江苏省扬州中学2015届高三1月月考数学试题
江苏省扬州中学2015届高三8月开学考试 数学试题

江苏省扬州中学2015届高三8月开学考试 数学试题一、填空题:(每小题5分,共14题,总分70分)1.]2,0[,sin 3)(π∈=x x x f 的单调减区间为2.若复数z=1+ai (i 是虚数单位)的模不大于2,则实数a 的取值范围是3.若方程0102ln =-+x x 的解为0x ,则大于0x 的最小整数是4.设A 、B 是非空集合,定义}|{B A x B A x x B A ∉∈=⨯且. 已知{}22|x x y x A -==,{}0,2|>==x y y B x ,则=⨯B A5.将函数)32sin(π+=x y 的图象上的所有点向右平移6π个单位,再将图象上所有点的横坐标变为原来的21倍(纵坐标不变),则所得的图象的函数解析式为6.下列说法中,正确的有 .(写出所有正确命题的序号).①若f '(x 0)=0,则f (x 0)为f (x )的极值点; ②在闭区间[a ,b ]上,极大值中最大的就是最大值;③若f (x )的极大值为f (x 1),f (x )的极小值为f (x 2),则f (x 1)>f (x 2); ④有的函数有可能有两个最小值;⑤已知函数xe xf =)(,对于)(x f 定义域内的任意一个1x 都存在唯一个1)()(,212=x f x f x 使成立.7.设向量a ,b 的夹角为θ,a =(2,1),a +3b =(5,4),则sin θ=8.若一次函数()f x 满足[()]1f f x x =+,则2()()(0)f x g x x x=>的值域为9.设函数x x x f sin 1)(-=在0x x =处取极值,则)2cos 1)(1(020x x ++=10.在ABC ∆中,角A,B,C 的对边分别为a,b,c ,已知sin sin sin sin cos 21A B B C B ++=。
若23C π=,则ab=11.函数y=sinx 与y=cosx 在]2,0[π内的交点为P ,在点P 处两函数的切线与x 轴所围成的三角形的面积为12.已知ABC ∆是边长为4的正三角形,D 、P 是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为13.设)(x f 是定义在R 上的奇函数,且当2)(,0x x f x =≥时,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是14.已知函数2()(,),f x x bx c b c R =++∈对任意的x R ∈,恒有'()f x ≤()f x .若对满足题设条件的任意b ,c ,不等式22()()()f c f b M c b -≤-恒成立,则M 的最小值为二、解答题:(共6小题,总分90分) 15.(本题14分)已知2(2sin(),3),(cos(),2cos ()),222a xb x x θθθ=+=++且0θπ≤≤,()3f x a b =⋅-,且()f x 为偶函数.(1)求θ; (2) 求满足()1f x =,[,]x ππ∈-的x 的集合.16.(本题14分)已知命题:p 指数函数()(26)xf x a =-在R 上单调递减,命题:q 关于x的方程23x ax -2210a ++=的两个实根均大于3.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.17.(本题14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知,a b c ≠,22cos -cos cos cos .A B A A B B =(1)求角C 的大小; (2)若4sin 5A =,求ABC ∆的面积.18.(本题16分)一走廊拐角处的横截面如图所示,已知内壁FG 和外壁BC 都是半径为1m 的四分之一圆弧,AB,DC 分别与圆弧BC 相切于B,C 两点,EF //AB,GH //CD,且两组平行墙壁间的走廊宽度都是1m.(1)若水平放置的木棒MN 的两个端点M ,N 分别在外壁CD 和AB 上,且木棒与内壁圆弧相切于点P,设CMN (rad ),θ∠=试用θ表示木棒MN 的长度f ();θ(2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值。
江苏省扬州中学2022-2023学年高三上学期1月月考(期末)数学试题 附答案

江苏省扬州中学2022-2023学年度1月月考试题 高三数学 2023.01试卷满分:150分, 考试时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.已知复数3i z =(i 为虚数单位),则22z z-的共轭复数的模是( )A .1B .3C .5D .72.已知集合(){}{}ln 12,Z 3sin A x x B y y x =+<=∈=,则A B =( )A .{}0,1,2,3B .{}0,3C .{}3D .∅3.设123,,a a a ∈R ,则“123,,a a a 成等比数列”是“()()()2222212231223a a a a a a a a ++=+”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.某中学全体学生参加了数学竞赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,每组数据以组中值(组中值=(区间上限+区间下限)/2)计算),下列说法正确的是( )A .直方图中x 的值为0.035B .在被抽取的学生中,成绩在区间[)70,80的学生数为30人C .估计全校学生的平均成绩为83分D .估计全校学生成绩的样本数据的80%分位数约为95分5.已知π0,2α⎛⎫∈ ⎪⎝⎭,且tan 32πcos 4αα⎛⎫+= ⎪⎝⎭,则sin 2α=( )A .13- B .16 C .13 D .236.在平面直角坐标系xOv 中,M 为双曲线224x y -=右支上的一个动点,若点M 到直线20x y -+=的距离大于m 恒成立,则实数m 的最大值为( )A. 1B. 2C. 2D. 227.如图是一个由三根细棒PA 、PB 、PC 组成的支架,三根细棒PA 、PB 、PC 两两所成的角都为60︒,一个半径为1的小球放在支架上,则球心O 到点P 的距离是( )A .32 B .2 C .3 D .28.已知函数()f x 及其导函数()f x '的定义域均为R ,且()52f x +是偶函数,记()()g x f x '=,()1g x +也是偶函数,则()2022f '的值为( )A .-2B .-1C .0D .2二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.) 9.如图,在正方体1111ABCD A B C D -中,E 为1AA 的中点,则( ) A .11//A D 平面BEC B .1AB ⊥平面BECC .平面11AA B B ⊥平面BECD .直线1DD 与平面BEC 所成角的余弦值为5510.已知函数()()2πsin 02f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的一条对称轴为π3x =,则( )A .()f x 的最小正周期为πB .()104f =C .()f x 在π2π,33⎛⎫⎪⎝⎭上单调递增 D .π6x f x ⎛⎫≥- ⎪⎝⎭11.已知数列{}n a 中,12a =,()21212n n a a +=++-,则关于数列{}n a 的说法正确的是( )A .25a =B .数列{}n a 为递增数列C .221n a n n =+- D .数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和小于3412.已知函数()sin f x x =,()()0g x kx k =>,若()f x 与()g x 图象的公共点个数为n ,且这些公共点的横坐标从小到大依次为1x ,2x ,…,n x ,则下列说法正确的有( )A .若1n =,则1k >B .若3n =,则33321sin 2x x x =+ C .若4n =,则1423x x x x +<+ D .若22023k π=,则2024n =三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知52212x ax ⎛⎫+ ⎪⎝⎭展开式中的各项系数和为243,则其展开式中含2x 项的系数为_____.14.已知()()2,1,3,a b a b a ==--⊥,则a 与b 的夹角为__________.15.已知()()12,0,,0F c F c -为椭圆2222:1x y C a b+=的两个焦点,P 为椭圆C 上一点(P 不在y轴上),12PF F △的重心为G ,内心为M ,且12//GM F F ,则椭圆C 的离心率为___________.16.对于函数()f x 和()g x ,设{|()0}x f x α∈=,{|()0}x g x β∈=,若存在α、β,使得||1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数1()e 2-=+-x f x x 与2()3g x x ax a =--+互为“零点相邻函数”,则实数a 的取值范围为______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式; (2)若数列{}n a 为等比数列,求1a .18.记锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A CB A C+=+.(1)求B ;(2)求()2a c ab -的取值范围.19.密室逃脱可以因不同的设计思路衍生出不同的主题,从古墓科考到蛮荒探险,从窃取密电到逃脱监笼,玩家可以选择自己喜好的主题场景在规定时间内完成任务,获取奖励.李华参加了一次密室逃脱游戏,他选择了其中一种模式,该游戏共有三关,分别记为A ,B ,C ,他们通过三关的概率依次为:211,,323.若其中某一关不通过,则游戏停止,游戏不通过.只有依次通过A ,B ,C 三道关卡才能顺利通关整个游戏,并拿到最终奖励.现已知参加一次游戏的报名费为150元,最终奖励为400元.为了吸引更多的玩家来挑战该游戏,商家推出了一项补救活动,可以在闯关前付费购买通关币.游戏中,若某关卡不通过,则自动使用一枚通关币通过该关卡进入下一关.购买一枚通关币需另付100元,游戏结束后,剩余的未使用的通关币半价回收.(1)若李华同学购买了一枚通关币,求他通过该游戏的概率. (2)若李华同学购买了两枚通关币,求他最终获得的收益期望值.(收益等于所得奖励减去报名费与购买通关币所需费用).20.图1是直角梯形ABCD ,AB CD ,90D ∠=,2AB =,3DC =,3AD =,2CE ED =,以BE 为折痕将BCE 折起,使点C 到达1C 的位置,且16AC =,如图2. (1)求点D 到平面1BC E 的距离;(2)若113DP DC =,求二面角P BE A --的大小.21.已知点()1,2Q 是焦点为F 的抛物线C :()220y px p =>上一点. (1)求抛物线C 的方程;(2)设点P 是该抛物线上一动点,点M ,N 是该抛物线准线上两个不同的点,且PMN 的内切圆方程为221x y +=,求PMN 面积的最小值.22.已知函数()ln f x x ax a =-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)若()f x 在(]0,1上的最大值为0, ①求a 的取值范围;①若2()31f x kx ax ≤-+恒成立,求正整数k 的最小值.参考答案: 1.C 【详解】因为3i i z ==-,所以22212i 112i i z z -=+=+=+-,所以22z z -的共轭复数为12i -,12i 5-=,所以22z z-52.A 【详解】由()ln 12x +<,可得201e x <+<,则{}21e 1A x x =-<<-∣ 又{}{}Z 3sin 3,2,1,0,1,2,3B y y x =∈==---,所以{}0,1,2,3A B =.3.A 【详解】①若123,,a a a 成等比数列,则2213a a a =⋅,所以()()22221223a a a a ++()()22113133a a a a a a =+⋅⋅+()()113133a a a a a a ⎡⎤⎡⎤=++⎣⎦⎣⎦()21313a a a a =+()22132a a a =+()2132a a a ⎡⎤=+⎣⎦()21223a a a a =+;①若1230a a a ===,满足()()()2222212231223a a a a a a a a ++=+,但是不满足123,,a a a 成等比数列(因为等比数列中不能含有0)“123,,a a a 成等比数列”是“()()()2222212231223a a a a a a a a ++=+”的充分不必要条件, 4.D 【详解】对于A :根据学生的成绩都在50分到100分之间的频率和为1,可得10⨯(0.005+0.01+0.015+x +0.040)=1,解得x =0.03,故A 错误;对于B :在被抽取的学生中,成绩在区间[)70,80的学生数为10⨯0.015⨯400=60人, 故B 错误;对于C :估计全校学生的平均成绩为55⨯0.05+65⨯0.1+75⨯0.15+85⨯0.3+95⨯0.4=84分; 故C 错误.对于D :全校学生成绩的样本数据的80%分位数约为0.29010950.4+⨯=分. 