福建省各地市高考数学最新试题大汇编第16部
福建省三明市(新版)2024高考数学部编版真题(提分卷)完整试卷

福建省三明市(新版)2024高考数学部编版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题执行如图所示的程序框图,输出的结果是()A.5B.6C.7D.8第(2)题如图所示,已知一个球内接圆台,圆台上、下底面的半径分别为和,球的体积为,则该圆台的侧面积为()A.B.C.D.第(3)题“角谷猜想”首先流传于美国,不久便传到欧洲,后来一位名叫角谷静夫的日本人又把它带到亚洲,因而人们就顺势把它叫作“角谷猜想”.“角谷猜想”是指一个正整数,如果是奇数就乘以3再加1,如果是偶数就除以2,这样经过若干次运算,最终回到1.对任意正整数.记按照述规则实施第n次运算的结果为,若,且均不为1,则()A.5或16B.5或32C.3或8D.7或32第(4)题设,,表示平面,l表示直线,则下列说法中,错误的是().A.如果,那么内一定存在直线平行于B.如果,,,那么C.如果不垂直于,那么内一定不存在直线垂直于D.如果,,则第(5)题已知圆,直线,在上随机选取一个数k,则事件“直线l与圆C相离”发生的概率为()A.B.C.D.第(6)题已知定义在上的奇函数恒有,当时,,已知,则函数在上的零点个数为()A.4B.5C.3或4D.4或5第(7)题某学校一同学研究温差(单位:℃)与本校当天新增感冒人数(单位:人)的关系,该同学记录了5天的数据:5689121620252836由上表中数据求得温差与新增感冒人数满足经验回归方程,则下列结论不正确的是()A.与有正相关关系B.经验回归直线经过点C.D.时,残差为0.2第(8)题如图所示,正方体的棱长为1,点分别为的中点,则下列说法正确的是()A.直线与直线垂直B.直线与平面平行C.三棱锥的体积为D.直线BC与平面所成的角为二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在正方体中,分别为棱的中点,P是线段上的动点(含端点),则()A.B.平面C.与平面所成角正切值的最大值为D.当P位于时,三棱锥的外接球体积最小第(2)题设函数,则下列结论正确的是()A .的图象关于直线对称B.的图象关于点对称C .的单调递增区间为,D.将函数的图象向左平移个单位可得的图象第(3)题棱长为的正方体的展开图如图所示.已知为线段的中点,动点在正方体的表面上运动.则关于该正方体,下列说法正确的有()A.与是异面直线B.与所成角为C.平面平面D.若,则点的运动轨迹长度为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,的角平分线交边于点,若,则面积的最大值为__________.第(2)题关于的函数有以下命题:(1)对任意的都是非奇非偶函数;(2)不存在,使既是奇函数,又是偶函数;(3)存在,使是奇函数;(4)对任意的都不是偶函数,其中一个假命题的序号是_____,因为当_____时,该命题的结论不成立.第(3)题已知抛物线,直线与抛物线C交于M,N两点,O为坐标原点,记直线OM,ON的斜率分别为,,若,则t=________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在中,内角,,的对边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若,,求的面积.第(2)题已知,.(1)若恒成立.求的最大值;(2)若,取(1)中的,当时,证明:.第(3)题某电子商务公司随机抽取1000名网购者进行调查.这1000名购物者2018年网购金额(单位:万元)均在区间内,样本分组为:,,,,,,购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组发放金额50100150200(1)求这1000名购物者获得优惠券金额的平均数;(2)以这1000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.第(4)题已知曲线在处的切线经过原点.(1)求实数的值;(2)若,讨论的极值点的个数.第(5)题如图,在正三棱柱与四棱锥组成的组合体中,底面恰好是边长为2菱形,且.(1)求证:平面(2)设E是的中点,求直线与直线所成角的余弦值.。
福建省福州市2024年数学(高考)部编版测试(预测卷)模拟试卷

福建省福州市2024年数学(高考)部编版测试(预测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题设⊕是R上的一个运算,A是R的非空子集.若对于任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A.自然数集B.整数集C.有理数集D.无理数集第(2)题已知为奇函数,则在处的切线方程为()A.B.C.D.第(3)题如图,在四棱锥中,,底面是边长为的正方形,点是的中点,过点,作棱锥的截面,分别与侧棱,交于,两点,则四棱锥体积的最小值为()A.B.C.D.第(4)题关于的方程有四个不同的实数根,且,则的取值范围()A.B.C.D.第(5)题若函数在区间上单调递增,则的最大值是()A.B.C.D.第(6)题将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A.70B.140C.280D.840第(7)题已知集合,集合,则()A.B.C.D.第(8)题已知正项等比数列(其中公比)的前项积为.设甲:,乙:有最小值,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,其中实数,点,则下列结论正确的是()A.必有两个极值点B.当时,点是曲线的对称中心C.当时,过点可以作曲线的2条切线D.当时,过点可以作曲线的3条切线第(2)题设等比数列的前项和为,且(为常数),则()A.B.的公比为2C.D.第(3)题已知矩形中,,,将沿折叠,形成二面角,设二面角的平面角为,若,则()A.B.异面直线与所成的角为C.四面体的体积为D.四面体外接球的体积为三、填空(本题包含3个小题,每小题5分,共15分。
福建省各地高三数学最新考试试题分类汇编 统计与概率 理(2021年整理)

福建省各地2017届高三数学最新考试试题分类汇编统计与概率理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省各地2017届高三数学最新考试试题分类汇编统计与概率理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省各地2017届高三数学最新考试试题分类汇编统计与概率理的全部内容。
福建省各地2017届高三最新考试数学理试题分类汇编统计与概率2017。
03一、选择、填空题1、(莆田市2017届高三3月教学质量检查)抛掷一枚均匀的硬币4次,正面不连续出现的概率是A .34B .12C . 13D .142、(福州外国语学校2017届高三适应性考试(九))一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若输出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为( ) A .516 B .916 C.15 D .253、(晋江市季延中学等四校2017届高三第二次联考)《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则落在其内切圆内的概率是( )(A)103π (B )20π (C )203π (D )10π4、(泉州市2017届高三3月质量检测)某厂在生产甲产品的过程中,产量x (吨)与生产能耗y (吨)对应数据如下表:5、(福州市外国语学校2017届高三适应性考试(一))某射击手射击一次命中的概率是0。
2022年福建省高考数学真题及参考答案

2022年福建省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C =,n D C =,则=B CA.nm23- B.nm32+- C.nm23+ D.nm32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈A.39100.1m⨯ B.39102.1m⨯ C.39104.1m ⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫ ⎝⎛223,π中心对称,则=⎪⎭⎫⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0e a =,91=b ,9.0ln -=c ,则A.cb a << B.ab c << C.ba c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。
五年(2018-22)高考数学真题分类汇编(全国卷新高考卷卷等)专题16 三角函数单选题(解析版)

【答案】C解析:法1:由基本不等式有 ,
同理 , ,
故 ,故 不可能均大于 .
