扬州中学2013届高三下学期期中考试数学试题

合集下载

江苏省扬州市2024-2025学年高三上学期11月期中检测数学试题

江苏省扬州市2024-2025学年高三上学期11月期中检测数学试题

江苏省扬州市2024-2025学年高三上学期11月期中检测数学试题学校:___________姓名:___________班级:___________考号:___________四、解答题15.中国是茶的故乡,茶文化源远流长,博大精深.某兴趣小组,为了了解当地居民对喝茶的态度,随机调查了100人,并将结果整理如下:1.B【分析】1()2x f x -=是指数复合函数,先判断函数单调递增,通过求出2x =和x 趋于-¥时()f x 的值来确定值域.【详解】1()2x f x -=由(1,)2u x x u f ==-复合,两个都是增函数,则原函数为增函数.当2x =时,211(2)222f -===.当x 趋于-¥时,1x -也趋于-¥.因为指数函数2u y =(1u x =-),当u 趋于-¥时,2u 趋于0,所以()f x 趋于0,所以()0f x >.故原函数值域为(]0,2.故选:B.2.D【分析】解不等式化简集合B ,再利用并集的定义求解即得.【详解】解(2)(1)0x x +-<,得2<<1x -,则{1,0}B =-,而{}0,1,2A =,所以{}1,0,1,2A B È=-.故选:D 3.A【分析】根据函数零点存在定理:如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有()()0f a f b <,那么函数()y f x =在区间(,)a b 内有零点.来判断两个条件之围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。

扬州市江都市甘棠中学2012-2013学年高一下学期期中考试数学试题

扬州市江都市甘棠中学2012-2013学年高一下学期期中考试数学试题

2012-2013学年江苏省扬州市江都市甘棠中学高一(下)期中数学试卷参考答案与试题解析一、填空题1.如图为一几何体的展开图,其中ABCD是边长为6的正方形,SD=PD=6,CR=SC,AQ=AP,点S,D,A,Q及P,D,C,R共线,沿图中虚线将它们折叠起来,使P,Q,R,S四点重合,则该几何体的内切球的半径为6﹣.﹣故答案为2.如图是容量为100的样本的频率分布直方图,试根据图形中的数据填空:(1)样本数据落在范围[6,10)内的频率为0.32(2)样本数据落在范围[10,18)内的频数为48(3)样本数据落在范围[2,10)的概率约为0.4.3.函数y=(m2+2m﹣2)x是幂函数,则m=﹣3.时,4.已知函数,则=.,(4解:∵函数,)4=.故答案为:.5.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为.=.故答案为:.6.若实数a满足a>|t﹣1|﹣|t﹣2|(t∈R)恒成立,则函数f(x)=log a(x2﹣5x+6)的单调减区间为(﹣∞,2).,7.计算2log510+log50.25的值为2.8.(2013•辽宁一模)已知O是锐角△ABC的外接圆圆心,∠A=θ,若,则m=sinθ.(用θ表示),可得⊥,可得其数量积为化简后的等式两边同时乘以,则有⊥,得•∴两边同乘,化简得:由正弦定理==9.(2012•芜湖二模)=3.=x﹣)10.(2011•扬州模拟)设M={a|a=(2,0)+m(0,1)},m∈R和N={b|b=(1,1)+n(1,﹣1)},n∈R都是元素为向量的集合,则M∩N={(2,0)}.解得11.(2012•海淀区二模)在面积为1的正方形ABCD内部随机取一点P,则△PAB的面积大于等于的概率是.=的面积大于等于,即可算出的面积大于等于AD=S=的面积大于等于的面积大于等于P=故答案为:的概率的概率,着重考查了正方形的性质、三角形面积公式和几何概型计算公12.在△ABC中,已知cosA=,cosB=,角A,B,C所对的边分别为a,b,c,若a=,则c=.cosA=cosB=,,﹣=,,,=得:==故答案为:13.直线过点(﹣3,﹣2)且在两坐标轴上的截距相等,则这条直线方程为2x﹣3y=0或x+y+5=0.=y=14.函数f(x)=点x=1处可导,则a=2,b=﹣1.处连续,由连续定义可得=a+b=f=a+b=f二、解答题15.若函数y=f(x)在x=a及x=b之间的一段图象可以近似地看作直线,且a≤c≤b,求证:f(c)≈f(a)+.的方程是16.(10分)如图,已知正方体ABCD﹣A1B1C1D1,AD1与A1D相交于点O.(1)判断AD1与平面A1B1CD的位置关系,并证明;(2)求直线AB1与平面A1B1CD所成的角.17.(10分)已知函数(1)讨论函数f(x)的极值情况;(2)设g(x)=ln(x+1),当x1>x2>0时,试比较f(x1﹣x2)与g(x1﹣x2)及g(x1)﹣g(x2)三者的大小;并说明理由.,②=且在(﹣恒成立18.(13分)设函数f(x)=﹣(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)的值域.)由)取得最大值为===,因此函数.19.(2012•绵阳三模)已知函数f(x)=+blnx+c(a>0)的图象在点(1,f(1))处的切线方程为x﹣y﹣2=0.(I)用a表示b,c;(II)若函数g(x)=x﹣f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.﹣﹣﹣=20.已知圆C与两坐标轴都相切,圆心C到直线y=﹣x的距离等于.(1)求圆C的方程;(2)若圆心在第一象限,点P是圆C上的一个动点,求x2+y2的取值范围.的距离等于d=d+r=﹣(,]。

