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. .【训练】 在△ABC 中,若a cos A =b cos B =ccos C;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形【例2】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.,【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.【试一试】 (2014·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c , a sin A sin B +b cos 2 A =2a .实用文档(1)求b a; (2)若c 2=b 2+3a 2,求B .。

江苏正弦定理和余弦定理教案

江苏正弦定理和余弦定理教案一、教学目标1. 让学生掌握正弦定理和余弦定理的定义及表达式。

2. 培养学生运用正弦定理和余弦定理解决实际问题的能力。

3. 引导学生通过观察、分析、归纳和验证等方法,深入理解正弦定理和余弦定理的内在联系。

二、教学内容1. 正弦定理:在三角形中,各边的长度与其对角的正弦值成比例。

2. 余弦定理:在三角形中,各边的平方和等于其他两边平方和与这两边夹角余弦值的乘积的两倍。

三、教学重点与难点1. 教学重点:正弦定理和余弦定理的定义及应用。

2. 教学难点:正弦定理和余弦定理的推导过程及其在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳和验证等方法,探索正弦定理和余弦定理。

2. 利用多媒体课件,直观展示正弦定理和余弦定理的推导过程。

3. 设计具有代表性的例题,讲解正弦定理和余弦定理在解决实际问题中的应用。

4. 组织学生进行小组讨论和探究,提高学生的合作能力和解决问题的能力。

五、教学过程1. 导入新课:通过展示三角形模型,引导学生思考三角形中的几何关系。

2. 探究正弦定理:让学生观察三角形模型,引导学生发现各边长度与对角正弦值的关系,进而总结出正弦定理。

3. 验证正弦定理:让学生运用正弦定理解决具体问题,验证其正确性。

4. 探究余弦定理:引导学生观察三角形模型,发现各边平方和与夹角余弦值的关系,总结出余弦定理。

5. 验证余弦定理:让学生运用余弦定理解决具体问题,验证其正确性。

6. 总结正弦定理和余弦定理:引导学生对比总结两个定理的异同点。

7. 巩固练习:设计具有针对性的练习题,让学生巩固正弦定理和余弦定理的应用。

8. 拓展与应用:引导学生运用正弦定理和余弦定理解决实际问题,提高学生的应用能力。

六、教学评价1. 课堂讲解:评价学生对正弦定理和余弦定理的理解程度,以及运用这两个定理解决问题的能力。

2. 练习题:通过布置练习题,检验学生对正弦定理和余弦定理的掌握情况。

高中数学正余弦定理教案模板(精选7篇)-最新

高中数学正余弦定理教案模板(精选7篇)作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?这里给大家分享一些关于高中数学余弦定理教案,方便大家学习。

下面是的为您带来的7篇《高中数学正余弦定理教案模板》,希望能够对困扰您的问题有一定的启迪作用。

余弦定理教案篇一今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。

下面我分别从教材分析。

教学目标的确定。

教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。

平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。

本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。

二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。

引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

正余弦定理完美教案


难点
理解正弦、余弦定理的推导过程 掌握正弦、余弦定理的应用方法 理解正弦、余弦定理在解题中的运用 理解正弦、余弦定理在几何问题中的应用
05
教具和多媒体资源
传统教具
黑板
三角板
添加标题
添加标题
粉笔
添加标题
添加标题
量角器
多媒体资源
投影仪:用于展示PPT和图形
电脑:用于运行教学软件和展 示动态演示
交互式白板:用于学生互动和 即时反馈
XX
正余弦定理完美教案
单击添加副标题
汇报人:XX
目录
01 03 05 07
单击添加目录项标题
02
教学内容
04
教具和多媒体资源
06
教学过程
08
教学目标 教学重点与难点
教学方法 评价与反馈
01
添加章节标题
02
教学目标
知识目标
掌握正余弦定理的基本概 念和公式
理解正余弦定理在几何问 题中的应用
学会运用正余弦定理解决 实际问题
余弦定理的推导:利用向量数量积的性质和向量的线性运算,通过作向量垂直和向量 的平方关系推导出余弦定理。
余弦定理的应用:余弦定理是解决三角形问题的重要工具,可以用于求解三角形的边 长、角度、面积等。
余弦定理的证明方法:可以通过几何和代数两种方法证明余弦定理,几何方法是通过 构造向量垂直和平行来证明,代数方法则是通过平方恒等式和向量的线性运算来证明。
题目:已知直角三角形中,角A的正弦值为1/2,求角A的余弦值。
题目:在锐角三角形ABC中,已知角A的正弦值为2/3,求角A的余 弦值。
010
教师自我反思
感谢观看
汇报人:XX