取 , , ,则 ,
故三式中大于 的个数的最大值为2,故选C.
法2:不妨设 ,则 ,
由排列不等式可得:
,
而 ,
故 不可能均大于 .
取 , , ,则 ,
故三式中大于 的个数的最大值为2,故选C.
【题目栏目】三角函数\三角恒等变换\三角恒等变换的综合应用
又因为函数图象关于点 对称,所以 ,且 ,
所以 ,所以 , ,
所以 .故选:A
【题目栏目】三角函数\三角函数的图像与性质\三角函数的图象
【题目来源】2022新高考全国I卷·第6题
6.(2022年高考全国乙卷数学(文)·第11题)函数 在区间 的最小值、最大值分别为( )
A. B. C. D.
【答案】D
2018-2022五年全国各省份高考数学真题分类汇编
专题16三角函数单选题
一、选择题
1.(2022高考北京卷·第5题)已知函数 ,则( )
A. 在 上单调递减B. 在 上单调递增
C. 在 上单调递减D. 在 上单调递增
【答案】C
解析:因为 .
对于A选项,当 时, ,则 在 上单调递增,A错;
对于B选项,当 时, ,则 在 上不单调,B错;
对于C选项,当 时, ,则 在 上单调递减,C对;
对于D选项,当 时, ,则 在 上不单调,D错.
故选,C.
【题目栏目】三角函数\三角函数的图像与性质\三角函数的单调性与周期性
【题目来源】2022高考北京卷·第5题
2.(2022年浙江省高考数学试题·第6题)为了得到函数 1年新高考Ⅰ卷·第4题
福建省各地市高考数学最新试题大汇编第16部

福建省各地市高考数学最新试题大汇编第16部福建省各地市高考数学最新试题大汇编:第16部分算法框图与选修系列一、多项选择题:1.(福建省福州市2021年3月高中毕业班质量检查理科)某程序框图如图所示,则该程序运行后输出的s的值为(c)111a。
1b。
c、 d。
248开始s=1,k=1K=2022?对否s<1?是否s=1ss=2s82.(福建省福州市2021年3月高中毕业班质量检查文科对任意非的运算规则如右图的程序框图所示,则(3?2)?4的值是a.0b.c.K=K+1零实数a,B,如果a?b(c)。
否开始输出s输入a,b是结束12输出a?b?3d.92b?1(第8题)输出a?1ab3.(福建省厦门市2021年高三质量检查文科)执行右边的程序列图,输出s等于(c)3a.45摄氏度。
64b.56d。
7结束4、福建省省厦门市2022级三级质量检验科学部,是判断“美容号”的流程图。
在[30,40]中的所有整数中,“美丽数”的数目是(c)a.1b。
2C。
3D。
4.5.(福建省莆田市2021年高中毕业班质量检查理科)某程序框图如右图所示,若该程序运行后输出如果n的值为4,则自然数S0的值为(c)a、 3c.1b.2]d.06.(福建省古田县2021年高中毕业班高考适应性测试文科)某程序框图如图所示,该程序运行后输出i的值是(b)开始a.63b.31c.27d.15s=0i=1是s>50不输出is=s2+1i=2i+1结束(问题9)7。
(在福建省三明市市三所学校的2022次联合考试中,科学)如图所示,二进制数11111(2)转化为图,判断框内应填入的条件是(d)a.i≤5b.i≤4c.i>5d.i>4二、答复:8(福建省福州市2021年3月高中毕业班质量检查理科)(本小题满分7分)十进制数的程序框选修4-2:矩阵与变换1.已知二阶矩阵M有特征值??3和相应的特征向量E1,矩阵M对应的变换将点(?1,2)变换为(9,15)求矩阵M1a?b?3,?ab??ab??1??1??3?解:设m=?,则=3=,故 (3)分cd??1??1??3?cdc?d?3.??A.2b?9,? ab 1.9?=,所以5分??光盘2.15?? C2d?15. 14?A=?1,b=4,c=?3,d=6,那么m=7?36?? 9.(福建省福州市高中毕业班质量检验科学系,2022年3月)(本课题满分7分)选修课4-4:坐标系与参数方程x22sin,在直角坐标系xoy中,已知曲线c的参数方程是?(?是参数).Y2cos??现在以原点o为极点,X轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程。
福建省各地市高考数学最新试题大汇编第16部
福建省各地市高考数学最新试题大汇编:第16部分 算法框图与选修系列一、选择题:1. (福建省福州市2011年3月高中毕业班质量检查理科)某程序框图如图所示,则该程序运行后输出的S 的值为( C )A.1B.12C. 14D. 182. (福建省福州市2011年3月高中毕业班质量检查文科对任意非零实数a ,b ,若a b ⊗的运算规则如右图的程序框图所示,则(32)4⊗⊗的值是( C ).A.0B.12C.32D.9 3.(福建省厦门市2011年高三质量检查文科)执行右边的程 序框图,输出的S 等于 ( C ) A .34 B .45C .56D .674.(福建省厦门市2011年高三质量检查理科)右图是判断“美数”的流程图,在[30,40]内的所有整数中,“美数”的个数是 ( C ) A .1 B .2 C .3 D .45.(福建省莆田市2011年高中毕业班质量检查理科)某程序框图如右图所示,若该程序运行后输出n 的值是4,则自然数0S 的值为( C )A .3B .2]C .1D .06.(福建省古田县2011年高中毕业班高考适应性测试文科) 某程序框图如图所示,该程序运行后输出i 的值是( BA.63 B .31 C .27 D .157.(福建省三明市2011年高三三校联考理科)如图是将二进制数11111(2)化为十进制数的一个程序框图,判断框内应填入的条件是( D ) A .i ≤5 B .i ≤4 C .i >5 D .i >4二、解答题:8 (福建省福州市2011年3月高中毕业班质量检查理科)(本小题满分7分)选修4-2:矩阵与变换已知二阶矩阵M 有特征值3λ=及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,并且矩阵M 对应的变换将点(1,2)-变换成(9,15). 求矩阵M .解:设M =ab c d ⎡⎤⎢⎥⎣⎦,则a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=311⎡⎤⎢⎥⎣⎦=33⎡⎤⎢⎥⎣⎦,故3,3.a b c d +=⎧⎨+=⎩……………3分 (第9题)a b c d ⎡⎤⎢⎥⎣⎦12-⎡⎤⎢⎥⎣⎦=915⎡⎤⎢⎥⎣⎦,故29,215.a b c d -+=⎧⎨-+=⎩……………5分 联立以上两方程组解得a =1-,b =4,c =3-,d =6,故M =1436-⎡⎤⎢⎥-⎣⎦. ………7分 9.