江苏省扬州中学2012-2013学年高一下学期期末考试数学试题

江苏省扬州中学2012-2013学年高一下学期期末考试数学试题

2012-2013学年江苏省扬州中学高一(下)期末数学试卷参考答案与试题解析一、填空题(本大题共14题,每题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)求值sin75°=.××故答案为:2.(5分)已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是﹣1.平行得﹣=3.(5分)在△ABC中,若b2+c2﹣a2=bc,则A=60°.==,4.(5分)直线x﹣2y+1=0在两坐标轴上的截距之和为﹣.,令在两坐标轴上的截距之和为+,.5.(5分)已知{a n}为等差数列,其前n项和为S n,若a3=6,S3=12,则公差d=2.=6.(5分)若x+y=1,则x2+y2的最小值为.=).故答案为:.7.(5分)若数列{a n}满a1=1,=,a8=.==,故答案为:.8.(5分)设实数x,y满足,则的最大值是.先画出不等式组所表示的平面区域,然后根据的最大值.,画出约束条件,如右图中阴影部分而的几,)时斜率最大,最大值为故答案为:本题主要考查了线性规划为载体考查9.(5分)(2012•海口模拟)设sin(+θ)=,则sin2θ=﹣.,+sin2=(,,+,故答案为﹣.10.(5分)光线从A(1,0)出发经y轴反射后到达x2+y2﹣6x﹣6y+17=0所走过的最短路程为4.的距离为.11.(5分)函y=2sinx+sin(﹣x)的最小值是﹣.()化简为)﹣=2sinx+﹣sinx=sinx+sin.12.(5分)在△ABC中,内角A,B,C所对的边分别a,b,c,给出下列结论:①A>B>C,则sinA>sinB>sinC;②若==,△ABC为等边三角形;③必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;④若a=40,b=20,B=25°,△ABC必有两解.其中,结论正确的编号为①④(写出所有正确结论的编号).由正弦定理条件知,13.(5分)平面直角坐标系中,O为坐标原点,M是直线l:x=3上的动点,过点F(1,0)作OM的垂线与以OM为直径的圆交于点P(m,n).则m,n满足的关系式为m2+n2=3.14.(5分)已知等比数{a n},a1=1,a4=8,在a n与a n+1两项之间依次插入2n﹣1个正整数,得到数列{b n},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{b n}的前2013项之和S2013=2007050(用数字作答).=2=n++2002==2007二、解答题(本大题共6题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)已知二次函数y=f(x)图象的顶点是(﹣1,3),又f(0)=4,一次函数y=g (x)的图象过(﹣2,0)和(0,2).(1)求函数y=f(x)和函数y=g(x)的解析式;(2)求关于x的不等式f(x)>3g(x)的解集.16.(14分)已知cosβ=﹣,sin(α+β)=,α∈(0,),β∈(,π).(1)求cos2β的值;(2)求sinα的值.﹣;,,=,(,),∴﹣=(﹣+×=17.(15分)若等比数列{a n}的前n项和S n=a﹣.(1)求实数a的值;(2)求数列{na n}的前n项和R n..==a,解=+++﹣﹣=a,解得=++=1++,②﹣18.(15分)如图,某海域内的岛屿上有一直立信号塔AB,设AB延长线与海平面交于点O.测量船在点O的正东方向点C处,测得塔顶A的仰角为30°,然后测量船沿CO方向航行至D处,当CD=100(﹣1)米时,测得塔顶A的仰角为45°.(1)求信号塔顶A到海平面的距离AO;(2)已知AB=52米,测量船在沿CO方向航行的过程中,设DO=x,则当x为何值时,使得在点D处观测信号塔AB的视角∠ADB最大.,===,得AD=100,,=ADB=≤=即x=40DO=40时,19.(16分)已知圆O:x2+y2=r2(r>0)与直线x﹣y+2=0相切.(1)求圆O的方程;(2)过点(1,)的直线l截圆所得弦长为2,求直线l的方程;(3)设圆O与x轴的负半轴的交点为A,过点A作两条斜率分别为k1,k2的直线交圆O 于B,C两点,且k1k2=﹣2,试证明直线BC恒过一个定点,并求出该定点坐标.=0d==2=r,符合题意;=k﹣,y与圆方程联立得:,=,,,用代替()=()=x+)定点(﹣20.(16分)设数列{a n}的前n项和为S n,对任意n∈N*都有S n=()2成立.(1)求数列{a n}的前n项和S n;(2)记数列b n=a n+λ,n∈N*,λ∈R,其前n项和为T n.①若数列{T n}的最小值为T6,求实数λ的取值范围;②若数列{b n}中任意的不同两项之和仍是该数列中的一项,则称该数列是“封闭数列”.试问:是否存在这样的“封闭数列”{b n},使得对任意n∈N*,都有T n≠0,且<+++L+<.若存在,求实数λ的所有取值;若不存在,请说明理由.)利用<+++.,化为,即>,因为(得:,,得到,化为=法二:由时,,,即}∴,得到,∴<+++.,化为,即>,因为<++<.数列掌握。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