正弦余弦定理教案

正弦余弦定理教案教案标题:正弦余弦定理教案教案概述:本教案旨在帮助学生理解和应用正弦余弦定理,以解决与三角形相关的问题。

通过课堂讲解、示例演示和小组合作学习,学生将能够掌握正弦余弦定理的概念、公式和应用方法,并能够运用所学知识解决实际问题。

教学目标:1. 理解正弦余弦定理的概念和公式;2. 能够应用正弦余弦定理解决与三角形相关的问题;3. 培养学生的逻辑思维和问题解决能力;4. 提高学生的合作与沟通能力。

教学重点:1. 正弦余弦定理的概念和公式;2. 正确应用正弦余弦定理解决问题。

教学准备:1. 教师准备:教学课件、示例题和练习题、白板/黑板、标尺、三角形模型等;2. 学生准备:纸和笔。

教学过程:引入(5分钟):1. 教师通过引入实际问题,如测量高楼的高度或计算不可测量的边长等,激发学生对正弦余弦定理的兴趣;2. 教师提问学生是否了解正弦余弦定理,并引导学生思考如何解决这些问题。

讲解(15分钟):1. 教师通过PPT或板书,简要介绍正弦余弦定理的概念和公式;2. 教师结合实例演示,详细讲解如何应用正弦余弦定理解决问题;3. 教师强调定理的前提条件和使用注意事项。

示范(15分钟):1. 教师提供一些示例题,引导学生运用正弦余弦定理解决问题;2. 教师逐步讲解解题思路和步骤,鼓励学生积极参与讨论和提问;3. 教师展示解题过程,并解释每一步的原理和方法。

合作学习(20分钟):1. 学生分成小组,每个小组选择一个实际问题,并运用正弦余弦定理解决;2. 学生共同讨论问题、分析解题思路,并记录解题过程;3. 学生相互交流和合作,解决问题,并给出解决方案;4. 教师巡回指导、辅助和解答学生的问题。

总结(5分钟):1. 教师对学生的合作学习过程进行总结,强调正弦余弦定理的重要性和应用价值;2. 教师提醒学生复习和巩固所学内容,并鼓励学生在实际生活中运用正弦余弦定理。

作业布置:1. 学生完成课堂练习题,巩固所学知识;2. 学生选择一个实际问题,并运用正弦余弦定理解决,写出解题过程和结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正、余弦定理》教学设计
一、教学对象
授课对象系安徽省亳州市亳州一中南校学生,属中上等学习水平,并具备一定的自学能力和推理能力。

二、教材分析
所讲内容为《普通高中课程标准实验教科书·数学(必修5)》(北师大版)第2章的正(余)弦定理,对于这两个定理的推导,书上是用向量法进行证明,并且把正弦定理设在余弦定理之前。