(福建省福州市2011年3月高中毕业班质量检查理科)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知曲线C 的参数方程是22sin ,2cos x y αα=+⎧⎨=⎩(α是参数).现以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,写出曲线C 的极坐标方程. 解:曲线C 的直角坐标方程是22(2)4x y -+=,……3分 因为222x y ρ+=,cos y ρθ=,…5分故曲线C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=.……7分10.(福建省福州市2011年3月高中毕业班质量检查理科)(本小题满分7分)选修4-5:不等式选讲.解不等式2142x x +-->. 解:令214y x x =+--,则1521334254x x y x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥ .......3分作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和523⎛⎫ ⎪⎝⎭,........6分 所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭,,........7分 11.(福建省古田县2011年高中毕业班高考适应性测试理科)选修4-1:几何证明选讲如图,圆O 的直径AB=10,弦DE ⊥AB 于点H , HB=2 . (1)求DE 的长;(2)延长ED 到P ,过P 作圆O 的切线,切点为C ,若PC=25,求PD的长。
2016福建高考理科数学试卷及答案(清晰版)福建高考理科数学试卷及答案
2016福建高考理科数学试卷及答案(清晰版)福建高考理科
数学试卷及答案
高考是人生的一道重要的关卡,它是对十年寒窗苦读的一次总结,同时也是决定你在打开这扇大门后迎来的是鸟语花香还是泥泞沼泽。
高考频道第一时间为您提供2016福建高考理科数学试卷及答案(清晰版),希望学子和家长们能密切关注本页,一旦真题及答案公布,本页头条将会显示,如果你想找的真题及答案没有显示可按Ctrl F5进行刷新!更多福建高考分数线、福建高考成绩查询、福建高考志愿填报、福建高考录取查询信息等信息请关注我们网站的更新!
2016福建高考理科数学试卷及答案(清晰版)。
2025届福建省泉州市第十六中学高考数学二模试卷含解析
2025届福建省泉州市第十六中学高考数学二模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在R 上的奇函数()f x ,其导函数为()f x ',当0x ≥时,恒有())03(xf f x x '+>.则不等式33()(12)(12)0x f x x f x -++<的解集为( ).A .{|31}x x -<<-B .1{|1}3x x -<<- C .{|3x x <-或1}x >-D .{|1x x <-或1}3x >-2.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<3.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交 4.若1tan 2α=,则cos2=α( ) A .45-B .35C .45D .355.如图所示的程序框图输出的S 是126,则①应为( )A .5?n ≤B .6?n ≤C .7?n ≤D .8?n ≤6.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭ B .{}1,0,1-C .1,0,1,2D .{}0,1,27.在区间[]1,1-上随机取一个实数k ,使直线()3y k x =+与圆221x y +=相交的概率为( )A .12B .14C .22D .248.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则20206log a =( ) A .1-B .1C .2D .29.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭, 则()1E ξ= D .am bm >是a b >的充分不必要条件10.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?11.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A .2B .5C 13D 2212.设i 是虚数单位,则()()2332i i +-=( ) A .125i +B .66i -C .5iD .13二、填空题:本题共4小题,每小题5分,共20分。
2023年新高考地区数学名校地市选填压轴题好题汇编(六)含答案解析
2023年新高考数学选填压轴题汇编(六)一、单选题1.(2022·福建省福州华侨中学高三阶段练习)函数f x =A sin ωx +π4ω>0 的图象与x 轴的两个相邻交点间的距离为π3,要得到函数g x =A cos ωx 的图象,只需将f x 的图象( )A.向左平移π12个单位 B.向右平移π4个单位C.向左平移π4个单位D.向右平移3π4个单位【答案】A【解析】由题意,函数f x =A sin ωx +π4 ω>0 的图象与x 轴的两个相邻交点间的距离为π3∴ 周期T =2π3,由周期公式:T =2πω∴T =2π3=2πω解得: ω=3∴f x =A sin 3x +π4 =A sin3x +π12要得到g x =A cos3x ,即g x =A cos3x =A sin 3x +π2=A sin3x +π6 由题意,可得f x 向左平移π12个单位可得g x .故选:A .2.(2022·福建省福州屏东中学高三开学考试)若函数f x =e x -a -1 x +1在(0,1)上不单调,则a 的取值范围是( )A.2,e +1B.2,e +1C.