故D 正确.5.D 【详解】设π4αβ+=,π3π,44β⎛⎫∈ ⎪⎝⎭,则π4αβ=-,tan 32πcos 4αα⎛⎫+= ⎪⎝⎭, 即πtan 3cos 23sin 22βββ⎛⎫=-= ⎪⎝⎭,sin 6sin cos cos ββββ=,sin 0β≠, 故21cos 6β=,22sin 2sin 2cos 212cos 23παβββ⎛⎫=-=-=-= ⎪⎝⎭.6.B 【详解】由点M 到直线20x y -+=的距离大于m 恒成立,可得点M 到直线20x y -+=的最近距离大于m .因为双曲线的渐近线为y x =,则y x =与20x y -+=的距离222d ==即为最近距离,则2m ≤,即max 2m =.7.C 【详解】如图所示,连接,,AB AC BC ,作ABC 所在外接圆圆心1O ,连接1,AO AO ,设PA x =,由PA 、PB 、PC 两两所成的角都为60︒可得AB AC BC x ===,因为1O 为ABC 几何中心,所以132332333AO AB AB x =⋅⋅==,易知对1PAO △和POA ,1,90P P PO A PAO ∠=∠∠=∠=︒,所以1PAO POA △≌△,所以1PA PO AO AO =,即133xPOx =,解得3PO =.故选:C8.C 【详解】因为()52f x +是偶函数,所以(52)(52)f x f x -+=+ ,两边求导得5(52)5(52)f x f x ''--+=+ ,即(52)(52)f x f x ''--+=+,所以(52(52)g x g x +=--+),即()(4)g x g x =--+, 令2x = 可得(2)(2)g g =- ,即(2)0=g , 因为()1g x +为偶函数,所以(1)(1)g x g x +=-+ ,即()(2)g x g x =-+ , 所以(4)(2)g x g x --+=-+ ,即()(2)g x g x =-+ ,(4)(2)()g x g x g x ∴+=-+= ,所以4是函数()g x 的一个周期, 所以(2022)(2022)(50542)(2)0f g g g '==⨯+==, 9.ACD10.ABD 【详解】因为函数21cos(22)11()sin ()cos(22)222x f x x x ϕϕϕ-+=+==-++, 因为函数()()2πsin 02f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的一条对称轴为3x π=,所以π22π,()3k k ϕ⨯+=∈Z ,解得:ππ,()23k k ϕ=-∈Z , 又因为π02ϕ<<,所以π1,6k ϕ==,则1π1()cos(2)232f x x =-++,对于A ,函数()f x 的最小正周期πT =,故选项A 正确;对于B ,1111(0)2224f =-⨯+=,故选项B 正确;对于C ,因为π2π33x <<,所以π5ππ<2+33x <,因为函数cos y t =-在5π(π,)3上单调递减,故选项C 错误;对于D ,因为π11()cos 2622f x x -=-+,令π11()()cos 2622g x x f x x x =--=+-,当0x ≥时,11()cos 222g x x x =+-,则()1sin 20g x x ='-≥,所以()g x 在[0,)+∞上单调递增,则()(0)0g x g ≥=,也即π()6x f x ≥-,当0x <时,11()cos 222g x x x =-+-,则()1sin 20g x x ='--≤,所以()g x 在(,0)-∞上单调递减,则()(0)0g x g ≥=,也即π()6x f x -≥-,综上可知:6x f x π⎛⎫≥- ⎪⎝⎭恒成立,故选项D 正确,11.BCD 【详解】由)21212n n a a +=+-,得()21221n n a a ++=+1221n n a a +++,又12a =122a +所以{}2n a +是以2为首项,1为公差的等差数列,22(1)11n a n n ++-⨯=+,即221n a n n =+-, 所以27a =,故A 错误,C 正确;()212n a n =+-,所以{}n a 为递增数列,故B 正确;()211111112222n a n n n n n n ⎛⎫===- ⎪++++⎝⎭, 所以数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和为11111111111...232435112n n n n ⎛⎫-+-+-++-+- ⎪-++⎝⎭ 1111311131221242124n n n n ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭,故D 正确. 12.BCD 【详解】对于A :当1k =时,令sin y x x =-,则cos 10y x =-≤,即函数sin y x x =-有且仅有一个零点为0,同理易知函数sin y x x =--有且仅有一个零点为0,即()f x 与()g x 也恰有一个公共点,故A 错误; 对于B :当3n =时,如下图:易知在3x x =,且()3,2x ππ∈,()f x 与()g x 图象相切,由当(),2x ∈ππ时,()sin f x x =-,则()cos f x x '=-,()g x k '=,故333cos sin k x x kx =-⎧⎨-=⎩,从而33tan x x =,所以()222333332333333cos 1tan 1tan 112tan tan tan cos tan sin 2x x x x x x x x x x x +++=+===,故B 正确; 对于C :当4n =时,如下图:则10x =,42x ππ<<,所以142x x π+<,又()f x 图象关于x π=对称,结合图象有32x x ππ->-,即有32142x x x x π+>>+,故C 正确;对于D :当22023k π=时,由20232023()122f g ππ⎛⎫== ⎪⎝⎭,()f x 与()g x 的图象在y 轴右侧的前1012个周期中,每个周期均有2个公共点,共有2024个公共点,故D 正确.13.80 14. π415.12【详解】设()()000,0P x y x ≠,由于G 是12PF F △的重心,由重心坐标公式可得00,33x y G ⎛⎫⎪⎝⎭,由于12//GM F F ,所以M 的纵坐标为03M y y =,由于M 是12PF F △的内心,所以12PF F △内切圆的半径为03y r =,由椭圆定义得12212,2PF PF a F F c +==, ()2121210120122111223PF F MF F MF P MPF y SSSSF F y F F PF F P =++⇒⋅=++, ()001222232y c y a c a c e =+⇒=⇒= 16.23a ≤<【详解】因为(1)0f =,且函数1()e 2-=+-x f x x 为单调递增函数,所以1为函数1()e 2-=+-x f x x 的唯一零点, 设函数2()3g x x ax a =--+的零点为b ,又因为函数1()e 2-=+-x f x x 与2()3g x x ax a =--+互为“零点相邻函数”, 所以|1|1b -<,解得02b <<,所以函数2()3g x x ax a =--+在(0,2)上有零点,所以(0)(2)0g g ⋅<或()2022Δ430a a a ⎧<<⎪⎨⎪=--+=⎩或()()()2022Δ4300020a a a g g ⎧<<⎪⎪⎪=--+>⎨⎪>⎪>⎪⎩, 即733a <<或2a =或23a <<,所以23a ≤<. 17.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+()()()212212121211n n --=⋅-+⋅-++⨯-+211=-+=-.(2)设数列{}n a 的公比为q ,因为()121n n n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.18.【详解】(1)因为sin sin tan cos cos A C B A C +=+,即sin sin sin cos cos cos B A CB A C+=+,所以sin cos sin cos cos sin cos sin B A B C B A B C +=+,即sin cos cos sin cos sin sin cos B A B A B C B C -=-,所以sin()sin()B A C B -=-,因为0πA <<,0πB <<,所以ππB A -<-<,同理得ππC B -<-<, 所以B A C B -=-或()()πB A C B -+-=±(不成立), 所以2B A C =+,结合πA B C ++=得π3B =.(2)由余弦定理2221cos 22a c b B ac+-==得,222ac a c b =+-,所以222ac a c b -=-,则2222222()1a c a ac a c b c b b b b ---⎛⎫===- ⎪⎝⎭, 由正弦定理得,sin 23sin sin 3cC C bB ==, 因为π3B =,2π3A C +=,π02A <<,π02C <<,所以ππ62C <<,1sin 12C <<,所以32333c b ⎛⎫∈ ⎪ ⎪⎝⎭,,2()2133a c a b -⎛⎫∈- ⎪⎝⎭,. 19.【详解】(1)由题意可知:这一枚通关币的使用情况有四种: ①在第一关使用;①在第二关使用;①在第三关使用;①没有使用.而通过三关的概率依次为:211,,323,则李华通过该游戏的概率11121121221113233233233232P =⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)购买两枚通关币的费用为200元,报名费为150元,则收益可能为:1400(150200100)150x =-+-=(未使用通关币过关), 2400(15020050)100x =-+-=(使用1枚通关币且过关), 3400(15020050)x =-+=(使用2枚通关币且过关), 4(150200350)x =-+=-(使用2枚通关币且未过关),则12111(150)3239p x ==⨯⨯=2117(100)2918p x ==-=31111122127(50)32332332318p x ==⨯⨯+⨯⨯+⨯⨯=41121(350)3239p x =-=⨯⨯=则17()150100918E x =⨯+⨯13255035018997+⨯-⨯=. 所以他最终获得的收益期望值是3259元.20【详解】(1)解:如图所示: 连接AC ,交BE 于F ,因为90D ∠=,2AB =,3DC =,3AD =,2CE ED =,所以AE =2,又AB CD ,所以四边形ABCE 是菱形, 所以AC BE ⊥,在ACD 中,2223AC AD CD =+=,所以3AF CF ==,又16AC =,则2221AC AF CF =+, 所以1C F AF ⊥,又AF BE F ⋂=, 所以1C F ⊥平面ABED ,设点D 到平面1BC E 的距离为h ,因为1113233,13222C BE DBESS =⨯⨯==⨯⨯=,且11C DBE D C BE V V --=, 所以111133C BE DBE h S C F S ⨯⨯=⨯⨯,解得32h =;(2)由(1)建立如图所示空间直角坐标系:则()()()()133,,0,0,0,3,0,1,0,0,1,0,3,0,022D C B E A ⎛⎫-- ⎪ ⎪⎝⎭, 所以()()3,1,0,0,2,0BA BE =-=-,因为113DP DC =,所以133,2,3133BP BD BD DP DC ⎛⎫=++=- ⎪ ⎪=⎝⎭, 设平面BEP 的一个法向量为(),,m x y z =, 则00m BE m BP ⎧⋅=⎪⎨⋅=⎪⎩,即20332033y x y z -=⎧⎪⎨-+=⎪⎩, 令1x =,得()1,0,1m =-,易知平面BEA 的一个法向量为()0,0,1n =, 所以2cos ,2m n m n m n⋅==-⋅,则3,4m n π=, 易知二面角P BE A --的平面角是锐角, 所以二面角P BE A --的大小为4π. 21.【详解】(1)因为点()1,2Q 是抛物线C :()220y px p =>上一点, 所以42p =,解得:2p =, 所以24y x =.(2)设点()00,P x y ,点()1,M m -,点()1,N n -,直线PM 方程为:()0011y my m x x --=++,化简得()()()()0000110y m x x y y m m x --++-++=.PMN 的内切圆方程为221x y +=,∴圆心()0,0到直线PM 的距离为1,即()()()002200111y m m x y m x -++=-++.故()()()()()()222220000001211y m x y m m y m x m x -++=-+-+++.易知01x >,上式化简得,()()20001210x m y m x -+-+=.同理有()()20001210x n y n x -+-+=,∴m ,n 是关于t 的方程()()20001210x t y t x -+-+=的两根.∴0021y m n x -+=-,()0011x mn x -+=-.