【解析版】江苏省扬州中学2013届高三下学期开学检测数学试卷

【解析版】江苏省扬州中学2013届高三下学期开学检测数学试卷

江苏省扬州中学2013届高三下学期开学检测数学试卷
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)
1.(5分)已知集合M={a,0},N={x|2x2﹣5x<0,x∈Z},若M∩N≠∅,则a=1或2.
2.(5分)在复平面内,复数的对应点位于第二象限.
将复数
解:∵=i
∴复数
∴复数
3.(5分)向量=(3,4),=(x,2),若=,则实数x的值为x=﹣1.
由已知可得和
解:∵,
=
4.(5分)如图是甲、乙两名同学在五场篮球比赛中得分情况的茎叶图.那么甲、乙两人得分的平均分<(填<,>,=)
=18
5.(5分)设a>0,a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.(在“充分不必要条件”、“必要不充分”、“充分必要”、“既不充分有不必要”中选一个填写)
6.(5分)某程序的框图如图所示,执行该程序,若输入的p为24,则输出的S的值为30.
7.(5分)(2013•宿迁一模)连续抛掷一个骰子(一种各面上分别标有1,2,3,4,5,6
个点的正方体玩具)两次,则出现向上的点数和大于9的概率是.。

2013届高三下学期最新精选试题(27套)分类汇编5:数列

2013届高三下学期最新精选试题(27套)分类汇编5:数列

an 是 a2 n
一个与 n 无关的常数,则此常数的集合为________.
1
10. (江苏省扬州中学 2013 届高三下学期开学质量检测数学试卷)数列 {an } 满足 a1 2, 且对任
意的 m, n N* ,都有 an m an am ,则 {an } 的前 n 项和 Sn _____.
3
b=
Байду номын сангаас
2ac ,则此数列的第 15 项是_____. a+c
24. (江苏省南菁高级中学 2013 届高三第二学期开学质量检测数学试卷)已知数列{an}(n∈N*)
满足 a1=1 且 an an 1 cos
2 n ,则其前 2013 项的和为____. 3
25. (江苏省金湖中学 2013 届高三下学期期初检测数学试题) 设等差数列 {an } 的前 n 项和为 S n ,
15. (江苏省泰兴市第三高级中学 2013 届高三下学期期初调研考试数学试题 ) 已知数列
an 满
足 a1 1, a2 2, an 2 (1 cos 为______________.
2
n n ) an sin 2 ,则该数列的前 10 项的和 2 2
16. (江苏省青阳高级中学 2013 届高三月测试卷(一) (数学) )设双曲线
an 是
首项为 a,公差为 1 的等差数列, bn 数 a 的取值范围是__________.
1 an * .若对任意的 n N ,都有 bn b8 成立,则实 an
7 . (南京市四星级高级中学 2013 届高三联考调研考试(详细解答)2013 年 3 月 )在等比数列
{ an }中,若 a7 a9 4, a4 1 ,则 a12 的值是__________.

2 数学-扬州中学2012-2013学年高二下学期期中考试 数学

综上所述, ,i=1,2,…,n.
[解法二]设 , ,则 等价于 .
记 ,则数集X具有性质P当且仅当数集B关于
原点对称.
注意到-1是X中的唯一负数, 共有n-1个数,
所以 也只有n-1个数.
由于 ,已有n-1个数,对以下三角数阵
, ……
注意到 ,所以 ,从而数列的通项公式为
,k=1,2,…,n.
4.设 的 条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”.)
5.在复平面内,复数 对应的点到直线 的距离是
6.焦点在x轴上的椭圆方程为 ,离心率为 ,则实数 的值为
7.一列具有某种特殊规律的数为: 则其中x=
8.曲线 在点(1,2)处的切线方程为
9.设f(x)= ,则f[f( )]=
20.(本题满分16分)
设 、 .
(1)若 在 上不单调,求 的取值范围;
(2)若 对一切 恒成立,求证: ;
(3)若对一切 ,有 ,且 的最大值为1,
求 、 满足的条件.
江苏省扬州中学2012~2013学年第二学期期中考试
高二数学试卷答题纸
成绩
一、填空题(每小题5分,计70分)
1.2.3.4.5.
19.(本题满分16分)
已知椭圆E: + =1(a>b>0)的离心率为 ,其长轴长与短轴长的和等于6.
(1)求椭圆E的方程;
(2)如图,设椭圆E的上、下顶点分别为A1、A2,P是椭圆上异于A1、A2的任意一点,直线PA1 、PA2分别交x轴于点N、M,若直线OT与过点M、N的圆G相切,切点为T.证 明:线段OT的长为定值.
.故“如果直线 过点 ,那么 ”为真命题.
(2)逆命题为:如果 ,那么直线 过点 .逆命题也为真命题,以下给出证明:设 ,则 , , ,又 , .当 时,直线 的方程为 ,显然过点 ;当 时,直线OS的斜率 , 直线 的方程为 ,令 ,得 , 直线 过定点 .综上,直线 恒过定点 .