-∞,2 ∪e +1,+∞D.-∞,2 ∪e +1,+∞【答案】A【解析】∵f (x )=e x -(a -1)x +1,∴f (x )=e x -a +1,若f (x )在(0,1)上不单调,则f (x )在(0,1)上有变号零点,又∵f (x )单调递增,∴f 0 ∙f 1 <0,即(1-a +1)(e -a +1)<0,解得2<a <e +1.∴a 的取值范围是(2,e +1).故选:A .3.(2022·福建省福州第二中学高三阶段练习)已知圆C :x 2+y 2-10y +21=0与双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线相切,则该双曲线的离心率是A.2B.53C.52D.5【答案】C【解析】由双曲线x 2a 2-y 2b2=1(a >0,b >0),可得其一条渐近线的方程为y =b a x ,即bx -ay =0,又由圆C :x 2+y 2-10y +21=0,可得圆心为C (0,5),半径r =2,则圆心到直线的距离为d =-5a b 2+(-a )2=5a c ,则5a c =2,可得e =c a =52,故选C .4.(2022·福建省福州第一中学高三开学考试)过圆x 2+y 2=64上的动点作圆C :x 2+y 2=16的两条切线,两个切点之间的线段称为切点弦,则圆C 不在任何切点弦上的点形成的区域的面积为( )A.4πB.6πC.8πD.12π【答案】A 【解析】设圆x 2+y 2=64的动点为P m ,n ,过P 作圆C 的切线,切点分别为A ,B ,则过P ,A ,B 的圆是以PO 直径的圆,该圆的方程为:x x -m +y y -n =0.由x 2+y 2=16x x -m +y y -n =0 可得AB 的直线方程为:mx +ny =16.原点到直线mx +ny =16的距离为16 m 2+n 2=1664=2,故圆C 不在任何切点弦上的点形成的区域的面积为4π,故选:A .5.(2022·福建省福州第一中学高三开学考试)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是A.16π9B.8π9C.16π27D.8π27【答案】A【解析】设圆柱的半径为r ,高为x ,体积为V ,则由题意可得r 2=3-x3,∴x =3-32r ,∴圆柱的体积为V (r )=πr 23-32r (0<r <2),则V (r )=169π∙34r ∙34r ∙3-32r ≤16π9∙34r +34r +3-32r 33=16π9.当且仅当34r =3-32r ,即r =43时等号成立.∴圆柱的最大体积为16π9,故选:A .6.(2022·福建省福州延安中学高三开学考试)已知2sin 2x +cos 2y =1,则sin 2x +cos 2y 的取值范围是( )A.0,12B.12,1C.22,1D.12,22【答案】B【解析】∵2sin 2x +cos 2y =1,∴cos 2y =1-2sin 2x ,∴0≤1-2sin 2x ≤1,∴0≤sin 2x ≤12,又sin 2x +cos 2y =sin 2x +1-2sin 2x =1-sin 2x ∈12,1,∴sin 2x +cos 2y 的取值范围是12,1.故选:B7.(2022·福建·福州十八中高三开学考试)设函数f (x )的定义域为R ,f (x +1)为偶函数,f (x +2)为奇函数,当x ∈[1,2]时,f (x )=ax +b .若f (0)+f (3)=4,则f 92=( )A.-2B.32C.-72D.72【答案】A【解析】因为f (x +1)为偶函数,则f (x +1)的图像关于y 轴对称,所以f (x )关于x =1对称,则f (0)=f (2),试卷第2页,共40页因为f (x +2)为奇函数,则f (x +2)的图像关于原点对称,且f (2)=0,所以f (x )关于(2,0)对称,则f (3)=-f (1),因为当x ∈[1,2]时,f (x )=ax +b ,所以f (1)=a +b ,f (2)=2a +b =0,因为f (0)+f (3)=4,所以f (2)-f (1)=a =4,故f (2)=2a +b =8+b =0⇒b =-8,从而当x ∈[1,2]时,f (x )=4x -8,故f 92 =-f -12 =-f 52 =f 32 =4×32-8=-2.故选:A .8.(2022·福建·闽江学院附中高三开学考试)设函数f x 是奇函数f x x ≠0 的导函数,f -1 =-2.当x >0时,f x >2,则使得f x >2x 成立的x 的取值范围是( )A.-∞,-1 ∪0,1 B.-1,0 ∪1,+∞ C.-∞,-1 ∪1,+∞ D.-1,0 ∪0,1【答案】B【解析】因为当x >0时,f x >2,所以f 'x -2>0,故令g x =f x -2x ,则g 'x =f 'x -2>0,故g x 在0,+∞ 上单调递增.因为f -1 =-2,所以g -1 =f -1 +2=0,又因为f x 为奇函数,所以g x =f x -2x 为奇函数,所以g 1 =0,且在区间-∞,0 上,g x 单调递增.所以使得f x >2x ,即g x >0成立的x 的取值范围是-1,0 ∪1,+∞ .故选:B9.(2022·江苏·常州市平陵高级中学高三开学考试)若函数f x =x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m 的值A.与a 有关,且与b 有关 B.与a 有关,但与b 无关C.与a 无关,且与b 无关 D.与a 无关,但与b 有关【答案】B【解析】因为最值在f (0)=b ,f (1)=1+a +b ,f -a 2 =b -a 24中取,所以最值之差一定与b 无关,选B .10.(2022·江苏·常州市平陵高级中学高三开学考试)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=a ⋅2x +b .若f (0)+f (3)=6,则f log 296 的值是( )A.-12 B.