∴()()()()222200200414411x y MN m n m n mnx x +=-=+-=+--.2004y x =,∴()20000220004116412(1)1(1)x x x x MN x x x ++-=+---点(00,P x y 到直线=1x -的距离为01d x =+,所以PMN 面积为()())()()()22200000022004114111212211xx x x x S MN d xx x +-++-=⋅=⨯+=-- 令()010x t t -=>,则()()22222444640161032tt t tS t t t t t++++==++++ 因为2222161628t t t t +≥⋅,4040101040t t t t+≥⋅=, 当且仅当2t =取等,所以840325S ≥++= 故PMN 面积的最小值为4522.【详解】(1)()'1f x a x =- ,若0a ≤ ,则有()'0f x > ,()f x 单调递增;若0a > ,()'11a x a f x a x x⎛⎫- ⎪⎝⎭=-= ,当10x a<< 时,()'0f x > ,()f x 单调递增, 当1x a > 时,()'0f x < ,()f x 单调递减;(2)①由(1)的讨论可知,当0a ≤ 时,()f x 单调递增,在(]0,1x ∈ ,()()max 10f x f == ,满足题意; 当11a≥ 时,在(]0,1x ∈ ,()()max 10f x f ==,满足题意; 当101a << 时,即1a >,在(]0,1x ∈,()max 11ln 1ln 1f x f a a a a a ⎛⎫==-+=-- ⎪⎝⎭, 令()ln 1g x x x =-- ,则()'111x g x x x-=-= ,当1x >时,()'g x >0 ,()g x 单调递增, ()()10g x g ∴=> ,即ln 10a a --> ,不满足题意; 综上,a 的取值范围是1a ≤ ;①由题意,1k ≥ ,2ln 31x ax a kx ax -+≤-+ ,即()2ln 121kx x a x -+≥+ ,考虑直线()21y a x =+ 的极端情况a =1,则2ln 2kx x x ≥+ ,即2ln 2x x k x +≥ ,令()2ln 2x x h x x += ,()'3122ln x x h x x --= ,显然()122ln k x x x =-- 是减函数, 333222471033e e e k ⎛⎫== ,44302e e k = ,①存在唯一的0432e ex ⎛⎫∈ 使得()'00h x = ,当0x x > 时,()'h x <0 ,当0x x < 时,()'h x >0 ,00122ln 0x x --= ,()()002max 012x h x h x x +== ,()max 432e e h h x h ⎛⎫∴<< , 即()max 24h x << ,故k 的最小值可能是3或4,验算23ln 20x x x --≥ , 由于ln 1≤-x x ,223ln 2331x x x x x ∴--≥-+ ,23340∆=-⨯< , 223ln 23310x x x x x ∴--≥-+> ,满足题意; 综上,a 的取值范围是1a ≤ ,k 的最小值是3.。
江苏省扬州中学高三数学月考试卷 解析版

江苏省扬州中学高三数学月考试卷数 学(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1. 已知集合M ={x |x <1},N ={x |lg(2x +1)>0},则M ∩N = .(0,1)2. 复数z =a +i 1-i 为纯虚数,则实数a 的值为 .13. 不等式|x +1|·(2x ―1)≥0的解集为 . {x |x =―1或x ≥12}4. 函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的 条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写). 充要5. m 为任意实数时,直线(m -1)x +(2m -1)y =m -5必过定点_________.(9,-4)6. 向量a =(1,2)、b =(-3,2),若(k a +b )∥(a -3b ),则实数k =_________.由题意知,a 与b 不共线,故k ∶1=1∶(-3),∴k =-137. 关于x 的方程cos 2x +4sin x -a =0有解,则实数a 的取值范围是 .[-4,4]8. 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.4解:x +2y =8-x ·(2y )≥8-⎝⎛⎭⎫x +2y 22,整理得(x +2y )2+4(x +2y )-32≥0,即(x +2y -4) (x+2y +8)≥0.又x +2y >0,∴x +2y ≥4.9. 已知点x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________.(-∞,3]10. 已知△ABC 是等边三角形,有一点D 满足→AB +12·→AC =→AD ,且|→CD |=3,那么→DA ·→DC= . 311. 若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是_________.[12,+∞)解:f '(x )=2mx +1x -2≥0对x >0恒成立,2mx 2+1-2x ≥0∴2m ≥2x -1x 2=-1x 2+2x ,令t=1x >0∴2m ≥-t 2+2t ,∵()-t 2+2t max =1,∴2m ≥1,∴m ≥12. 12. 已知函数f (x )=⎩⎨⎧-x 2+ax (x ≤1)2ax -5(x >1),若∃x 1, x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 . (-∞,4)13. 将y =sin2x 的图像向右平移φ单位(φ>0),使得平移后的图像仍过点⎝⎛⎭⎫π3,32,则φ的2015.10最小值为_______.解法一:点代入y =sin(2x -2φ)∴sin(2π3-2φ)=32∴-2φ+2π3=2k π+π3或-2φ+2π3=2k π+2π3∴φ=-k π+π6或φ=-k π∴φ的最小值为π6. 解法二:结合函数y =sin2x 的图形.14. 已知函数f (x )满足f (x )=f (1x ),当x ∈[1,3]时,f (x )=ln x ,若在区间[13,3]内,函数g (x )=f (x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是 .⎣⎡ln33,⎭⎫1e 二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知直线1:(2)(3)50l m x m y +++-=和2:6(21)5l x m y +-=. 问:m 为何值时,有:(1)12l l ;(2)12l l ⊥. 解:(1)∵12l l ,∴(2)(21)618m m m +-=+,得4m =或52m =-; 当m =4时,l 1:6x +7y -5=0,l 2:6x +7y =5,即l 1与l 2重合,故舍去.当25-=m 时,1211:50,:665,22l x y l x y -+-=-=即12l l∴当25-=m 时,12l l .………7分(2)由6(2)(3)(21)0m m m +++-=得1m =-或92m =-;∴当1m =-或92m =-时,12l l ⊥.………14分16. (本小题满分14分)已知函数f (x )=sin(ωx +φ) (ω>0,0<φ<π),其图像经过点M ⎝⎛⎭⎫π3,12,且与x 轴两个相邻的交点的距离为π. (1)求f (x )的解析式;(2)在△ABC 中,a =13,f (A )=35,f (B )=513,求△ABC 的面积.解:(1)依题意知,T =2π,∴ω=1,∴f (x )=sin(x +φ)∵f (π3)=sin(π3+φ)=12,且0<φ<π ∴π3<π3+φ<4π3 ∴π3+φ=5π6 即φ=π2∴f (x )=sin ⎝⎛⎭⎫x +π2=cos x . ………6分(2)∵f (A )=cos A =35,f (B )=cos B =513, ∴A ,B ∈(0,π2)∴sin A =45,sin B =1213 ………8分∴sin C =sin(A +B )=sin A cos B +cos A sin B =5665………10分∵在△ABC 中a sin A =bsin B ∴b =15. ………12分∴S △ABC =12ab sin C =12×13×15×5665=84. ………14分17. (本小题满分15分)已知|a |=3,|b |=2,a 与b 的夹角为120º,当k 为何值时, (1)k a -b 与a -k b 垂直;(2)|k a -2b |取得最小值?并求出最小值.解:(1)∵k a -b 与a -k b 垂直,∴(k a -b )·(a -k b )=0.∴k a 2-k 2a ·b -b ·a +k b 2=0.∴9k -(k 2+1)×3×2·cos120°+4k =0.∴3k 2+13k +3=0.∴k =-13±1336. ………7分(2)∵|k a -2b |2=k 2a 2-4k a ·b +4b 2=9k 2-4k ×3×2·cos120°+4×4 =9k 2+12k +16=(3k +2)2+12.∴当k =-23时,|k a -2b |取得最小值为23. ………15分18. (本小题满分15分)如图①,一条宽为1km 的两平行河岸有村庄A 和供电站C ,村庄B 与A 、C 的直线距离都是2km ,BC 与河岸垂直,垂足为D .现要修建电缆,从供电站C 向村庄A 、B 供电.修建地下电缆、水下电缆的费用分别是2万元/km 、4万元/km .(1)已知村庄A 与B 原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km .现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.(2)如图②,点E 在线段AD 上,且铺设电缆的线路为CE 、EA 、EB .若∠DCE =θ(0≤θ≤ π3),试用θ表示出总施工费用y (万元)的解析式,并求y 的最小值.解:(1)由已知可得△ABC 为等边三角形,∵AD ⊥CD ,∴水下电缆的最短线路为CD .过D 作DE ⊥AB 于E ,可知地下电缆的最短线路为DE 、AB . ………3分又CD =1,DE =32,AB =2,故该方案的总费用为1×4+32×2+2×0.5=5+ 3 (万元). …………6分(2)∵∠DCE =θ (0≤θ≤ π3)∴CE =EB =1cos θ,ED =tan θ,AE =3-tan θ.则y =1cos θ×4+1cos θ×2+(3-tan θ)×2=2×3-sin θcos θ+2 3 ……9分 令f (θ)=3-sin θcos θ (0≤θ≤ π3)则f '(θ)=-cos 2θ-(3-sin θ)(-sin θ)cos 2θ=3sin θ-1cos 2θ,……11分∵0≤θ≤ π 3,∴0≤sin θ≤32,记sin θ0=13,θ0∈(0, π3)当0≤θ<θ0时,0≤sin θ<13,∴f '(θ)<0当θ0<θ≤ π 3时,13<sin θ≤32,∴f '(θ)>0∴f (θ)在[0,θ0)上单调递减,在(θ0, π3]上单调递增.……13分∴f (θ)min =f (θ0)=3-13223=22,从而y min =42+23,此时ED =tan θ0=24,答:施工总费用的最小值为(42+23)万元,其中ED =24. ……15分19. (本小题满分16分)已知a 为实数,函数f (x )=a ·ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取极值?证明你的结论; (2)若函数f (x )在[2, 3]上存在单调递增区间,求实数a 的取值范围;(3)设g (x )=2a ln x +x 2-5x -1+a x ,若存在x 0∈[1, e],使得f (x 0)<g (x 0)成立,求实数a的取值范围.解:(1)函数f (x )定义域为(0,+∞),f '(x )=ax +2x -4=2x 2-4x +a x假设存在实数a ,使f (x )在x =1处取极值,则f '(1)=0,∴a =2, ……2分此时,f '(x )=2(x -1)2x,∴当0<x <1时,f '(x )>0,f (x )递增;当x >1时,f '(x )>0,f (x )递增. ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取极值. ………4分(2)f '(x )=2x 2-4x +a x =2(x -1)2+a -2x,①当a ≥2时,∴f '(x )≥0,∴f (x )在(0,+∞)上递增,成立; ………6分②当a <2时,令f '(x )>0,则x >1+1-a 2或x <1-1-a2,∴f (x )在(1+1-a2,+∞)上递增,∵f (x )在[2, 3]上存在单调递增区间,∴1+1-a2<3,解得:6<a <2综上,a >-6. ………10分(3)在[1,e]上存在一点x 0,使得()()00f x g x <成立,即在[1,e]上存在一点0x ,使得()00h x <,即函数()1ln a h x x a x x+=+-在[1,e]上的最小值小于零.