江苏省扬州中学2013-2014学年高一下学期期中考试数学试卷(带解析)

江苏省扬州中学2013-2014学年高一下学期期中考试数学试卷(带解析)1.不等式23xx -+>0的解集为___________. 【答案】(-3,2) 【解析】试题分析:由23xx -+>0得:20,323x x x -<-<<+,所以原不等式的解集为(-3,2). 解简单分式不等式,需注意不能轻易去分母. 考点:解简单分式不等式2.若x >0、y >0,且x +y =1,则x ·y 的最大值为______. 【答案】14【解析】试题分析:因为1()24x y xy +≤=,当且仅当12x y ==时取等号,所以x ·y 的最大值为14.运用基本不等式求最值需满足:“一正二定三相等”. 考点:基本不等式3.sin15º·sin30º·sin75º的值等于___________.【答案】18【解析】试题分析:11sin15sin30sin75sin15sin30cos15sin30sin30.28===给角求值问题,需注意角之间倍角或互余关系. 考点:二倍角公式,诱导公式4.在等差数列{a n }中,a 3+a 6+3a 7=20,则2a 7―a 8的值为_________. 【答案】4 【解析】试题分析:等差数列性质:若,,,,,m n p q m n p q N +=+∈则m n p q a a a a +=+,所以367663520, 4.a a a a a ++===因此7862 4.a a a -==考点:等差数列性质5.函数y +cosx ,x ∈[―6π,6π]的值域是_________.【答案】【解析】试题分析:因为s i nc o s2s i n (),6y x x x π+=+又[0,]63x ππ+∈,所以s i n ([0],[0,3].6x y π+∈∈研究三角函数性质首先化为基本三角函数形式.考点:三角函数性质6.若不等式ax 2+bx +2>0的解集为11,23⎛⎫- ⎪⎝⎭,则a -b =________. 【答案】-10【解析】试题分析:由题意得:11,23-为方程220ax bx ++=的两根,且0.a <由韦达定理得:11112,,12,2,10.2323b a b a b a a-+=--⨯==-=--=- 考点:一元二次不等式解集与一元二次方程根的关系 7.函数y =sin 2x π⎛⎫+ ⎪⎝⎭cos 6x π⎛⎫- ⎪⎝⎭的最小正周期为________. 【答案】π 【解析】 试题分析:因为1sin 21sin()cos()cos sin )cos 2)sin(2)262423x y x x x x x x x πππ=+-=+=++=++,所以最小正周期为2.2ππ= 考点:三角函数周期8.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 12=_____ 【答案】16 【解析】试题分析:由韦达定理得11916a a =,由等比数列性质:若,,,,,m n p qm n p q N +=+∈则m n p q a a a a ⋅=⋅得81211916a a a a == 考点:等比数列性质9.在△ABC 中,已知A =45°,AB BC =2,则C =___________. 【答案】30°【解析】试题分析:由正弦定理得:sin sin AB BCC A=,21,sin .sin 452C ==因为AB BC <,所以角C 必为锐角,因此C =30°. 考点:正弦定理10.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取最大值时,n 的值为____________. 【答案】6 【解析】试题分析:由题意得,等差数列为单调递减数列,因此其前n 项的和为Sn 为开口向下的二次函数,对称轴为48,62n n +==,所以当Sn 取最大值时,n 的值为6. 考点:等差数列前n 项的和性质11.已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为_________. 【答案】25 【解析】试题分析:因为等差数列{an}的前20项的和为100,所以12012071420()100,10,10.2a a a a a a +=+=+=因此2714714()252a a a a +≤=,即a 7·a 14的最大值为25.考点:等差数列性质,基本不等式12.已知等差数列{a n }的前n 项和为S n =(a +1)n 2+a ,某三角形三边之比为a 2∶a 3∶a 4,则该三角形的最大角为________. 【答案】23π 【解析】试题分析:因为{a n }为等差数列,所以前n 项和中常数项为零,即212340,,1,3,5,7.n a S n a a a a ======三角形的最大角的余弦为22235712352+-=-⨯⨯,因此最大角为23π考点:等差数列前n 项和性质,余弦定理 13.若f (x)=x +1ax -在x ≥3时有最小值4,则a =_________. 【答案】2 【解析】试题分析:当0a >时()111111a a f x x x x x =+=-++≥=--,当且仅当1x =时取等号.由14=得:95,342a x ==<,舍去;因此()1af x x x =+-在[3,)+∞上单调增函数,所以min ()(3)34,22a f x f a ==+==,当0a ≤时()1af x x x =+-为单调增函数,所以min ()(3)34,22af x f a ==+==,舍去. 考点:基本不等式14.已知△ABC 中,角A,B,C 所对的边分别为a,b,c ,且BC 边上的高为a ,则b c +cb的取值范围为______.【答案】【解析】试题分析:由三角形面积公式得:2211sin ,sin 22a bc A a bc A==,由余弦定理得:2222cos b c a bc A+=+,所以2222cos sin 2cossin 2cos b c b c a bc A bc A bc AA A c b bc bc bc++++====+≤,又2b c c b +≥,所以bc +cb的取值范围为 考点:三角形面积公式,余弦定理,基本不等式15.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边.(1)若△ABC ,c =2,A =60º,求a ,b 的值; (2)若acosA =bcosB ,试判断△ABC 的形状,证明你的结论.【答案】(1)a b =1,(2)直角三角形或等腰三角形 【解析】试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化.=12bcsinA =bsin60º,∴b =1.再由余弦定理a 2=b 2+c 2-2bccosA =3,∴a (2)由正弦定理得2RsinA =a ,2RsinB =b ,∴2RsinAcosA =2RsinBcosB ,即sin2A =sin2B ,由已知A 、B 为三角形内角,∴A +B =90º或A =B .∴△ABC 为直角三角形或等腰三角形.