-2 C.2 D.12【答案】B【解析】f (x +1)为奇函数,即其图象关于(0,0)点对称,所以f (x )的图象关于(1,0)点对称,f (x +2)为偶函数,即其图象关于y 轴对称,因此f (x )的图象关于直线x =2对称,所以f (1)=0,f (0)=-f (2),f (3)=f (1),所以f (1)=2a +b =0,f (0)+f (3)=-f (2)=-(4a +b )=6,由此解得a =-3,b =6,所以x ∈[1,2]时,f (x )=-3⋅2x +6,由对称性得f (x +2)=f (2-x )=-f (1-(1-x ))=-f (x ),所以f (x +4)=-f (x +2)=f (x ),f (x )是周期函数,周期为4,6<log 296<7,f (log 296)=f (log 296-4)=f (4-log 296+4)=f log 225696 =f log 283 =-3×83+6=-2,故选:B .11.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f x =x 2+4a -3 x +3a ,x <0log ax +1 +1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程f x =2-x 恰好有两个不相等的实数解,则a 的取值范围是( )A.12,23 ∪34B.23,34 C.13,23 ∪34D.13,34【答案】C【解析】函数f x 在R 上单调递减,则3-4a 2≥00<a <102+4a -3 ⋅0+3a ≥log a 0+1 +1,解得13≤a ≤34,在同一直角坐标系中,画出函数y =f x 和函数y =2-x 的图象,如图:由图象可知,在0,+∞ 上,f x =2-x 有且仅有一个解,故在-∞,0 上,f x =2-x 有且仅有一个解,当3a >2即a >23时,由x 2+4a -3 x +3a =2-x ,即x 2+4a -2 x +3a -2=0,x <0,则Δ=(4a -2)2-43a -2 =0,解得a =34或1(舍去),当a =34时,方程可化为x +12 2=0,x =-12符合题意;当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件,综上:a 的取值范围为13,23 ∪34.故选:C .12.(2022·江苏·盐城市伍佑中学高三开学考试)已知正实数a ,b 满足abe a +ln b +1=0,则( )A.b >1eB.a <1C.ab =1D.e a <1b【答案】D【解析】因为abe a +ln b +1=0,所以ae a =-ln b -1b>0,故ln b +1<0,即0<b <1e,故选项A 错误;若a =1,则eb +ln b +1=0,作出函数y =ln x 与y =-ex -1的图象如图所示:显然有交点,则方程eb +ln b +1=0有解,故选项B 错误;若ab =1,则e a -ln a +1=0,即e a =ln a -1,作出函数y =e x 与y =ln x -1的图象如图所示:显然无交点,则方程e a -ln a +1=0无解,故选项C 错误;因为abe a +ln b +1=0,则ae a +1b =-ln bb=-ln b ⋅e -ln b >ae a ,且-ln b >0,令f x =xe x (x >0),则fx =x +1 e x >0,所以f x在区间,+∞ 上单调递增,所以f -ln b >f a ,即-ln b >a ,因此e a <1b,故选项D 正确.故选:D13.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =ln x x 2,若f x <m -1x2在(0,+∞)上恒成立,e =2.71828⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( )试卷第2页,共40页A.m >eB.m >e2C.m >1D.m >e【答案】B【解析】若f x <m -1x 2在(0,+∞)上恒成立,即f x +1x2<m 在(0,+∞)上恒成立,令g (x )=f (x )+1x 2=ln x +1x 2,故只需g (x )max <m 即可,g (x )=1x ⋅x 2-(ln x +1)⋅2xx 4=-2ln x -1x 3,令g(x )=0,得x =e -12,当0<x <e-12时,g(x )>0;当x >e-12时,g (x )<0,所以g (x )在0,e-12上是单调递增,在e -12,+∞ 上是单调递减,所以当g (x )max =g e -12 =e2,所以实数m 的取值范围是m >e2.故选:B .14.(2022·河北省唐县第一中学高三开学考试)定义运算a *b ,a *b ={a b a ≤ba >b,例如1*2=1,则函数y =1*2x 的值域为A.0,1 B.-∞,1 C.1,+∞ D.0,1【答案】D【解析】当1≤2x 时,即x ≥0时,函数y =1*2x =1当1>2x 时,即x <0时,函数y =1*2x =2x ∴f (x )=1,x ≥02x ,x <0由图知,函数y =1*2x 的值域为:(0,1].故选D .15.(2022·重庆·临江中学高三开学考试)已知函数f x =log 3x ,x >03x,x ≤0,若函数g x =f x 2-m +2 f x +2m恰好有5个不同的零点,则实数m 的取值范围是( )A.0,1B.0,1C.1,+∞D.1,+∞【答案】A【解析】画出函数的大致图象,如下图所示:∵函数g x =f x 2-m +2 f x +2m 恰好有5个不同的零点,∴方程f x2-m +2 f x +2m =0有5个根,设t =f (x ),则方程化为t 2-m +2 t +2m =0,易知此方程有两个不等的实根t 1,t 2,结合f (x )的图象可知,t 1∈0,1 ,t 2∈1,+∞ ,令h (t )=t 2-m +2 t +2m ,则由二次函数的根的分布情况得:Δ=(m +2)2-8m >0h (0)>0h (1)≤0,解得:0<m ≤1.故选:A16.(2022·重庆·临江中学高三开学考试)已知定义在(-3,3)上的函数f (x )满足f (x )+e 4x f (-x )=0,f (1)=e 2,f (x )为f (x )的导函数,当x ∈[0,3)时,f (x )>2f (x ),则不等式e 2x f (2-x )<e 4的解集为( )A.(-2,1)B.(1,5)C.(1,+∞)D.