有22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==①当1a e +≥,即1a e ≥-时, ()h x 在[]1e ,上单调递减,所以()h x 的最小值为()h e ,由()10ah e e a e+=+-<可得211e a e +>-, 因为2111e e e +>--,所以211e a e +>-; ………12分 ②当11a +≤,即0a ≤时,()h x 在[]1e ,上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <-; ………14分③当11a e <+<,即01a e <<-时,可得()h x 最小值为()()12ln 1h a a a a +=+-+, 因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+-+> 此时不存在0x 使()00h x <成立.综上可得所求a 的范围是:211e a e +>-或2a <-. ………16分解法二:由题意得,存在x ∈[1, e],使得a (ln x -1x )>x +1x成立.令m (x )=ln x -1x ,∵m (x )在[1, e]上单调递增,且m (1)=-1<0, m (e)=1-1e >0故存在x 1∈(1,e),使得x ∈[1, x 1)时,m (x )<0;x ∈(x 1, e]时,m (x )>0 故存在x ∈[1, x 1)时,使得a <x 2+1x ln x -1成立,·························(☆)或存在x ∈(x 1, e]时,使得a >x 2+1x ln x -1成立,·························(☆☆) ………12分记函数F (x )=x 2+1x ln x -1,F(x )=(x 2-1)ln x -(x +1)2(x ln x -1)2当1<x ≤e 时,(x 2-1)ln x -(x +1)2=(x 2-1)·⎝⎛⎭⎪⎫ln x -x +1x -1 ∵G (x )=ln x -x +1x -1=ln x -2x -1-1递增,且G (e)=-2e -1<0∴当1<x ≤e 时,(x 2-1)ln x -(x +1)2<0,即F (x )<0∴F (x )在[1, x 1)上单调递减,在(x 1, e]上也是单调递减, ………14分 ∴由条件(☆)得:a <F (x )max =F (1)=-2 由条件(☆☆)得:a >F (x )min =F (e)=e 2+1e -1综上可得,a >e 2+1e -1或a <-2. ………16分20. (本小题满分16分)已知常数a >0,函数f (x )=13ax 3-4(1-a )x ,g (x )=ln(ax +1)-2xx +2.(1)讨论f (x )在(0,+∞)上的单调性;(2)若f (x )在⎝⎛⎭⎫-1a ,+∞上存在两个极值点x 1、x 2,且g (x 1)+g (x 2)>0,求实数a 的取值范围. 解:(1)由题意可知:f '(x )=ax 2-4(1-a )当a ≥1时,f '(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f '(x )=0得:x 1=2a (1-a )a (x 2=-2a (1-a )a <0舍去)当x ∈(0, x 1)时,f '(x )<0;当x ∈(x 1,+∞)时,f '(x )>0.故f (x )在区间(0, x 1)上单调递减,在区间(x 1,+∞)上单调递增. 综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增; 当0<a <1时,f (x )在区间(0,2a (1-a )a )上单调递减,在区间(2a (1-a )a,+∞)上单调递增. ………6分(2)由(1)知,当a ≥1时,f '(x )≥0,此时f (x )不存在极值点, 因而要使得f (x )有两个极值点,必有0<a <1.又∵f (x )的极值点只可能是x 1=2a (1-a )a 和x 2=-2a (1-a )a,由g (x )的定义可知,x >-1a 且x ≠-2,∴-2a (1-a )a >-1a 且2a (1-a )a x ≠2解得:0<a <12或12<a <1 【定义域在这里很重要】 ………8分此时,由(*)式易知,x 1, x 2分别是f (x )的极小值点和极大值点. 而g (x 1)+g (x 2)=ln(ax 1+1)(ax 2+1)-2x 1x 1+2-2x 2x 2+2=ln[a 2x 1x 2+a (x 1+x 2)+1]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2-22a -1-2………10分令x =2a -1,由0<a <12且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x<1 ,记h (x )=ln x 2+2x-2.①当-1<x <0时,h (x )=2ln(-x )+2x -2,设t =-x ∈(0,1),(t )=2ln t -2t-2单调递增 ∴(t )<(1)=-4<0∴h (x )<-4<0,故当0<a <12时,g (x 1)+g (x 2)<0,不合题意,舍去.②当0<x <1时,h (x )=2ln x +2x-2,∴h(x )=2x -2x 2=2x -2x2<0,∴h (x )在(0,1)上单调递减,∴h (x )>h (1)=0,故当12<a <1时,g (x 1)+g (x 2)>0.综上,a 的取值范围为⎝⎛⎭⎫12,1.………16分附加题(考试时间:30分钟 总分:40分)2015.1021.(选修4—2:矩阵与变换)(本小题满分10分)已知矩阵312221⎡⎤⎢⎥=⎢⎥⎣⎦A(1)求1-A ;(2)满足AX =1-A 二阶矩阵X解:(1) 12143A --⎡⎤=⎢⎥-⎣⎦………5分(2)852013X -⎡⎤=⎢⎥-⎣⎦………10分22.(选修4—4:坐标系与参数方程)(本小题满分10分)在极坐标系中,曲线C 的极坐标方程为ρ=2cos θ+2sin θ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =1+t ,y =3t(t 为参数),求直线l 被曲线C 所截得的弦长.解:曲线C 的直角坐标方程为x 2+y 2-2x -2y =0,圆心为(1,1),半径为2,(3分)直线的直角坐标方程为3x -y -3=0,(5分)所以圆心到直线的距离为d =||3-1-32=12,(8分) 所以弦长=22-14=7.(10分)23.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=AC =4,AA 1⊥平面ABC ; AB ⊥AC , (1)求二面角A 1-BC 1-B 1的余弦值; (2)在线段BC 1存在点D ,使得AD ⊥A 1B ,求BDBC 1的值. 解: (1)如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4), 设平面A 1BC 1的法向量为,,)x y z n =(,则11100A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩,令3z =,则0x =,4y =,所以(0,4,3)n =.1A 1B 1C ABC同理可得,平面BB 1C 1的法向量为(3,4,0)m =, 所以16cos 25⋅==n m n,m |n ||m |.由题知二面角A 1-BC 1-B 1为锐角, 所以二面角A 1-BC 1-B 1的余弦值为1625. ………5分 (2)设D (,,)x y z 是直线BC 1上一点,且1BD BC λ=. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=. 所以(4,33,4)AD λλλ=-.由1·0AD A B =,即9250λ-=.解得925λ=. 因为9[0,1]25∈,所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,1925BD BC λ==. ………10分 24.(本小题满分10分)(1)证明:①111r r r n n n C C C ++++=;②122212n nn n C C +++=(其中,,01,n r N r n *∈≤≤-);(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设21n +局,每局比赛甲获胜的概率均为12p p ⎛⎫>⎪⎝⎭,首先赢满1n +局者获胜(n N *∈). ①若2n =,求甲获胜的概率;②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大). 解:(1)①()()()()()()()()()111!1!!!()!1!(1)!1!()!1!1!11!r r n nr n n r n r n n C C r n r r n r r n r n C r n r +++++-⎡⎤⎣⎦+=+=-+--+-+==++-+……2分②由①1+122212121=+2n n n nn n n n C C C C +++++=……3分(2)①若2n =,甲获胜的概率()10156)1()1(2322242233+-=-+-+=p p p p p pC p p pC p P ……5分②证明:设乙每一局获胜的概率为q ,则210,1<<=+q q p . 记在甲最终获胜的概率为n P ,则()nn nn n n n n nn n nn n n n n n n n qC q Cq Cpq p pC q p pC q p pC p P 2221122211...1...++++=++++=++++++所以,()()()()()[]()()[()][][]()()()0122)()()(...)1()1()11(......1...1...11...1...1 (112111212111212211122211212211122211212211211221)3221211212231321211222131222211112221312222111122213122222111<-=-=-=+--=+--+-+++-++-+-=+++++++++-++++=++++--++++=++++-++++=-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++q C q p C qC q p C qC q p C qC C q p C q C C q C C C q C C q C C q p qC q C q C q q C q C q C qC q C q C p q C q C q C q qC q C q C p q C q C q C p q C q C q C p P P n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n所以1+<n n P P即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大). ………10分。
江苏省扬州中学2015-2016学年高一(上)10月月考数学试卷(解析版)

2015-2016学年江苏省扬州中学高一(上)10月月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a=.2.已知集合M+{x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=.3.函数f(x)=的定义域为.4.已知f(x)=2x2+bx+1是定义域在R上的偶函数,则b=.5.函数的值域为.6.已知函数f(x+1)=2x2﹣4x,则函数f(2)=.7.函数y=|x﹣a|的图象关于直线x=3对称.则a=.8.函数f(x)=的单调增区间为.9.函数f(x)=的最大值为.10.不等式(|x|﹣1)(x﹣2)>0的解集是.11.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是.12.设函数f(x)满足f(﹣x)=﹣f(x)(x∈R),且在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为.13.若定义在R上的函数对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,f(x)>1,若f(4)=5,则不等式f(3m﹣2)<3的解集为.14.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知集合A={|a+1|,3,5},B={2a+1,a2+2a,a2+2a﹣1},当A∩B={2,3}时,求A∪B.16.已知A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)如果A∩C≠∅,求a的取值范围.17.已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x(Ⅰ)求函数f(x)在R上的解析式;(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.18.已知二次函数f(x)=x2﹣mx+m﹣1(m∈R).(1)若函数在区间[3,+∞)上是单调增函数,求m的取值范围;(2)函数在区间[﹣1,1]上的最小值记为g(m),求g(m)的解析式.19.设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.20.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.2015-2016学年江苏省扬州中学高一(上)10月月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a=4.【考点】并集及其运算.【专题】集合.