本题也可从余弦定理出发:222222222222222222222,()(),()()(),22b c a a c b a b a b c a b a c b a b c a b a b bc ac+-+-=+-=+--=+-所以222c a b =+或220a b -=.解:(112bcsinA =bsin60º,∴b =1.由余弦定理a 2=b 2+c 2-2bccosA =3,∴a(2)由正弦定理得2RsinA =a ,2RsinB =b ,∴2RsinAcosA =2RsinBcosB ,即sin2A =sin2B ,由已知A 、B 为三角形内角, ∴A +B =90º或A =B .∴△ABC 为直角三角形或等腰三角形 考点:正余弦定理16.设函数f (x)=cos(2x +3π)+2a (1)求函数f (x)的单调递增区间(2)当0≤x ≤4π时,f (x)的最小值为0,求a 的值. 【答案】(1)[,]()36k k k Z ππππ-+∈,(2)a =-14.【解析】试题分析:(1)研究三角函数性质首先化为基本三角函数形式.即sin()y A x B ωϕ=++. f (x)=12cos2x +2a =sin(2x +6π)+2a .再根据基本三角函数性质列不等关系:由222262k x k πππππ-≤+≤+得f (x)的单调递增区间为[,]()36k k k Z ππππ-+∈(2)由0≤x≤4π,得22663x πππ≤+≤,故12≤sin(2x +6π)≤1.由f (x)的最小值为0,得12+2a =0.解得a =-14.解:(1)f (x)=12cos2x +2a =sin(2x +6π)+2a . 由222262k x k πππππ-≤+≤+,得k -3π≤x ≤k +6π(k ∈Z ). 所以,f (x)的单调递增区间为[,]()36k k k Z ππππ-+∈. (2)由0≤x ≤4π,得22663x πππ≤+≤,故12≤sin(2x +6π)≤1.由f (x)的最小值为0,得12+2a =0.解得a =-14.考点:三角函数性质17.已知圆的内接四边形ABCD 的边长分别为AB =2,BC =6, CD =DA =4, (1)求角A 的大小;(2)求四边形ABCD 的面积.【答案】(1)A =120º(2)【解析】 试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化. 由面积公式有四边形ABCD 的面积S =S △ABD +S △BCD =12AB ·AD ·sinA +12BC ·CD ·sinC ,∵A +C =180º∴sinA =sinC ∴S =16sinA .由余弦定理得:BD 2=AB 2+AD 2-2AB ·AD ·cosA=20-16cosA ,BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC ,∴20-16cosA =52-48cosC 解之:cosA =-12, 又0º<A <180º, ∴A =120º,(2)由(1)有四边形ABCD 的面积S =16sin a ,所以S =16sin120º=解:四边形ABCD 的面积S =S △ABD +S △BCD =12AB ·AD ·sinA +12BC ·CD ·sinC ∵A +C =180º∴sinA =sinC ∴S =16sinA .由余弦定理得:BD 2=AB 2+AD 2-2AB ·AD ·cosA=20-16cosA , BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC , ∴20-16cosA =52-48cosC 解之:cosA =-12, 又0º<A <180º, ∴A =120º,S =16sin120º=考点:正余弦定理,三角形面积公式18.已知{a n }是公比为q 的等比数列,且a m 、a m+2、a m+1成等差数列. (1)求q 的值;(2)设数列{a n }的前n 项和为S n ,试判断S m 、S m+2、S m+1是否成等差数列?并说明理由. 【答案】(1)q =1或-12.(2)当q =1时,S m , S m+2 , S m+1不成等差数列;q =-12时,S m , S m+2 , S m+1成等差数列.【解析】试题分析:(1)根据三数成等差数列,列出等量关系:2a m+2=a m+1+a m ∴2a 1q m+1=a 1q m +a 1qm –1,在等比数列{a n }中,a 1≠0,q ≠0,∴2q 2=q +1,解得q =1或-12.(2)根据等比数列前n 项和公式11,1(1),11n n na q S q a q q=⎧⎪=-⎨≠⎪-⎩分类讨论:若q =1,S m +S m+1=ma 1+(m +1)a 1=(2m +1)a 1,S m+2=(m +2)a 1∵a 1≠0,∴2S m+2≠S m +S m+1若q =-12 ,S m+2=2112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=211362m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1 ,S m +S m+1=112112m⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1+1112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=142113322m m +⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-⋅-+-⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭·a 1=411332m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1,∴2 S m+2=S m +S m+1解:(1)依题意,得2a m+2=a m+1+a m ∴2a 1q m+1=a 1q m +a 1qm – 1在等比数列{a n }中,a 1≠0,q ≠0,∴2q 2=q +1,解得q =1或-12. (2)若q =1,S m +S m+1=ma 1+(m +1)a 1=(2m +1)a 1,S m+2=(m +2)a 1 ∵a 1≠0,∴2S m+2≠S m +S m+1若q =-12,S m+2=2112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=211362m⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1S m +S m+1=112112m⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1+1112112m +⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭·a 1=142113322m m +⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-⋅-+-⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭·a 1=411332m ⎡⎤⎛⎫-⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦·a 1 ∴2 S m+2=S m +S m+1 故当q =1时,S m , S m+2 , S m+1不成等差数列;q =-12时,S m , S m+2 , S m+1成等差数列. 