(0,1)【答案】B 【解析】令g x =f xe2x ,所以f x =e 2x g x ,因为f x +e 4x f -x =0,所以e 2x ⋅g x +e 4x ⋅e -2x g -x =0,化简得g x +g -x =0,所以g x 是-3,3 上的奇函数;gx =f x e 2x -2e 2x f x e 4x =f x -2f x e 2x,因为当0≤x <3时,f x >2f x ,所以当x ∈0,3 时,g x >0,从而g x 在0,3 上单调递增,又g x 是-3,3 上的奇函数,所以g x 在-3,3 上单调递增;考虑到g 1 =f 1 e 2=e 2e2=1,由e 2x f 2-x <e 4,得e 2x e 22-x g 2-x <e 4,即g 2-x <1=g 1 ,由g x 在-3,3 上单调递增,得-3<2-x <3,2-x <1,解得1<x <5,所以不等式e 2x f 2-x <e 4的解集为1,5 ,故选:B .17.(2022·重庆南开中学高三阶段练习)公元656年,唐代李淳风注《九章》时提到祖暅的开立圆术.祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”,意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.上述原理在中国被称为祖暅原理,我们可以应用此原理将一些复杂几何体转化为常见几何体的组合体来计算体积.如图,将双曲线C :y 2-x 2=5与直线x =±2所围成的平面图形绕双曲线的实轴所在直线旋转一周得到几何体Γ,下列平面图形绕其对称轴(虚线所示)旋转一周所得几何体与Γ的体积相同的是( )A.图①,长为6、宽为4的矩形的两端去掉两个弦长为4、半径为3的弓形B.图②,长为25、宽为4的矩形的两端补上两个弦长为4、半径为3的弓形C.图③,长为6、宽为4的矩形的两端去掉两个底边长为4、腰长为3的等腰三角形D.图④,长为25、宽为4的矩形的两端补上两个底边长为4、腰长为3的等腰三角形【答案】B【解析】由y 2-x 2=5x =2得:y =±3,则当y =t 5<t <3 与C 相交于两点时,内圆半径r =t 2-5,则在该位置旋转一周所得圆环面积为4π-t2-5 π=9-t 2 π;将所有图形均以矩形的中心为原点,以对称轴为y 轴建立平面直角坐标系,试卷第2页,共40页对于③,双曲线实轴长为25,③中y 轴的最短距离为6-232-22=6-25,不合题意,③错误;对于④,几何体Γ母线长为6,④中y 轴的最长距离为25+232-22=45,不合题意,④错误;对于①,在y 轴的最短距离为6-2×3-32-22 =25,母线长为6,与几何体Γ吻合;当y =t 5<t <3 与①中图形相交时,两交点之间距离为232-3+5-t 2,此时圆环面积为4π-32+3+5-t 2 π=-t 2+23+5 t -14-25 π,不合题意,①错误对于②,在y 轴的最长距离为25+2×3-32-22 =6,矩形高为25,与几何体Γ吻合;当y =t 5<t <3 与②中图形相交时,两交点之间距离为232-t 2=29-t 2,此时圆面积为9-t 2 π,与圆环面积相同,满足题意,②正确.故选:B .18.(2022·辽宁·高三开学考试)已知函数f x 满足:f 1 =14,4f x f y =f x +y +f x -y x ,y ∈R ,则2022k =0f (k )= ( )A.12B.14C.-14D.-12【答案】A【解析】4f x f y =f x +y +f x -y x ,y ∈R ,令x =1,y =0得:4f 1 f 0 =2f 1 ,因为f 1 =14,所以f 0 =12,令x =n ,y =1得:4f n f 1 =f n +1 +f n -1 ,即f n =f n +1 +f n -1 ,则f n +1 =f n +2 +f n ,上面两式子联立得:f n +2 =-f n -1 ,所以f n -1 =-f n -4 ,故f n +2 =f n -4 ,故f x 是以6为周期的函数,且f 0 +f 1 +f 2 +f 3 +f 4 +f 5 =f 0 +f 1 +f 2 -f 0 -f 1 -f 2 =0,所以2022k =0f (k )= 3375k =0f (k )+f 2022 =0+ f 2022 =f 0 =12故选:A19.(2022·辽宁·沈阳市第四中学高三阶段练习)已知△ABC ,I 是其内心,内角A ,B ,C 所对的边分别a ,b ,c ,则( )A.AI =13(AB +AC )B.AI =cAB a +bACaC.AI =bAB a +b +c +cAC a +b +cD.AI =cAB a +b +bACa +c 【答案】C【解析】延长AI ,BI ,CI ,分别交BC ,AC ,AB 于D ,E ,F .内心是三角形三个内角的角平分线的交点.在三角形ABD 和三角形ACD 中,由正弦定理得:BD sin 12∠BAC =c sin ∠ADB ,CD sin 12∠BAC =bsin ∠ADC ,由于sin ∠ADB =sin ∠ADC ,所以BD c =CD b ,BD CD =c b ,BD BD +CD =c b +c ,BD a =c b +c ,BD =acb +c,同理可得c BD =AI DI ,c BD +c =AI DI +AI =AIAD ,AI =c ⋅AD BD +c =c ac b +c+c ⋅AD =b +c a +b +c ⋅AD .所以AD =AB +BD =AB +c b +c BC =AB +c b +c AC -AB=b b +c AB +c b +c AC,则AI =b +c a +b +c ⋅AD =b +c a +b +c ⋅b b +c AB +c b +c AC =b a +b +c AB +ca +b +c AC .故选:C 20.(2022·辽宁·东北育才学校高三阶段练习)已知不等式x ln x +(x +1)k <2x ln2的解集中仅有2个整数,则实数k 的取值范围是( )A.0,34ln 43 B.34ln 43,23ln2C.23ln2,+∞D.34ln 43,23ln2【答案】D【解析】由x ln x +x (k -ln4)+k <0可得:k (x +1)<x ln4-x ln x ,设f (x )=k (x +1),g (x )=x ln4-x ln x ,g (x )=ln4-ln x -1,x ∈0,4e时,g (x )>0,g (x )单调递增,x ∈4e ,+∞ 时,g (x )<0,g (x )单调递减,则当x =4e时函数g x 取得最大值,如示意图:由图可知,当k ≤0时,整数解超过了2个,不满足题意;当k >0时,需满足f 2 <g 2 f 3 ≥g 3 得:34ln 43≤k <23ln2.