【分析】由已知中集合A={1,4},B={0,1,a},A∪B={0,1,4},可得:a∈A,再由集合元素的互异性,可得答案.【解答】解:∵集合A={1,4},B={0,1,a},A∪B={0,1,4},∴a∈A,即a=1,或a=4,由集合元素的互异性可得:a=1不满足条件,故a=4,故答案为:4【点评】本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.2.已知集合M+{x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1}.【考点】交集及其运算.【专题】集合.【分析】根据M与N,找出两集合的交集即可.【解答】解:∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},故答案为:{x|﹣1<x<1}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.函数f(x)=的定义域为(﹣∞,).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】要使函数有意义只要满足8﹣12x>0即可.【解答】解:要使函数有意义,须满足8﹣12x>0,解得x<,故函数f(x)的定义域为(﹣∞,),故答案为:(﹣∞,).【点评】本题考查函数的定义域及其求法,属基础题.4.已知f(x)=2x2+bx+1是定义域在R上的偶函数,则b=0.【考点】函数奇偶性的判断.【专题】计算题;函数的性质及应用.【分析】利用函数奇偶性的定义,f(x)是偶函数,可得f(﹣x)=f(x),代入解析式得到结果.【解答】解:由已知函数f(x)是偶函数,所以有f(﹣x)=f(x),即:(﹣x)2+b(﹣x)+1=x2+bx+1,即:2bx=0,因为x∈R时,此等式恒成立,所以,b=0故答案为:0.【点评】本题考查函数奇偶性,以及代数恒等式成立的问题.本题在得到2bx=0时,是对于x∈R等式都成立.基本知识的考查.5.函数的值域为.【考点】函数的值域.【专题】计算题.【分析】令t=,则t≥0,则y=t﹣t2,结合二次函数的性质即可求解【解答】解:令t=,则t≥0y=t﹣t2=∴函数的值域为(﹣]故答案为:(﹣]【点评】本题主要考查了换元法求解函数的值域,其中二次函数性质的应用是求解的关键6.已知函数f(x+1)=2x2﹣4x,则函数f(2)=﹣2.【考点】函数的值.【专题】函数的性质及应用.【分析】解法一:x+1=2,可得x=1,代入f(x+1)=2x2﹣4x,可得答案;解法二:利用配凑法,求出函数f(x)的解析式,代入x=2,可得答案;解法三:利用换元法,求出函数f(x)的解析式,代入x=2,可得答案;【解答】解法一:∵函数f(x)满足:f(x+1)=2x2﹣4x,令x+1=2,则x=1,f(2)=2×1﹣4×1=﹣2.解法二:∵函数f(x)满足:f(x+1)=2x2﹣4x=2x2+4x+2﹣8(x+1)+6=2(x+1)2﹣8(x+1)+6,∴f(x)=2x2﹣8x+6,f(2)=2×22﹣4×2+6=﹣2.解法三:∵函数f(x)满足:f(x+1)=x2﹣2x仅t=x+1,则x=t﹣1则f(t)=2(t﹣1)2﹣4(t﹣1)=2t2﹣8t+6∴f(x)=2x2﹣8x+6,f(2)=2×22﹣4×2+6=﹣2.故答案为:﹣2【点评】本题考查的知识点是函数的值,函数的解析式,熟练掌握求函数解析式的各种方法是解答的关键.7.函数y=|x﹣a|的图象关于直线x=3对称.则a=3.【考点】函数的图象与图象变化.【专题】计算题.【分析】由含绝对值符号函数对称性我们易得函数y=|x﹣a|的图象关于直线x=a对称,又由函数y=|x﹣a|的图象关于直线x=3对称,我们易得a的值.【解答】解:∵y=|x﹣a|的图象关于直线x=a对称,又∵y=|x﹣a|的图象关于直线x=3对称,故a=3;故答案:3.【点评】本题考查的知识点是含绝对值符号函数的对称性,熟练掌握是绝对值符号函数的对称性是解答本题的关键.8.函数f(x)=的单调增区间为[0,2].【考点】复合函数的单调性;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】根据复合函数的单调性之间的关系求函数的单调区间.【解答】解:设t=g(x)=﹣x2+4x,则y=在定义域上单调递增,由t=g(x)=﹣x2+4x≥0,解得x2﹣4x≤0,即0≤x≤4,又函数由t=g(x)=﹣x2+4x的对称轴为x=2,抛物线开口向下,∴函数t=g(x)=﹣x2+4x的单调增区间为[0,2],单调减区间为[2,4].∴函数f(x)=的单调增区间为[0,2].故答案为:[0,2].【点评】本题主要考查复合函数的单调性的判断和应用,注意要先求函数的定义域.9.函数f(x)=的最大值为.【考点】函数的最值及其几何意义.【专题】计算题.【分析】把解析式的分母进行配方,得出分母的范围,从而得到整个式子的范围,最大值得出.【解答】解:f(x)===,∵≥∴0<≤,∴f(x)的最大值为,故答案为.【点评】此题为求复合函数的最值,利用配方法,反比例函数或取倒数,用函数图象一目了然.10.不等式(|x|﹣1)(x﹣2)>0的解集是(﹣1,1)∪(2,+∞).【考点】其他不等式的解法.【专题】计算题.【分析】不等式(|x|﹣1)(x﹣2)>0可转化为或,根据“大于看两边,小于看中间”的原则,去掉绝对值符号,将问题转化为一个整式不等式组后,即可求了答案.【解答】解:∵(|x|﹣1)(x﹣2)>0∴或即或解得﹣1<x<1,或x>2∴不等式(|x|﹣1)(x﹣2)>0的解集是(﹣1,1)∪(2,+∞)故答案为:(﹣1,1)∪(2,+∞)【点评】本题考查的知识点是绝对值不等式的解法,其中根据“大于看两边,小于看中间”的原则,去掉绝对值符号,将原不等式转化为一个整式不等式,是解答本题的关键.11.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是{a|a>}.【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题.12.设函数f(x)满足f(﹣x)=﹣f(x)(x∈R),且在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为[﹣1,0)∪(0,1].【考点】抽象函数及其应用;函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】由f(﹣x)=﹣f(x),化简不等式得.再分x>0和x<0时两种情况加以讨论,利用函数的单调性和f(1)=0,分别解关于x的不等式得到x的取值范围.最后综合可得原不等式的解集.【解答】解:∵函数f(x)满足f(﹣x)=﹣f(x)(x∈R),∴f(x)﹣f(﹣x)=f(x)+f(x)=2f(x),因此,不等式等价于,化简得或,①当x>0时,由于在(0,+∞)上f(x)为增函数且f(1)=0,∴由不等式f(x)≤0=f(1),得0<x≤1;②当x<0时,﹣x>0,不等式f(x)≥0化成﹣f(x)≤0,即f(﹣x)≤0=f(1),解之得﹣x≤1,即﹣1≤x<0.综上所述,原不等式的解集为[﹣1,0)∪(0,1].故答案为:[﹣1,0)∪(0,1]【点评】本题给出函数的单调性和奇偶性,求解关于x的不等式.着重考查了函数的简单性质及其应用、不等式的解法等知识,属于中档题.13.若定义在R上的函数对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,f(x)>1,若f(4)=5,则不等式f(3m﹣2)<3的解集为(﹣∞,).【考点】抽象函数及其应用;函数单调性的性质.【专题】计算题;不等式的解法及应用.【分析】根据题意证出f(0)=1,进而证出F(x)=f(x)﹣1为奇函数.利用函数单调性的定义,结合题中的条件证出F(x)=f(x)﹣1是R上的增函数,因此y=f(x)也是R上的增函数.由f(4)=5代入题中等式算出f(2)=3,将原不等式转化为f(3m﹣2)<f(2),利用单调性即可求出原不等式的解集.【解答】解:由题意,可得令x1=x2=0,则f(0+0)=f(0)+f(0)﹣1,可得f(0)=1,令x1=﹣x,x2=x,则f[(﹣x)+x]=f(﹣x)+f(x)﹣1=1,∴化简得:[f(x)﹣1]+[f(﹣x)﹣1]=0,∴记F(x)=f(x)﹣1,可得F(﹣x)=﹣F(x),即F(x)为奇函数.任取x1,x2∈R,且x1>x2,则x1﹣x2>0,F(x1)﹣F(x2)=F(x1)+F(﹣x2)=[f(x1)﹣1]+[f(﹣x2)﹣1]=[f(x1)+f(﹣x2)﹣2]=[f(x1﹣x2)﹣1]=F(x1﹣x2)∵当x>0时f(x)>1,可得x>0时,F(x)=f(x)﹣1>0,∴由x1﹣x2>0,得F(x1﹣x2)>0,即F(x1)>F(x2).∴F(x)=f(x)﹣1是R上的增函数,因此函数y=f(x)也是R上的增函数.∵f(x1+x2)=f(x1)+f(x2)﹣1,且f(4)=5,∴f(4)=f(2)+f(2)﹣1=5,可得f(2)=3.因此,不等式f(3m﹣2)<3化为f(3m﹣2)<f(2),可得3m﹣2<2,解之得m,即原不等式的解集为(﹣∞,).【点评】本题给出抽象函数满足的条件,求解关于m的不等式.着重考查了函数的简单性质及其应用、不等式的解法等知识,属于中档题.14.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,2).【考点】特称命题.【专题】函数的性质及应用.【分析】若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则f(x)不是单调函数,结合二次函数和一次函数的图象和性质,分类讨论不同情况下函数的单调性,综合讨论结果可得答案.【解答】解:由题意得,即在定义域内,f(x)不是单调的.分情况讨论:(1)若x≤1时,f(x)=﹣x2+ax不是单调的,即对称轴在x=满足<1,解得:a<2(2)x≤1时,f(x)是单调的,此时a≥2,f(x)为单调递增.最大值为f(1)=a﹣1故当x>1时,f(x)=ax﹣1为单调递增,最小值为f(1)=a﹣1,因此f(x)在R上单调增,不符条件.综合得:a<2故实数a的取值范围是(﹣∞,2)故答案为:(﹣∞,2)【点评】本题考查的知识点是函数的性质及应用,其中根据已知分析出函数f(x)不是单调函数,是解答的关键.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知集合A={|a+1|,3,5},B={2a+1,a2+2a,a2+2a﹣1},当A∩B={2,3}时,求A∪B.【考点】并集及其运算;交集及其运算.【专题】计算题;集合.【分析】由题意推出|a+1|=2,求出a的值,验证A∩B={2,3},求出A,B,然后求出A∪B.【解答】解:由A∩B={2,3}可得,2∈A,∴|a+1|=2,a=1或a=﹣3…当a=1时,此时B中有相同元素,不符合题意,应舍去当a=﹣3时,此时B={﹣5,3,2},A={2,3,5},A∩B={3,2}符合题意,所以a=﹣3,A∪B={﹣5,2,3,5}.…【点评】本题是中档题,考查集合的基本运算,集合中参数的取值问题的处理方法,考查计算能力.16.已知A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)如果A∩C≠∅,求a的取值范围.【考点】交、并、补集的混合运算;集合的包含关系判断及应用;并集及其运算.【专题】计算题;数形结合.【分析】(1)要求A∪B,就是求属于A或属于B的元素即可;要求(C R A)∩B,首先要求集合A的补集,然后再求与集合B的交集,因为A={x|3≤x<7},所以C R A={x|x<3或x≥7},找出C R A与集合B的公共解集即可;(2)由条件A∩C≠φ,在数轴上表示出集合C的解集,因为A∩C≠φ,所以a>3即可.【解答】解:(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10};∵A={x|3≤x<7},∴C R A={x|x<3或x≥7}∴(C R A)∩B={x|x<3或x≥7}∩{x|2≤x<10}={x|2<x<3或7≤x<10}(2)如图,∴当a>3时,A∩C≠φ【点评】此题考查集合交、并、补的基本概念及混合运算的能力,数形结合的数学思想.17.已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x(Ⅰ)求函数f(x)在R上的解析式;(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(Ⅰ)根据函数奇偶性的对称性,即可求函数f(x)在R上的解析式;(Ⅱ)根据函数奇偶性和单调性的关系,利用数形结合即可求出a的取值范围.【解答】解:(Ⅰ)设x<0,则﹣x>0,f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x.又f(x)为奇函数,所以f(﹣x)=﹣f(x)且f(0)=0.于是x<0时f(x)=x2+2x.所以f(x)=.(Ⅱ)作出函数f(x)=的图象如图:则由图象可知函数的单调递增区间为[﹣1,1]要使f(x)在[﹣1,a﹣2]上单调递增,(画出图象得2分)结合f(x)的图象知,所以1<a≤3,故实数a的取值范围是(1,3].【点评】本题主要考查函数奇偶性和单调性的应用,利用二次函数图象和性质是解决本题的关键.18.已知二次函数f(x)=x2﹣mx+m﹣1(m∈R).(1)若函数在区间[3,+∞)上是单调增函数,求m的取值范围;(2)函数在区间[﹣1,1]上的最小值记为g(m),求g(m)的解析式.