考点:等比数列前n 项和公式19.某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(1)分别写出用x 表示y 和S 的函数关系式(写出函数定义域); (2)怎样设计能使S 取得最大值,最大值为多少?【答案】(1)y =3000x (6<x <500).S=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500. (2)x =50 m ,y =60 m 时,最大面积是2430 m 2.【解析】 试题分析:(1)解实际问题应用题,关键正确理解题意,列出函数关系式,注意交代定义域.由已知xy =3000,2a +6=y ∴x >6,y >6,故y =3000x ,由y >6,解得x <500,∴y =3000x(6<x <500).S =(x -4)a +(x -6)a =(2x -10)a ,根据2a +6=y ,得a =2y -3=1500x-3,∴S =(2x -10)15003x ⎛⎫-⎪⎝⎭=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500.(2)由基本不等式求最值,注意等于号取值情况.S =3030-150006x x ⎛⎫+⎪⎝⎭≤3030-3030-2×300=2430,当且仅当6x =15000x,即x =50时等号成立,此时y =60. 解:(1)由已知xy =3000,2a +6=y ∴x >6,y >6,故y =3000x,由y >6,解得x <500,∴y =3000x(6<x <500).S =(x -4)a +(x -6)a =(2x -10)a , 根据2a +6=y ,得a =2y -3=1500x-3, ∴S =(2x -10)15003x ⎛⎫-⎪⎝⎭=3030-150006x x ⎛⎫+ ⎪⎝⎭,6<x <500.(2)S =3030-150006x x ⎛⎫+ ⎪⎝⎭≤3030-3030-2×300=2430, 当且仅当6x =15000x,即x =50时等号成立,此时y =60. 所以,矩形场地x =50 m ,y =60 m 时,运动场的面积最大,最大面积是2430 m 2. 考点:函数应用题,基本不等式求最值20.已知数列{a n }是等差数列,数列{b n }是等比数列,且对任意的n ∈N*,都有a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3.(1)若{b n }的首项为4,公比为2,求数列{a n +b n }的前n 项和S n ; (2)若a 1=8.①求数列{a n }与{b n }的通项公式;②试探究:数列{b n }中是否存在某一项,它可以表示为该数列中其它r (r ∈N ,r ≥2)项的和?若存在,请求出该项;若不存在,请说明理由.【答案】(1)S n =2n+2+n 2+3n -4(2)①a n =4n +4,b n =2,②不存在 【解析】试题分析:(1)条件“a 1b 1+a 2b 2+a 3b 3+···+a n b n ”实质为数列{}n n a b 前n 项的和,所以按已知n S 求n a 方法进行化简. ∵a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3∴a 1b 1+a 2b 2+a 3b 3+···+a n -1b n -1=(n -1)·2n+2(n ≥2) 两式相减得:a n b n =n ·2n+3-(n -1)·2n+2=(n +1)·2n+2 (n ≥2) 而当n =1时,a 1b 1=24适合上式,∴a n b n =(n +1)·2n+2(n ∈N*)∵{b n }是首项为4、公比为2的等比数列 ∴b n =2n+1∴a n =2n +2,∴{a n +b n }的前n 项和S n =()4222n n +++()41212n--=2n+2+n 2+3n -4(2)①由(1)有a n b n =(n +1)·2n+2,设a n =kn +b ,则b n=()212n n kn b++⋅+∴b n -1=12n n kn k b +⋅-+ (n ≥2) 设{b n }的公比为q ,则1n n bb -=()()()21n kn k b kn b n+⋅-++=q 对任意的n ≥2恒成立,即k(2-q)n 2+b(2-q)n +2(b -k)=0对任意的n ≥2恒成立,∴2k b q =⎧⎨=⎩又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n②存在性问题,一般从假设存在出发,有解就存在,无解就不存在.本题从范围角度说明解不存在.解:(1)∵a 1b 1+a 2b 2+a 3b 3+···+a n b n =n ·2n+3∴a 1b 1+a 2b 2+a 3b 3+···+a n -1b n -1=(n -1)·2n+2(n ≥2)两式相减得:a n b n =n ·2n+3-(n -1)·2n+2=(n +1)·2n+2(n ≥2)而当n =1时,a 1b 1=24适合上式,∴a n b n =(n +1)·2n+2(n ∈N*)∵{b n }是首项为4、公比为2的等比数列 ∴b n =2n+1∴a n =2n +2,∴{a n +b n }的前n 项和S n =()4222n n +++()41212n--=2n+2+n 2+3n -4(2)①设a n=kn +b ,则b n=()212n n kn b++⋅+,∴bn -1=12n n kn k b+⋅-+(n ≥2) 设{b n }的公比为q ,则1nn b b -=()()()21n kn k b kn b n +⋅-++=q 对任意的n ≥2恒成立, 即k(2-q)n 2+b(2-q)n +2(b -k)=0对任意的n ≥2恒成立,∴()()()202020k q b q b k -=⎧⎪-=⎨⎪-=⎩ ∴2k b q =⎧⎨=⎩ 又∵a 1=8,∴k +b =8∴k =b =4,∴a n =4n +4,b n =2n②假设数列{b n }中第k 项可以表示为该数列中其它r 项1212,,,()r t t t r b b b t t t ⋅⋅⋅<<⋅⋅⋅<的和,即12r k t t t b b b b =++⋅⋅⋅+,从而122222r t t tk =++⋅⋅⋅+,易知k ≥t r +111121232(12)2222222222212r t t r r rrt t t t t k++-=++⋅⋅⋅+≤+++⋅⋅⋅+==-<-∴k <t r +1,此与k ≥t r +1矛盾,从而这样的项不存在. 考点:已知n S 求n a ,等差数列与等比数列基本性质。