故选择:D .21.(2022·辽宁·东北育才学校高三阶段练习)若α,β∈0,π2,且(1+cos2α)(1+sin β)=sin2αcos β,则下列结论正确的是( )A.α+β=π2B.α+β2=π2C.2α-β=π2D.α-β=π2【答案】C【解析】∵α,β∈0,π2,∴cos α≠0.由(1+cos2α)(1+sin β)=sin2αcos β,可得2cos 2α(1+sin β)=2sin αcos αcos β,即cos α(1+sin β)=sin αcos β.∴cos α=sin αcos β-cos αsin β=sin α-β ,∴sin α-β =sin π2-α.∵α,β∈0,π2 ,∴-π2<α-β<π2,且0<π2-α<π2.由于函数y =sin x 在x ∈-π2,π2 上单调递增,∴α-β=π2-α,即2α-β=π2.故选:C .二、多选题22.(2022·福建省福州华侨中学高三阶段练习)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m .安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某试卷第2页,共40页季节每天几个时刻的水深.时刻水深/m 时刻水深/m 时刻水深/m 0:00 5.09:00 2.518:00 5.03:007.512:00 5.021:00 2.56:005.015:007.524:005.0若选用一个三角函数f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( )A.f x =2.5cos π6x+5 B.f x =2.5sin π6x+5C.该货船在2:00至4:00期间可以进港 D.该货船在13:00至17:00期间可以进港【答案】BCD【解析】依据表格中数据知,可设函数为f x =A sin ωx +k ,由已知数据求得A =2.5,k =5,周期T =12,所以ω=2πT =π6﹐所以有f x =2.5sin π6x +5,选项A 错误;选项B 正确;由于船进港水深至少要6.25,所以2.5sin π6x +5≥6.25,得sin π6x ≥12,又0≤x ≤24⇒0≤π6x ≤4π,则有π6≤π6x ≤5π6或13π6≤π6x ≤17π6,从而有1≤x ≤5或13≤x ≤17,选项C ,D 都正确.故选:BCD23.(2022·福建省福州屏东中学高三开学考试)已知函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,则( )A.函数f x +π12 为奇函数B.函数f x 在π3,π2上单调递增C.函数f x 的图像向右平移a a >0 个单位长度得到的函数图像关于x =π6对称,则a 的最小值是π3D.若方程f x =a 在π6,2π3 上有2个不同实根x 1,x 2,则x 1-x 2 的最大值为π2【答案】AC【解析】因为函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,所以,2×π3+φ=π2+k π,k ∈Z ,解得φ=-π6+k π,k ∈Z ,因为-π2<φ<π2,所以φ=-π6,即f x =3sin 2x -π6,所以,对于A 选项,函数f x +π12 =3sin2x ,是奇函数,故正确;对于B 选项,当x ∈π3,π2 时,2x -π6∈π2,5π6,由于函数y =sin x 在π2,5π6 上单调递减,所以函数f x 在π3,π2 上单调递减,故错误;对于C 选项,函数f x 的图像向右平移a a >0 个单位长度得到的函数图像对应的解析式为g x =3sin 2x -2a -π6,若g x 图像关于x =π6对称,则2×π6-2a -π6=π2+k π,k ∈Z ,解得a =-π6+k π2,k ∈Z ,由于a >0,故a 的最小值是π3,故正确;对于D 选项,当x ∈π6,2π3时,2x -π6∈π6,7π6,故结合正弦函数的性质可知,若方程f x =a 在π6,2π3上有2个不同实根x 1,x 2,不妨设x 1<x 2,则x 1-x 2 取得最大值时满足2x 1-π6=π6且2x 2-π6=5π6,所以,x 1-x 2 的最大值为π3,故错误.故选:AC 24.(2022·福建省福州屏东中学高三开学考试)已知定义在R 上的奇函数f x 图象连续不断,且满足f x +2 =f x ,则以下结论成立的是( )A.函数f x 的周期T =2B.f 2019 =f 2020 =0C.点1,0 是函数y =f x 图象的一个对称中心D.f x 在-2,2 上有4个零点【答案】ABC【解析】定义在R 上的奇函数f (x )图象连续不断,且满足f (x +2)=f (x ),所以函数的周期为2,所以A 正确;f (-1+2)=f (-1),即f (1)=f (-1)=-f (1),所以f (1)=f (-1)=0,所以f (2019)=f (1)=0,f (2020)=f (0)=0,所以B 正确;f x +2 =f x =-f -x ⇒f x +2 +f -x =0⇒f x 图象关于1,0 对称,所以C 正确;f (x )在[-2,2]上有f (-2)=f (-1)=f (0)=f (1)=f (2)=0,有5个零点,所以D 不正确;故选:ABC .25.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=-x 2-2x ,x <0f (x -2),x ≥0,以下结论正确的是( )A.f (-3)+f (2019)=-3B.f x 在区间4,5 上是增函数C.若方程f (x )=kx +1恰有3个实根,则k ∈-12,-14D.