教材之所以这样安排主要是基于以下几点考虑:
1.根据初中解直角三角形的经验,学生更容易发现正弦定理,如不用高中知识,学生
发现余弦定理则较难。

2.正弦定理与余弦动力都刻画了三角形边角间的度量规律,但正弦定理反映的边与其
对角的正弦值成正比的规律,比余弦定理简单,有时可以用角的正弦值替代对边。

美学价值更大、更容易激发学生学习解三角形的兴趣。

3.正弦定理与平面几何联系更紧密,讨论正弦定理可以用到较多几何知识,编排在前
便于承前启后。

4.用正弦定理证明余弦定理容易,而用余弦定理证明正弦定理则稍难。

[1]
关于教材这样的安排自然有一定的道理,但笔者结合自己的教学实际,发现按照教材的思路来授课仍存在一定的困难,尤其是正弦定理的导课环节,总显得不够自然。

关于对教学内容的安排笔者的思路如下:
1.教材证明正弦定理是通过建立直角坐标系,并利用向量在坐标轴上的射影推导出正
弦定理,而证明余弦定理则直接通过向量平方。

这个证明过程看起来很容易理解,但由于学生虽然学习了向量,但对向量的应用仍然显得很吃力。

而通过向量引导学
生发现正弦定理时实在是有一定困难。

给导课带来一定的难度。

2.若用传统的外接圆法或等积法学生明显更容易接受,但这样的话又无法体现新教材
把解三角形安排在向量之后的意图。

正弦定理的本质是反映三角形边和角的等量关
系,而数学中能同时描绘长度和角度的量非向量莫属。

所以用向量法证明明显更为
自然,这也充分体现了向量的工具性。

3.若用另外一种思路,先用传统方法证明再用向量证明,这样似乎既易于学生理解正
弦定理,又能让学生体会到向量的工具性。

但这样亦显得画蛇添足,教学过程略显
曲折而牵强。

4.通过两堂课的教学经验,我发现在用向量引导学生发现三角形边角关系的过程中学
生其实更容易发现余弦定理。

为了充分体现新课标以学生为主体的教学思想,我做
了大胆的尝试,不妨顺水推舟,先讲余弦定理,再讲正弦定理。

三、教学目标
1.知识与技能
掌握正弦定理和余弦定理,并能运用定理解三角形。

2.过程与方法
通过对特殊三角形边角间数量关系的研究,发现正(余)弦定理,初步学会运用由特殊到一般的思想方法发现数学规律。

3.情感、态度与价值观
在利用数量积证明的过程中,体会向量工具在解三角形的度量问题中的作用,进一步认识和体会数学知识之间的普遍联系与辩证统一(三角函数、向量、三角形)。

四、教学重难点
本节的重点:正(余)弦定理的发现、证明及基本应用。

本节的难点:正弦定理的发现及证明过程。

五、教学过程
1.提出问题
师:我们初中学过解直角三角形,你能说出解题的依据
吗?
生:勾股定理、两锐角互余、正弦、余弦······
教师板书:
(1)边的关系:;
(2)角的关系:A+B=90○
(3)边与角的关系:
,, ,.[2]
师:除了直角三角形,我们还学过锐角三角形和钝角三角形,统称为斜三角形,
你会解斜三角形吗?
生:沉默片刻,有人回答“作高啊!”
师:对,把斜三角形转化成直角三角形,这正是我们平时强调的“转化思想”,
同学们回答得非常好。

生:被老师肯定,感到很喜悦。

师:但是,如果不作高,仅仅依赖于三角形的边和角能不能直接解斜三角形呢?
生:再次陷入沉默。

师:为什么我们没办法解斜三角形?斜三角形的边和角都有什么关系?
生:(1)边的关系:两边之和大于第三边,两边之差小于第三边;
(2)角的关系:内角和180度;
(3)边与角的关系:大边对大角;
师:对比直角三角形的边角关系和斜三角形的边角关系,你发现了什么?
生:要解斜三角形必须找到边和角的等量关系!
2.探求问题
师:非常好,我们今天要探求的正是三角形的边角关系,但是我们必须借助一
样工具把边和角联系起来,什么工具能担此重任呢?
生:向量!
(因为必修四学过向量,并且当时也反复强调了向量的工具性,所以学生在此
想到向量并不困难)
师:对,我们前面已经认识到向量是既有大小又有方向的量,它是沟通代数和
几何的桥梁,今天我们以向量为工具,看一看向量在数学中是如何体现其工具
性的。