江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。

2013届高三最新数学(精选试题26套)分类汇编5:数列

【答案】
6.(江苏省扬州中学2013届高三最后一次模拟考试数学试题)对于实数 ,将满足“ 且 为整数”的实数 称为实数 的小数部分,用符号 表示.已知无穷数列 满足如下条件:① ;② .当 时,对任意 都有 ,则 的值为____________.
【答案】 或
7.(江苏省徐州市2013届高三考前模拟数学试题)在数列 中,已知 , ,当 时, 是 的个位数,
则 ________.
【答案】
8.(江苏省西亭高级中学2013届高三数学终考卷)已知定义在R上的函数f(x)、g(x)满足 =ax,且f′(x)g(x)<f(x)g′(x), + = ,若有穷数列{ }(n∈N*))的前n项和等于 ,则n等于.
【答案】5
9.(江苏省启东中学2013届高三综合训练(2))对正整数 ,设曲线 在 处的切线与 轴交点的纵坐标为 ,则数列 的前 项和的公式是________.
① ;②若 , ;③ ,
则 ___, ___.
【答案】
29.(2013年江苏省高考数学押题试卷)设等比数列{an}的公比为q,前n项和为Sn,若3Sn,4Sn+1,5Sn+2成等差数列,则q的值为
.
【答案】8Sn+1=3Sn+5Sn+2,即8(Sn+an+1)=3Sn+5(Sn+an+2),所以8an+1=5an+2,q= = .
(3)设数列 中, 成等比数列,由 , ,得
.
化简,得 . (※)
当 时, 时,等式(※)成立,而 ,不成立
当 时, 时,等式(※)成立
当 时,,这与b≥3矛盾.
这时等式(※)不成立
综上所述,当 时,不存在连续三项成等比数列;当 时,数列 中的第二、三、四项成等比数列,这三项依次是18,30,50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第Ⅰ卷
一、填空题:
1.【题文】设集合}6,5,4,3,2,1{=U ,}4,2,1{=M ,则=M C U .
【结束】
2.【题文】记),()21(2R b a bi a i ∈+=+,则点),(b a P 位于第 象限.
【结束】
3.【题文】有一个容量为66的样本,数据的分组及各组的频数如下:
根据样本的频率分布估计,数据落在[5.5,9.5)的概率约是 .
【结束】
4.【题文】已知向量(cos ,sin )a θθ= ,向量b =
,则2a b - 的最大值为 .
【结束】
5.【题文】设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号 是 .
①.若 n m //,β⊥m , 则 β⊥n ; ②.若n m //,β//m , 则 β//n ;
③. 若 α//m ,β//m ,则 βα//; ④.若 α⊥n ,β⊥n ,则 βα⊥.
【结束】
6.【题文】已知双曲线22
221(0,0)x y a b a b
-=>>且右焦点与抛
物线2y =的焦点重合,则该双曲线的方程为 .
【结束】
7.【题文】设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =, 34a =,63k S =,
则k =___.
【结束】
8.【题文】若变量,x y 满足约束条件1133
x y x y x y -≥-⎧⎪⎪
+≥⎨⎪-≤⎪⎩,则目标函数23z x y =+的最小值是___
___.
【结束】
9.【题文】阅读程序框图,运行相应的程序,输出的结果为.
考点:本题主要考查程序框图的功能识别。

【结束】
10.【题文】已知ααcos 21sin +=
,且)2
,0(π
α∈,则)
4
sin(2cos π
αα-的值为____ ____.
【结束】
11.【题文】已知函数2,1,
()1,
1,x ax x f x ax x ⎧-+≤=⎨->⎩ 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成
立,则实数a 的取值范围是 .
【结束】
12.【题文】四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=
PA ,则该球的体积为 .
【结束】
13.【题文】在ABC ∆中,已知9=⋅AC AB ,C A B sin cos sin ⋅=,6=∆ABC S ,P 为线段AB 上的点,且|
||
|CB y CA x +=,则xy 的最大值为 .
以C 为原点,CA 为x 轴,CB 为y 轴,建立平面直角坐标系,则P 点坐标为(x ,y ),点P
在线段AB 上,由
【结束】
14.【题文】我们把形如()0,0>>-=
b a a
x b
y 的函数称为“莫言函数”,并把其与y 轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心凡是与“莫言函数”图象有公共点的圆,皆称之为“莫言圆”.当1=a ,1=b 时,在所有的“莫言圆”中,面积的最小值 .
【结束】
第Ⅱ卷
二、解答题
15.【题文】函数)0(3sin 32
cos
6)(2>-+=ωωωx x
x f 在一个周期内的图象如图所示,A