【考点】二次函数的性质;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)结合二次函数的图象和性质,分析对称轴和区间[3,+∞)的关系,可得m的取值范围;(2)用对称轴和区间[﹣1,1]的关系进行分类讨论,求出函数的最小值g(m).【解答】解:(1)f(x)=x2﹣mx+m﹣1=(x﹣)2﹣+m﹣1,对称轴为x=.若函数在区间[3,+∞)上是单调增函数,则≤3,解得:m≤6;(2)①若<﹣1,即m<﹣2,此时函数f(x)在区间[﹣1,1]上单调递增,所以最小值g(m)=f(﹣1)=2m.②若﹣1≤≤1,即﹣2≤m≤2,此时当x=时,函数f(x)最小,最小值g(m)=f()=﹣+m﹣1.③若>1,即m>2,此时函数f(x)在区间[﹣1,1]上单调递减,所以最小值g(m)=f(1)=0.综上g(m)=.【点评】本题主要考查了二次函数的图象和性质,综合性较强,要求熟练掌握二次函数性质和应用.19.设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】(1)讨论a=0时与a≠0时的奇偶性,然后定义定义进行证明即可;(2)讨论当a≤0和a>0时,求出函数f(x)=x|x﹣a|的表达式,即可求出在区间[0,1]上的最大值.【解答】解:(1)由题意可知函数f(x)的定义域为R.当a=0时f(x)=x|x﹣a|=x|x|,为奇函数.当a≠0时,f(x)=x|x﹣a|,f(1)=|1﹣a|,f(﹣1)=﹣|1+a|,f(﹣x)≠f(x)且f(﹣x)≠﹣f(x),∴此时函数f(x)为非奇非偶函数.(2)若a≤0,则函数f(x)=x|x﹣a|在0≤x≤1上为增函数,∴函数f(x)的最大值为f(1)=|1﹣a|=1﹣a,若a>0,由题意可得f(x)=,由于a>0且0≤x≤1,结合函数f(x)的图象可知,由,当,即a≥2时,f(x)在[0,1]上单调递增,∴f(x)的最大值为f(1)=a﹣1;当,即时,f(x)在[0,]上递增,在[,a]上递减,∴f(x)的最大值为f()=;当,即时,f(x)在[0,]上递增,在[,a]上递减,在[a,1]上递增,∴f(x)的最大值为f(1)=1﹣a.【点评】本题主要考查函数奇偶性的判断,以及分段函数的最值的求法,考查学生的运算能力.20.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.【考点】函数的最值及其几何意义;函数单调性的性质.【专题】计算题;综合题.【分析】(1)当a=﹣1时,函数表达式为f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是单调增函数,它的值域为(﹣∞,1),从而|f(x)|的取值范围是[0,+∞),因此不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)函数f(x)在x∈[1,4]上是以3为上界的有界函数,即﹣3≤f(x)≤3在[1,4]上恒成立,代入函数表达式并化简整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下来利用换元法结合二次函数在闭区间上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,实数a的取值范围是[﹣,﹣].【解答】解:(1)当a=﹣1时,函数f(x)=1+x﹣x2=﹣(x﹣)2+∴f(x)在(﹣∞,0)上是单调增函数,f(x)<f(0)=1∴f(x)在(﹣∞,0)上的值域为(﹣∞,1)因此|f(x)|的取值范围是[0,+∞)∴不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,则|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3∴﹣3≤ax2+x+1≤3∴≤a ≤,即﹣﹣≤a ≤﹣在[1,4]上恒成立,∴(﹣﹣)max ≤a ≤(﹣)min ,令t=,则t ∈[,1]设g (t )=﹣4t 2﹣t=﹣4(t+)2+,则当t=时,g (t )的最大值为﹣再设h (t )=2t 2﹣t=2(t ﹣)2﹣,则当t=时,h (t )的最小值为﹣∴(﹣﹣)max =﹣,(﹣)min =﹣所以,实数a 的取值范围是[﹣,﹣].【点评】本题以一个特定的二次函数在闭区间上有界的问题为例,考查了函数单调性的性质和二次函数在闭区间上值域等知识点,属于中档题.请同学们注意解题过程中变量分离和换元法求值域的思想,并学会运用.。
江苏省扬州中学2015届高三12月月考理科数学试题 Word版含答案(已解析)

江苏省扬州中学2014-2015学年第一学期质量检测高 三 数 学 [理] 2014.12 一、填空题:本大题共14小题,每小题5分,共计70分1.已知集合},2|{},1|{≤=->=x x B x x A 那么=⋃B A _________. 【答案】R【解析】由并集的运算律可得=⋃B A R ,故答案为R 故答案为:R【考点】集合的运算 【难度】12.函数)42cos(2)(π+-=x x f 的最小正周期为_________.【答案】π【解析】由正余弦函数的周期公式22|||2|T p p p w ===-,故答案为π 故答案为:π【考点】周期性和对称性 【难度】1 3.复数1z i =+,且)(1R a zai∈-是纯虚数,则实数a 的值为_________. 【答案】1【解析】因为复数1z i =+,1111=122ai ai a ai z i ---+=-+, 若为纯虚数,则实数a =1 故答案为:1【考点】复数综合运算 【难度】 14.已知双曲线)0(1322>=-m y m x 的一条渐近线方程为,21x y =则m 的值为_______.【答案】12【解析】双曲线)0(1322>=-m y m x 的一条渐近线方程为y x =?,其中一条为:,21x y =12=,解得m=12.故答案为:12. 故答案为:12【考点】双曲线 【难度】 25.在ABC ∆中,,2,105,4500===BC C A 则AC =________.【答案】1【解析】∵0045,105A C ==,∴030B =,∵BC ,∴由正弦定理sin sin BC ACA B=得:1sin 1sin 2BC BAC A==故答案为:1【考点】正弦定理 【难度】26.“N M >”是“N M 22log log >”成立的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”). 【答案】必要不充分条件【解析】∵当N M >时,不确定两个数字的正负, 不一定得到N M 22log log >,即前者不一定推出后者; 当N M 22log log >时,根据对数函数的单调性知有N M >, 即后者可以推出前者,∴“N M >”是“N M 22log log >”成立的必要不充分条件 故答案为:必要不充分条件 【考点】充分条件与必要条件 【难度】27.若n S 为等差数列}{n a 的前n 项和,,104,36139-=-=S S 则5a 与7a 的等比中项为_______. 【答案】24±【解析】解析:∵n S 为等差数列}{n a 的前n 项和,,104,36139-=-=S S 则由等比数列的性质可得57936,13104a a =-=-.解得 574,8a a =-=-, 则5a 与7a的等比中项为??24±故答案为:24± 【考点】等比数列【难度】28.若正四棱锥的底面边长为,22cm 体积为,83cm 则它的侧面积为_______. 【答案】224【解析】∵正四棱锥的底面边长为,22cm 体积为,83cm ∴设四棱锥的高为h,∴(2183h ?,∴3h =,=则此四棱椎的侧面积142S =创故答案为:224【考点】空间几何体的表面积与体积 【难度】29.在平面直角坐标系xoy 中,记不等式组⎪⎩⎪⎨⎧≥+-≤-+≥-06207203y x y x y 表示的平面区域为.D 若对数函数)1(log >=a x y a 的图像与D 有公共点,则a 的取值范围是__________.【答案】【解析】作出不等式组对应的平面区域如图:若a >1,当对数函数图象经过点A 时,满足条件,此时30270y x y ì-=ïí+-=ïî,解得23x y ì=ïí=ïî,即()2,3A ,此时log 23a =,解得a =∴当1a <?∴实数a 的取值范围是1a <?故答案为: 【考点】线性规划【难度】 210.已知)(x f 是定义在R 上的奇函数,且),()3(x f x f =+当)0,2(-∈x 时,,2)(x x f =则=++)2013()2014()2015(f f f _________.【答案】0【解析】∵),()3(x f x f =+∴f (x )的周期T=3;∴=++)2013()2014()2015(f f f f (671×3+2)+f (671×3+1)+f (671×3+0) =f (2)+f (1)+f (0)=f (﹣1)+f (1),又∵f (x )是定义在R 上的奇函数,∴f (﹣1)+f (1)=0, 故答案为:0【考点】函数综合 【难度】 311.在边长为1的正ABC ∆中,向量,x =,y =0,0>>y x ,且,1=+y x 则⋅的最大值为________.【答案】38-【解析】建立如图所示的平面直角坐标系,则点1,02A 骣琪-琪桫,1,02B 骣琪琪桫,C 骣琪琪桫; 设点()1,0D x ,()22,E x y ,∵,x =∴()11,01,02x x 骣琪-=-琪桫,∴112x x =-+;∵,y =∴221,,222x y y 骣骣琪琪-=--琪琪桫桫,∴212x y =-,2y y -;∴⋅=12212211,,22x x y x x y 骣骣骣琪琪琪-?=--琪琪琪桫桫桫=111222222x y y 骣骣琪琪琪-+?---琪琪琪桫桫桫 =()2111131222228x yxy x y 骣+琪++-W-=-琪桫, 当且仅当12x y ==时取“=”;故答案为:38-. 故答案为:38-【考点】平面向量坐标运算 【难度】 312.若在给定直线t x y +=上任取一点,P 从点P 向圆8)2(22=-+y x 引一条切线,切点为.Q 若存在定点,M 恒有,PQ PM =则t 的范围是_______.【答案】),6[]2,(+∞⋃--∞∈t【解析】设),,(),,(t x x P n m M +若恒有,PQ PM = 则有,8)2()()(2222--++=-++-t x x n t x m x即有R x t nt n m x n m ∈∀=++-+--+,0)442()422(22恒成立,∴,0442042222⎩⎨⎧=++-+=-+t nt n m n m 消去,m 得.0)42()2(2=+++-t n t n ∴0)42(4)2(2≥+-+=∆t t ,∴),6[]2,(+∞⋃--∞∈t . 故答案为:),6[]2,(+∞⋃--∞∈t 【考点】直线与圆的位置关系 【难度】313.已知数列}{n a ,}{n b 中,,1a a =}{n b 是公比为32的等比数列.记),(12*N n a a b n n n∈--=若不等式1+>n n a a 对一切*N n ∈恒成立,则实数a 的取值范围是________.【答案】2a > 【解析】∵),(12*N n a a b n n n ∈--=∴.12--=n n n b b a ∴1212111-----=-+++n n n n n n b b b b a a ,0)1)(321(31)1)(1(1111111<---=---=---=+++n n nn n n n n n b b b b b b b b b解得23>n b 或.10<<n b若23>n b ,则23)32(11>-n b 对一切正整数n 成立,显然不可能; 若,10<<n b 则1)32(011<<-n b 对一切正整数n 成立,只要101<<b 即可, 即,112011<--<a a ,解得.21>=a a 故答案为:2a > 【考点】数列的递推公式 【难度】314.已知0,,≠∈b R b a ,曲线 bx ax x y --=23 和直线 b ax y +=有交点Q ()n m ,()Z n m ∈,,则b a ,满足的等量关系式为______________. (不能含其它参量) 【答案】082=+-b a【解析】由题意可得:Q ()n m ,在曲线 bx ax x y --=23 和直线 b ax y +=上,所以32331n m am bm m n m nm n m n am b ⎧=--⇒=-⇒=⎨+=+⎩ ()32111111m n m m m m +-⇒==-+-++,∵m,n ∈Z ,∴m=0或-2,当m=0时,n=0代回原方程得b=0不成立;当m= -2时,n=8代回原方程得8=-2a+b,即082=+-b a 。
江苏省扬州中学2015届高三1月质量检测数学试题

π 12. 若函数 f (x)=sin(ωπx-4)(ω>0)在区间(-1,0)上有且仅有一条平行于 y 轴的对称轴,
橡皮网 - 正确地成长()
则 ω 的最大值是___________. 13. 若实数 a,b,c 成等差数列,点 P(-1,0)在动直线 ax+by+c=0 上的射影为 M,点 N(3,3), 则线段 MN 长度的最大值是__________. 14. 定义:若函数 f (x)为定义域 D 上的单调函数,且存在区间(m,n)⊆D(m<n),使得当 x∈ (m,n)时,f (x)的取值范围恰为(m,n),则称函数 f (x)是 D 上的“正函数” . 已知函数 f (x) =ax (a>1)为 R 上的“正函数” ,则实数 a 的取值范围是 明、证明过程或演算步骤. π B 15. 在△ABC 中,A、B、C 为三个内角,f (B)=4sinB· cos24-2+cos2B. .