师:观察黑板上的三角形,我们能想到向量的那些知识?
生:向量的三角形法则、向量的加法、向量的减法······
师:好,大家看到三角形联想到向量的三角形法则,
不妨用向量的加法来表示。

A
B C
A
B C
a
A
B
C
b c
生:AB AC CB
=+
师:如何根据向量关系推出三角形的边角关系呢?二者有什么联系?
生:三角形的边可以用向量的模表示。

师:如何能出现三角形夹角呢?
生:只要出现两个向量的点乘!
师:对!怎样构造向量的点乘?
生:平方,两边同时平方!
(之前求向量的模时接触过通过平方出现向量点乘)
师:非常好,那么,除了平方还有其他方法可以出现点乘吗?
生:那就再乘一个向量。

(声音很微弱)
师:对,我们还可以在等式两边同时乘以一个向量!接下来,我们分别就两种方案进行探究。

方案一:两边同时平方
22
()
AB AC CB
=+,易得
2222cos
c a b ab C
=+-,同理得
2222cos
a b c bc A
=+-,
2222cos
b a
c ac B
=+-
方案二:两边同时乘以一个向量
师:我们可以在等式两边同时乘以一个向量,但是,乘以哪个向量呢?(这是本节课的难点)
生:被难住。

师:能不能是任意一个向量呢?(在三角形边上任意画一个向量)
生:不行!(意识到构造点乘的目的之一是要出现三角形的夹角)
师:那就是要一个特殊的向量,什么样的向量比较特殊?
生:零向量,单位向量,平行向量,垂直向量······
师:好,大家再仔细思考刚才的几个特殊向量,看看用哪个好?
零向量很容易排出,大部分同学意识到可以用垂直向量。

生:可以用垂直向量。

师:那么图中有没有与已知向量垂直的向量呢?
生:没有。

师:如何构造一个?
生:只需做三角形的高。

(因为有了新课引入时通过作高将斜三角形转化为直角三角形的铺垫)师:好,我们来做三角形BC边上的高试试。

等式AB AC CB
=+两边同时乘以刚构造出的向量DA,得
A
B C
D
()AB DA AC CB DA =+,进而得 cos(90)cos(90)AB DA B AC DA C +=+,即
sin sin c B b C =,即
sin sin b c B C
=,同理得 sin sin a b A B =,sin sin a c A C
= 师:虽然我们构造的向量DA 的模长并不知道,但在推导过程中约掉了,看来这个推导的过程与构造向量的长度无关,只要是垂直关系就行了。

既然如此,你能否构造一个更特殊的向量?
生:可以取高上的单位向量。

师:非常好,还有其他做法吗?(边说
便把学生的想法画在图上)
生:可以取其他单位向量,只要保持垂直关系。

师:对,我们还可以把这些方向 确定的单位向量放在一些特殊位置,
比如把起点放在B 点等。

咱们把这些想
法作为课后作业,大家课下完成。

3. 解决问题
我们刚才得出了如下公式 (1)sin sin sin a b c A B C
== 因为在公式中,角以正弦形式出现,称之为正弦定理。

我们可以这样描述:在一个三角形中,各边和它所对角的正弦的比相等。

(2)222
2cos ;a b c bc A =+- 2222cos ;b a b ab B =+-
2222cos ;c a c ac C =+-
因为涉及三边与一角的余弦,称之为余弦定理。

我们可以这样描述:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

余弦定理通过变形,还可以得到如下变形公式:
(3)222
cos ;2b c a A bc
+-= 222
cos ;2a c b B ac
+-= A B C
D M i
222
cos .2a b c C ab
+-= 4. 课堂小结
本节课正余弦定理的证明方法其实有很多,这种用向量证明的方法虽不是最简单的,但它的意义在于这是我们第一次用向量为工具解决数学问题。

今后的学习中,我们还会使用向量解决其他问题,如在立体几何中,我们会利用向量解决垂直、夹角、距离等问题。

相关文档
最新文档