图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.
(Ⅰ)求ω的值及函数()f x 的值域;
(Ⅱ)若0()f x =
,且0102(,)33x ∈-,求0(1)f x +的值.
故=+)1(0x f =+
+
)3
4
4
(
sin 320
π
π
πx ]4
)3
4
(
sin[320πππ+
+
x
【结束】
16.【题文】直三棱柱111C B A ABC -中,a BC BB AB ===2
1
1,︒=∠90ABC ,N 、F 分别为11C A 、11C B 的中点.
(Ⅰ)求证:⊥CF 平面NFB ; (Ⅱ)求四面体BCN F -的体积.
∴AB ∥A 1B 1∥NF.
【结束】
17.【题文】提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流
速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足x
k
x v --
=25040)(.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流
速度为0千米/小时. (Ⅰ)当0<x ≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位: 辆/小时)f(x)=x ·v(x)可以达到最大,并求出最大值.(精确到个位,参考数据236.25 )
再由已知可知,当x =200时,v(0)=0,代入解得k =2000.
【结束】
18.【题文】已知椭圆)0(1:22221>>=+b a b
y a x C 过点)3,2(,且它的离心率21
=e .直
线
t kx y l +=:与椭圆1C 交于M 、N 两点.
(Ⅰ)求椭圆的标准方程; (Ⅱ)当2
3
=
k 时,求证:M 、N 两点的横坐标的平方和为定值; (Ⅲ)若直线l 与圆1)1(:222=+-y x C 相切,椭圆上一点P 满足λ=+,求实数λ的取值范围.
得到参数的表达式,应用二次函数性质使问题得解。

【结束】
19.【题文】设各项均为正实数的数列}{n a 的前n 项和为n S ,且满足2)1(4+=n n a S (*
N n ∈).
(Ⅰ)求数列}{n a 的通项公式;
(Ⅱ)设数列
}{n b 的通项公式为
t a a b n n
n +=
(*N t ∈),若1b ,2b ,m b (*
,3N m m ∈≥)
成等差数列,求t 和m 的值;
(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列}{n a 中的三项1n a ,2n a ,3n a .
2
22
12211)
32()32()52)(32()52)(32(++=++++k k k k k k ,整理得3232)52522121++=++k k k k ,所以21k k =,这与21k k ≠矛





【结束】
20.【题文】[选修4 - 1:几何证明选讲](本小题满分10分)
如图,在梯形ABCD 中,AD ∥BC,点E ,F 分别在边AB ,CD 上,设ED 与AF 相交于点
G ,若B ,C ,F ,E 四点共圆,求证:AG GF DG GE ⋅=⋅.
【结束】
21.【题文】[选修4 - 2:矩阵与变换](本小题满分10分) 已知矩阵⎢⎣⎡=c
M 1
⎥⎦
⎤2b 有特征值
41=λ及对应的一个特征向量⎥⎦

⎢⎣⎡=3
21e ,求曲线
148522=++y xy x 在M 的作用下的新曲线方程.
【结束】
22.【题文】[选修4 - 4:坐标系与参数方程](本小题满分10分)
在直角坐标系xoy 中,直线l
的参数方程为12x t y ⎧=⎪⎪
⎨⎪=+⎪⎩(t 为参数),若以直角坐标系xOy
的O 点为极点,Ox 为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为
2cos()4
π
ρθ=-.直线l 与曲线C 交于,A B 两点,求AB .
【结束】
23.【题文】[选修4 - 5:不等式选讲](本小题满分10分)
设2
()13f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+. 【答案】1()21+-=-+- x a x a a 21≤-+-x a a 1212(1)
<++=+a a .
【结束】
24.【题文】在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是34,甲、丙二人都回答错的概率是1
12
,乙、丙二人都回答对的概率是
4
1
. (Ⅰ)求乙、丙二人各自回答对这道题的概率;
(Ⅱ)设乙、丙二人中回答对该题的人数为X ,求X 的分布列和数学期望.
【结束】 25.【题文】
已知数集},,,{21n a a a A ⋅⋅⋅=,其中n a a a <⋅⋅⋅<<≤210,且3≥n ,若对j
i ,∀
(n j i ≤≤≤1),i j a a +与i j a a -两数中至少有一个属于A ,则称数集A 具有性质P . (Ⅰ)分别判断数集}3,1,0{与数集}6,4,2,0{是否具有性质P ,说明理由;
(Ⅱ)已知数集{}821a a a A ,,, =具有性质P ,判断数列821a a a ,,, 是否为等差数列,若是等差数列,请证明;若不是,请说明理由.
所以该数集具有性质P . 4分
21。

相关文档
最新文档