l:y=k(x-1) 4k2-12 8k2 ∵ 2 ∴(4k2+3)x2-8k2x+4k2-12=0,∴x1+x2= 2 ,x1x2= 2 2 4 k +3 4k +3 3x +4y -12=0
4k2-12 8k2 24 ∴x1+x2-2x1x2= 2 -2× 2 = 2 , 4k +3 4k +3 4k +3 4k2-12 -9 8k2 x1x2-x1-x2+1= 2 - 2 +1= 2 4k +3 4k +3 4k +3 24 8 ∴+=- 9 =-3 5 (3)当 l⊥x 轴时,易得 AE 与 BD 的交点为 FK 的中点(2,0) 5 下面证明:BD 过定点 P(2,0) B、D、P 共线 kBP=kDP y2 3 5 5= 52y2=x2y1-2y13y2=2x2y1-5y1 4-2 x2-2 y1
2015-2016学年江苏省扬州中学高三(上)12月月考数学试卷

2015-2016学年江苏省扬州中学高三(上)12月月考数学试卷一、填空题1.(★★★★)已知集合A={x|x>0},B={-1,0,1,2},则A∩B等于 {1,2} .2.(★★★★)已知虚数z满足2z- =1+6i,则|z|= .3.(★★★★)抛物线y=2x 2的准线方程是.4.(★★★★)角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则cos(π-α)的值是 - .5.(★★★★)设函数f(x)= ,对任意x∈R都有= ,若函数g(x)=3sin(ωx+φ)-2,则的值为 -2 .6.(★★★)“M>N”是“log 2M>log 2N”成立的必要不充分条件.7.(★★★)若S n为等差数列{a n}的前n项和,S 9=-36,S 13=-104,则a 5与a 7的等比中项为.8.(★★★)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)= 2 .9.(★★★)如果实数a,b满足条件:,则的最大值是.10.(★★★)在边长为1的正三角形ABC中,向量=x ,=y ,x>0,y>0,且x+y=1,则•的最大值为 - .11.(★★★)已知f(x)是定义在R上的奇函数,且f(x+3)=f(x),当x∈(-2,0)时,f(x)=2 x,则f(2015)+f(2014)+f(2013)= 0 .12.(★★)已知直线:ax+by=1(其中a,b是实数)与圆:x 2+y 2=1(O是坐标原点)相交于A,B两点,且△AOB是直角三角形,点P(a,b)是以点M(0,1)为圆心的圆M上的任意一点,则圆M的面积最小值为(3-2 )π.13.(★★)已知抛物线和所围成的封闭曲线,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A对称,则实数a的取值范围是.14.(★★)设各项均为正整数的无穷等差数列{a n},满足a 54=2014,且存在正整数k,使a 1,a 54,a k成等比数列,则公差d的所有可能取值之和为 92 .二、解答题:15.(★★★)如图,在五面体ABCDEF中,四边形ABCD是平行四边形.(1)若CF⊥AE,AB⊥AE,求证:平面ABFE⊥平面CDEF;(2)求证:EF∥平面ABCD.16.(★★★★)已知向量=(sin ,1),=(cos ,cos 2).(Ⅰ)若•=1,求cos(-x)的值;(Ⅱ)记f(x)= •,在△ABC中,A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.17.(★★★)在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,右焦点F(1,0),点P在椭圆C上,且在第一象限内,直线PQ与圆O:x 2+y2=b 2相切于点M.(1)求椭圆C的方程;(2)求|PM|•|PF|的取值范围;(3)若OP⊥OQ,求点Q的纵坐标t的值.18.(★★★)某校兴趣小组运用计算机对轮船由海上行驶入内陆海湾进行了一次模拟试验.如图,内陆海湾的入口处有暗礁,图中阴影所示的区域为暗礁区,其中线段AA 1,B 1B,CC 1,D 1D关于坐标轴或原点对称,线段B 1B的方程为y=x,x∈a,b,过o有一条航道.有一艘正在海面上航行的轮船准备进入内陆海湾,在点处测得该船发出的汽笛声的时刻总晚1s(设海面上声速为am/s).若该船沿着当前的航线航行(不考虑轮船的体积)(Ⅰ)问兴趣小组观察到轮船的当前的航线所在的曲线方程是什么?(Ⅱ)这艘船能否由海上安全驶入内陆海湾?请说明理由.19.(★★)对于函数f(x),g(x),如果它们的图象有公共点P,且在点P处的切线相同,则称函数f(x)和g(x)在点P处相切,称点P为这两个函数的切点.设函数f(x)=ax 2-bx (a≠0),g(x)=lnx.(Ⅰ)当a=-1,b=0时,判断函数f(x)和g(x)是否相切?并说明理由;(Ⅱ)已知a=b,a>0,且函数f(x)和g(x)相切,求切点P的坐标;(Ⅲ)设a>0,点P的坐标为,问是否存在符合条件的函数f(x)和g(x),使得它们在点P处相切?若点P的坐标为(e 2,2)呢?(结论不要求证明)20.(★★)在数列{a n}中,a 1=1,且对任意的k∈N *,a 2k-1,a 2k,a 2k+1成等比数列,其公比为q k.(1)若q k=2(k∈N *),求a 1+a 3+a 5+…+a 2k-1;(2)若对任意的k∈N *,a 2k,a 2k+1,a 2k+2成等差数列,其公差为d k,设b k= .①求证:{b k}成等差数列,并指出其公差;②若d 1=2,试求数列{d k}的前k项的和D k.附加题21.(★★★)已知矩阵M= 的一个特征值是3,求直线x-2y-3=0在M作用下的直线方程.22.(★★)已知直线l经过点P(1,1),倾斜角α= ,(1)写出直线l的参数方程;(2)设l与圆x 2+y 2=4相交于两点A,B,求点P到A,B两点的距离之积.23.(★★★)抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得数字分别为x,y.设ξ为随机变量,若为整数,则ξ=0;若为小于1的分数,则ξ=-1;若为大于1的分数,则ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).24.(★★★)已知(1+ )n展开式的各项依次记为 a 1(x),a 2(x),a 3(x)…a n(x),a n+1(x).设F(x)=a 1(x)+2a 2(x)+2a 2(x)+3a 3(x)…+na n(x)+(n+1)a n+1(x).(1)若a 1(x),a 2(x),a 3(x)的系数依次成等差数列,求n的值;(2)求证:对任意x 1,x 2∈0,2,恒有|F(x 1)-F(x 2)|≤2 n-1(n+2)-1.。
江苏省扬州中学2015届高三上质量检测(12月)数学【理】试题及答案

江苏省扬州中学2015届高三上学期质量检测(12月)数学(理)试题一、填空题:本大题共14小题,每小题5分,共计70分1.已知集合},2|{},1|{≤=->=x x B x x A 那么=⋃B A _________.2.函数)42cos(2)(π+-=x x f 的最小正周期为_________.3.复数1z i =+,且)(1R a zai∈-是纯虚数,则实数a 的值为_________. 4.已知双曲线)0(1322>=-m y m x 的一条渐近线方程为,21x y =则m 的值为_______.6.“N M >”是“N M 22log log >”成立的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).7.若n S 为等差数列}{n a 的前n 项和,,104,36139-=-=S S 则5a 与7a 的等比中项为_______. 8.若正四棱锥的底面边长为,22cm 体积为,83cm 则它的侧面积为_______.9.在平面直角坐标系xoy 中,记不等式组⎪⎩⎪⎨⎧≥+-≤-+≥-06207203y x y x y 表示的平面区域为.D 若对数函数)1(lo g >=a x y a 的图像与D 有公共点,则a 的取值范围是__________.10.已知)(x f 是定义在R 上的奇函数,且),()3(x f x f =+当)0,2(-∈x 时,,2)(x x f =则=++)2013()2014()2015(f f f _________. 11.在边长为1的正ABC ∆中,向量,x =,y =0,0>>y x ,且,1=+y x 则BE CD ⋅的最大值为________.12.若在给定直线t x y +=上任取一点,P 从点P 向圆8)2(22=-+y x 引一条切线,切点为.Q 若存在定点,M 恒有,PQ PM =则t 的范围是_______.13.已知数列}{n a ,}{n b 中,,1a a =}{n b 是公比为32的等比数列.记),(12*N n a a b n n n ∈--=若不等式1+>n n a a 对一切*N n ∈恒成立,则实数a 的取值范围是________.14.已知0,,≠∈b R b a ,曲线 bx ax x y --=23 和直线 b ax y +=有交点Q ()n m ,()Z n m ∈,,则b a ,满足的等量关系式为______________. (不能含其它参量)二. 解答题:本大题共6小题,共计90分 15.(本小题满分14分)已知函数,)(n m x f ⋅=其中向量),cos 3,cos (sin x x x m ωωω+=),sin 2,sin (cos x x x n ωωω-=,0>ω若)(x f 的图像上相邻两个对称中心的距离大于等于.π(1)求ω的取值范围;(2)在A B C ∆中,c b a ,,分别是角C B A ,,的对边,,3=a 当ω最大时,,1)(=A f 求ABC ∆的面积最大值.16.(本小题满分14分)如图,AB 为圆O 的直径,点F E ,在圆O 上,且,//EF AB 矩形ABCD 所在的平面与圆O 所在的平面互相垂直,且.1,2===EF AD AB (1)设FC 的中点为,M 求证://OM 面;DAF(2)求证:⊥AF 面CBF .17.(本小题满分14分)如图①,有一个长方形状的敞口玻璃容器,底面是边长为20cm 的正方形,高为30cm ,内有20cm 深的溶液,现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①,②均为容器的纵截面).(1)当030=α时,通过计算说明此溶液是否会溢出; 060(2)现需要倒出不少于30003cm 的溶液,当α等于时,能实现要求吗?通过计算说明理由.18.(本小题满分16分)如图所示,已知椭圆()222210x y a b a b+=>>的左、右焦点分别为()()121,0,1,0F F -,P 为椭圆上一点,Q 为上顶点, 12F M MP = ,20PO F M ⋅=.(1) 当椭圆离心率12e =时,若直线过点(0,,A B (不同于Q )两点,求AQB ∠;(2)求椭圆离心率e 的取值范围.19. (本小题满分16分) 设函数21()ln ().2a f x x ax x a R -=+-∈ (1)当1a =时,求函数()f x 的极值; (2)当1a >时,讨论函数()f x 的单调性.(3)若对任意(3,4)a ∈及任意12,[1,2]x x ∈,恒有212(1)ln 2()()2a m f x f x -+>- 成立,求实数m 的取值范围.20. (本小题满分16分)已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥ 具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(1)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (2)证明:11a =,且1211112nn na a a a a a a ---+++=+++ ; (3)证明:当5n =时,12345,,,,a a a a a 成等比数列.命题、校对、审核:王朝和、徐小美数 学Ⅱ (附加题)1.已知矩阵⎥⎦⎤⎢⎣⎡=a M 112的一个特征值是3,求直线032=--y x 在M 作用下的直线方程.2.在平面直角坐标系xoy 中,曲线C 的参数方程是).(1sin cos 是参数ααα⎩⎨⎧+==y x 若以O 为极点,x 轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C 的极坐标方程.3.如图,在正四棱锥P A B C D -中,PA AB ==,点,M N 分别在线段PA 和BD 上,13B N B D =.(1)若13PM PA =,求证:MN AD ⊥; (2)若二面角M BD A --的大小为4π,求线段MN 的长度.4.已知nx )211(+展开式的各项依次记为).(),(),...,(),(121x a x a x a x a n n +设函数 =)(x F ).()1()(...)(3)(2)(1321x a n x na x a x a x a n n +++++++(1) 若)(),...,(),(321x a x a x a 的系数依次成等差数列,求正整数n 的值; (2) 求证:],2,0[,21∈∀x x 恒有.1)2(2|)()(|121-+≤--n x F x F n命题、校对、审核:王朝和、徐小美C··PM ABDN (第3题图)高三(理)数学质量检测参考答案 (2014.12)一、填空题:本大题共14小题,每小题5分,共计70分1. R2. π3. 14. 125. 16.必要不充分7.24±8. 2249. ]2,1(3∈a 10. 0 11. 88 12. 圆,【解析】设),,(),,(t x x P n m M +若恒有,PQ PM =则有,8)2()()(2222--++=-++-t x x n t x m x 即有R x t nt n m x n m ∈∀=++-+--+,0)442()422(22恒成立,∴,0442042222⎩⎨⎧=++-+=-+t nt n m n m 消去,m 得.0)42()2(2=+++-t n t n ∴0)42(4)2(2≥+-+=∆t t ,∴),6[]2,(+∞⋃--∞∈t . 13.【解析】∵),(12*N n a a b n n n ∈--=∴.12--=n n n b b a ∴1212111-----=-+++n n n n n n b b b b a a ,0)1)(321(31)1)(1(1111111<---=---=---=+++n n nn n n n n n b b b b b b b b b 解得23>n b 或.10<<n b 若23>n b ,则23)32(11>-n b 对一切正整数n 成立,显然不可能;若,10<<n b 则1)32(011<<-n b 对一切正整数n 成立,只要101<<b 即可,即 ,112011<--<a a ,解得.21>=a a 14. 082=+-b a 导数 三. 解答题:本大题共6小题,共计90分又∵,0π<<A ∴,6766πππ<+<A ∴,656ππ=+A 得.32π=A 由余弦定理得,2123222bc bc c b a ≥⨯-+==即.1≤bc∴.4323121sin 21=⨯⨯≤=∆A bc S ABC 16.【证明】(1)设DF 的中点为,N 连接,MN 则MN ∥,21CD MN =,21CD 又∵AO ∥,21CD AO =,21CD ∴MN ∥AO ,MN =AO ,∴MNAO 为平行四边形,∴OM ∥.AN 又∵⊂AN 面,DAF OM ⊄面,DAF ∴OM ∥面.DAF(2)∵面⊥ABCD 面ABEF ,,AB CB ⊥⊂CB 面ABCD ,面⋂ABCD 面ABEF ,AB = ∴⊥CB 面ABEF .∵⊂AF 面ABEF ,∴.CB AF ⊥又∵AB 为圆O 的直径, ∴.BF AF ⊥又∵,B BF CB =⋂⊂BF CB ,面.CBF ∴⊥AF 面.CBF 17.【解析】18.解:(1)11,,2c c e a ===得2222,3a b a c =∴=-=,所以椭圆的方程为22143x y +=. 依题意可设AB 所在的直线方程为y kx =-,代入椭圆方程,得()225763+40749k x--=.设()()1122,,,A x y B x y ,则()11225767344934x x x x kk-+==++.因为(((11221122,,,,,77Q QA QB x y x y x kx x kx ⎛⎛∴⋅=-⋅=-⋅- ⎝⎭⎝⎭()()()()()22121222192576192117497494934734k x x k x x k k k -=+-++=+-+++()222257657619257676804934k k k k---++==+,所以2AQB π∠=.(2)因为()12221211,23PO PF PF F M PM PF PF PF =+=-=- , 因为20PO F M ⋅= ,所以()121211023PF PF PF PF ⎛⎫+⋅-= ⎪⎝⎭,化简得 2121·2PF PF PF --0322=PF ,即221121222cos 30PF PF PF F PF PF -∠-= ,在12F PF ∆中,由余弦定理,有2221212122cos 4PF PF PF PF F PF c +-∠= , 所以222244,PF c PF c == , 又因为2,2a c PF a c a c -≤≤+∴≤ ,19.解析:(1)函数的定义域为(0,)+∞.当1a =时,'()ln ,()1,f x x x f x x x=-=-=当01x << 时,'()0;f x <)(x f 单调递减;当1x >时,'()0.f x >)(x f 单调递增()=(1)1f x f ∴=极小值,无极大值.(2)'1()(1)f x a x a x =-+- 2(1)1a x ax x-+-= 1(1)()(1)1a x x a x----=当111a =-,即2a =时,2'(1)()0,x f x x-=-≤ ()f x 在定义域上是减函数; 当1011a <<-,即2a >时,令'()0,f x <得101x a <<-或1;x >令'()0,f x >得1 1.1x a <<-当111a >-,即12a <<时,令'()0,f x <得01x <<或1;1x a >-令'()0,f x >得11.1x a <<- 综上,当2a =时,()f x 在(0,)+∞上是减函数;当2a >时,()f x 在1(0,)1a -和(1,)+∞单调递减,在1(,1)1a -上单调递增;当12a <<时,()f x 在(0,1)和1(,)1a +∞-单调递减,在1(1,)1a -上单调递增;(3)由(Ⅱ)知,当(3,4)a ∈时,()f x 在[1,2]上单减,(1)f 是最大值,(2)f 是最小值.123()()(1)(2)ln 222a f x f x f f ∴-≤-=-+ ∴2(1)l n 22a m -+>3l n 222a -+,而0a >经整理得231a m a ->-,由34a <<得2310115a a -<<-,所以1.15m ≥20.【解析】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分类讨论等数学思想方法.本题是数列与不等式的综合题,属于较难层次题. (1)由于34⨯与43均不属于数集{}1,3,4,∴该数集不具有性质P. 由于66123612,13,16,23,,,,,,231236⨯⨯⨯⨯都属于数集{}1,2,3,6,∴该数集具有性质P.(2)∵{}12,,n A a a a = 具有性质P ,∴n n a a 与nna a 中至少有一个属于A , 由于121n a a a ≤<<< ,∴n n n a a a >,故n n a a A ∉.从而1nna A a =∈,∴11a =. ∵121n a a a =<<< , ∴k n n a a a >,故()2,3,,k n a a A k n ∉= . 由A 具有性质P 可知()1,2,3,,n k a A k n a ∈= .又∵121n n n n n n a a a a a a a a -<<<< , ∴211211,,,n n n n n n n n a a a aa a a a a a a --==== , 从而121121n n n n n n n n a a a aa a a a a a a a --=+++=++++ ,∴1211112n n n a a a a a a a ---+++=+++ . (3)由(Ⅱ)知,当5n =时,有552343,a a a a a a ==,即25243a a a a ==, ∵1251a a a =<<< ,∴34245a a a a a >=,∴34a a A ∉,由A 具有性质P 可知43a A a ∈.由2243a a a =,得3423a a A a a =∈,且3221a a a <=, ∴34232a a a a a ==,∴534224321a a a aa a a a a ====, 即12345,,,,a a a a a 是首项为1,公比为2a 成等比数列.数 学Ⅱ (附加题)1.【解析】∵矩阵⎥⎦⎤⎢⎣⎡=a M 112的一个特征值是3,设a f ----=λλλ112)( ,01))(2(=---=a λλ则,01)3)(23(=---a 解得,2=a ∴⎥⎦⎤⎢⎣⎡=2112M .设直线032=--y x 上任一点),(y x 在M 作用下对应的点为),','(y x 则有,''2112⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x y x 整理得⎩⎨⎧=+=+'2'2y y x x y x ,则⎪⎪⎩⎪⎪⎨⎧-=-='31'32'31'32x y y y x x ,代入032=--y x ,整理得 09'5'4=--y x .∴所求直线方程为0954=--y x .2.【解析】由⎩⎨⎧+==1sin cos ααy x 消去,α得.1)1(22=-+y x 曲线C 是以点)1,0(为圆心,1为半径的圆,∴在极坐标系中,曲线C 是以点)2,1(π为圆心,1为半径的圆,∴曲线C 的极坐标方程是.sin 2θρ=3.【解析】连接,AC BD 交于点O ,以OA 为x 轴正方向,以OB 为y 轴正方向,OP 为z 轴建立空间直角坐标系.因为PA AB ==,则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,(0,0,1)P .(1)由13BN BD =,得1(0,,0)3N ,由13PM PA = ,得12(,0,)33M ,所以112(,,)333MN =-- ,(1,1,0)AD =--.因为0MN AD ⋅= .所以MN AD ⊥.(2)因为M 在PA 上,可设P M P A λ= ,得(,0,1)M λλ-.所以(,1,1)BM λλ=--,(0,2,0)BD =- .设平面MBD 的法向量(,,)n x y z =,由00n BD n BM ⎧⋅=⎪⎨⋅=⎪⎩ 得20(1)0y x y z λλ-=⎧⎨-+-=⎩其中一组解为1x λ=-,0y =,z λ=,所以可取(1,0,)n λλ=- .因为平面ABD 的法向量为(0,0,1)OP =, 所以cos 4n OP n OP π⋅=,即2=,解得12λ=, 从而11(,0,)22M ,1(0,,0)3N ,所以6MN =. 4.【解析】(1)由题意知.1...,3,2,1,)21()(11+==--n k x C x a k k n k∵)(),(),(321x a x a x a 的系数依次为,10=n C ,8)1()21(,221221-=⋅=⋅n n C n C n n ∴,8)1(122-+=⨯n n n 解得.8=n (2)=)(x F )()1()(...)(3)(2)(1321x a n x na x a x a x a n n +++++++ =.)21()1()21(....)21(3)21(211221n n n n n n n n n x C n x nC x C x C C ++++++-- 令,2=x =)2(F .)1(....321210nn n n n n n C n nC C C C ++++++-令,0=x 1)0(=F设.)1( (321)21nn n n n n n n C n nC C C C S ++++++=-则.23....)1(0121n n n n nnn n C C C nC C n S ++++++=-考虑到,kn n k n C C -=将以上两式相加得).....)(2(21210nn n n n n n n C C C C C n S +++++=-∴.2)2(1-+=n n n S又当]2,0[∈x 时,0)('≥x F 恒成立,从而)(x F 是]2,0[上的单调增函数, ∴],2,0[,21∈∀x x .1)2(2)0()2(|)()(|121-+=-≤--n F F x F x F n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵0<B<π,∴2sinB的最大值为2,∴1+m>2∴m>1.
16、证明:(1)正方形ABCD中, ,又 平面CDE, 平面CDE,
所以 平面CDE.
(2)因为 ,且 ,
所以 ,
又 且 , ,
(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于一定点?若是,求出定点坐标;若不是,说明理由.
19.
设数列{an}的各项都是正数,且对任意n∈N*,都有+++···+=(a1+a2+a3+···+an)2.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n−1·λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.
D为BC边上的点,且·=0,=2,
则·=_______.
9.对任意的实数b,直线y=-x+b都不是曲线y=x3-3ax的切线,则实数 的取值范围是________.
10. 如图,已知抛物线y2=2px(p>0)的焦点恰好是椭圆
(a>b>0)的右焦点F,且两条曲线的交点连线也过焦点F,
则该椭圆的离心率为.
11.已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),
则a+b+c的取值范围为.
12.若函数f(x)=sin(ωπx-)(ω>0)在区间(-1,0)上有且仅有一条平行于y轴的对称轴,则ω的最大值是___________.
13.若实数a,b,c成等差数列,点P(-1,0)在动直线ax+by+c=0上的射影为M,点N(3,3),则线段MN长度的最大值是__________.
(1)AF为何值时,CF⊥平面B1DF?
(2)设AF=1,求平面B1CF与平面ABC所成的锐二面角的余弦值.
4.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.
(1)设抛掷5次的得分为X,求变量X的分布列和数学期望E(X);
(2)求恰好得到n(n∈N*)分的概率.
高三数学试卷参考答案
(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
2.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),椭圆C的方程为+y2=1,试在椭圆C上求一点P,使得P到直线l的距离最小.
3. 如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=,BB1=3,D为A1C1的中点,F在线段AA1上.
17.
如图,某兴趣小组测得菱形养殖区ABCD的固定投食点A到两条平行河岸线l1、l2的距离分别为4米、8米,河岸线l1与该养殖区的最近点D的距离为1米,l2与该养殖区的最近点B的距离为2米.
(1)如图甲,养殖区在投食点A的右侧,若该小组测得∠BAD=60º,请据此算出养殖区的面积S,并求出直线AD与直线l1所成角的正切值;
江苏省扬州中学2015届高三1月月考数学试题
2015.1
一、填空题:本大题共14小题,每小题5分,共计70分.
1. 设集合M={x|<0},N={x|(x-1)(x-3)<0},则集合M∩N=________.
2.复数z1=a+2i,z2=-2+i,如果|z1|<|z2|,
则实数a的取值范围是_______.
20.已知函数f(x)=(m,n∈R)在x=1处取到极值2.
(1)求f(x)的解析式;
(2)设函数g(x)=ax-lnx,若对任意的x1∈[, 2],总存在唯一的x2∈[,e](e为自然对数的底),使得g(x2)=f(x1),求实数a的取值范围.
附加题
1. 已知矩阵M=,N=,且MN=,
(Ⅰ)求实数a,b,c,d的值;
15.在△ABC中,A、B、C为三个内角,f(B)=4sinB·cos2+cos2B.
(Ⅰ)若f(B)=2,求角B;
(Ⅱ)若f(B)-m<2恒成立,求实数m的取值范围.
16. 正方形ABCD所在的平面与三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求证:AB∥平面CDE;Байду номын сангаас
(2)求证:平面ABCD⊥平面ADE.
是________.
6.设{an}是等比数列,则“a1<a2<a3”是“数列
{an}是递增数列”的_________条件.
7. 取正方体的六个表面的中心,这六个点所构成的几何体的体积记为V1,该正方体的体积为V2,则V1∶V2=________.
8.如图,在△ABC中,∠BAC=120º,AB=AC=2,
3.某公司生产三种型号A、B、C的轿车,月产量分
别为1200、6000、2000辆.为检验该公司的产品
质量,现用分层抽样的方法抽取46辆进行检验,
则型号A的轿车应抽取________辆.
4.有红心1、2、3和黑桃4、5共5张扑克牌,
现从中随机抽取一张,则抽到的牌为红心的
概率是__________.
5.右图是一个算法的流程图,则输出S的值
(2)如图乙,养殖区在投食点A的两侧,试求养殖区面积S的最小值,并求出取得最小值时∠BAD的余弦值.
18. 已知椭圆C:经过点(0,),离心率为,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为D、K、E.
(1)求椭圆C的方程;
(2)若直线l交y轴于点M,且=λ,=μ,当直线l的倾斜角变化时,探究λ+μ是否为定值?若是,求出λ+μ的值;若不是,说明理由;
2015.1
1、(1,2)2、(-1,1)3、64、5、636、充要
7、8、19、(-∞,)10、-111、(25,34)12、
13、5+14、(1,e)
15、解:(Ⅰ)f(B)=4sinBcos2(-)+cos2B=2sinB(1+sinB)+1―2sin2B=2sinB+1=2
∴sinB=又∵0<B<π∴B=或.
14.定义:若函数f(x)为定义域D上的单调函数,且存在区间(m,n)⊆D(m<n),使得当x∈(m,n)时,f(x)的取值范围恰为(m,n),则称函数f(x)是D上的“正函数”.已知函数f(x)=ax(a>1)为R上的“正函数”,则实数a的取值范围是.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.