若函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则6i =1x i f x i 的取值范围是0,6【答案】BCD【解析】函数f (x )的图象如图所示:对A ,f (-3)=-9+6=-3,f (2019)=f (1)=f (-1)=1,所以f (-3)+f (2019)=-2,故A 错误;对B ,由图象可知f x 在区间4,5 上是增函数,故B 正确;对C ,由图象可知k ∈-12,-14,直线f (x )=kx +1与函数图象恰有3个交点,故C 正确;对D ,由图象可得,当函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则0<b <1,所以当b →0时,6i =1x i f x i →0;当b →1时,6i =1x i f x i →6,所以6i =1x i f x i 的取值范围是0,6 ,故D 正确.故选:BCD .26.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A.0<x 0<1eB.x 0>1eC.f (x 0)+2x 0<0D.f (x 0)+2x 0>0【答案】AD试卷第2页,共40页【解析】函数f (x )=x ln x +x 2,(x >0),∴f (x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f x 0 =0,即∴ln x 0+1+2x 0=0,∴f 1e =2e >0,当x >1e时,f x >0∵x →0,f (x )→-∞,∴0<x 0<1e,即A 选项正确,B 选项不正确;f x 0 +2x 0=x 0ln x 0+x 20+2x 0=x 0ln x 0+x 0+2 =x 01-x 0 >0,即D 正确,C 不正确.故答案为:AD .27.(2022·福建省福州第一中学高三开学考试)设函数f x =sinπxx 2-x +54,则下列结论正确的是( )A.f x 的最大值为1B.f x ≤4xC.曲线y =f x 存在对称轴D.曲线y =f x 存在对称中心【答案】ABC【解析】A :因为x 2-x +54=x -12 2+1≥1,sinπx ≤1,所以sinπx ≤x 2-x +54⇒sinπx x 2-x +54≤1⇒f (x )≤1,当且仅当x =12时,f x =1故A 正确;B :f x ≤4x 等价于sinπx ≤4x 3-x 2+54x ,设g x =x -sin x ,x ∈0,+∞ ,g (x )=1-cos x ≥0,所以函数g (x )=x -sin x 在x ∈[0,+∞)时单调递增,因此有g (x )≥g (0)=0-sin0=0,即x ≥sin x ,x ∈0,+∞ ,而设函数h (x )=x -sin x ,h (-x )=-x -sin (-x ) =x -sin x =h (x ),所以h (x )=x -sin x 是实数集上的偶函数,因此有x ≥sin x ,即πx ≥sinπx ,4x x 2-x +54 ≥4x ×1=4x ,f x ≤πx x 2-x +54≤πx ≤4x ,故B 正确;C :因为f 12+x -f 12-x =sinπ12+x 12+x -12 2+1-sinπ12-x 12-x -12 2+1=cosπx -cosπx x 2+1=0,所以曲线y =f x 关于直线x =12对称,故C 正确;D :设曲线y =f x 存在对称点,设为(a ,b ),则有f (a +x )+f (a -x )=2b ,当x =0时,则有2f (a )=2b ⇒f (a )=b ,当x =a 时,则有f (2a )=2b ⇒2f (a )=f (2a ),即sin2a π(2a )2-2a +54=2⋅sin a πa 2-a +54⇒2sin a πcos a π(2a )2-2a +54=2⋅sin a πa 2-a +54,因此有sin a π=0,所以a 为整数,b =f a =sin a πa 2-a +54=0,令x =12,f a +12 +f a -12=0,而f a +12 +f a -12 =sinπa +12 a +12-12 2+1+sinπa -12a -12-12 2+1=cos a πa 2+1-cos a π(a -1)2+1,显然f a +12 +f a -12=0不恒成立,故D 不正确.故选:ABC .28.(2022·福建省福州第一中学高三开学考试)甲箱中有5个红球,2个白球和3个黑球;乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以A 1,A 2,A 3表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A.P B =25B.P B |A 1 =511C.事件B 与事件A 1不相互独立D.A 1,A 2,A 3两两互斥【答案】BD 【解析】P A 1 =510=12,P A 2 =210=15,P A 3 =310,又P B |A 1 =511,P B |A 2 =411,P B |A 3 =411,故B 正确.故P (B )=P B |A 1 P A 1 +P B |A 2 P A 2 +P B |A 3 P A 2=511×12+411×15+411×310=922,故A 错误.P B P A 1 =922×12=944,P BA 1 =P B |A 1 P A 1 =522,故P B P A 1 ≠P BA 1 ,所以事件B 与事件A 1不相互独立,根据互斥事件的定义可得A 1,A 2,A 3两两互斥,故选:BD .29.(2022·福建·福州十八中高三开学考试)已知函数f (x )=sin (ωx +φ)(0<ω<10,0<φ<π)的部分图象如图所示,则下列结论正确的是( )A.ω=2B.ω=3C.f (x )在5π12,11π12上单调递增D.f (x )图像关于直线x =2π3对称【答案】AC【解析】由图可知: x =0,y =32;可得:ω×0+φ=2π3+2k π,k ∈Z ,所以φ=2π3+2k π,k ∈Z 又0<φ<π,所以φ=2π3;由x =π6,y =0,可得π6ω+2π3=π+2k π,k ∈Z ,所以ω=2+12k ,k ∈Z又0<ω<10,可得ω=2,所以A 选项正确,B 选项错误;所以函数的解析式为:f (x )=sin 2x +2π3 ,则f (x )在R 上的增区间满足:-π2+2k π≤2x +2π3≤π2+2k π,k ∈Z解得增区间为-7π12+k π,-π12+k π,k ∈Z ,所以当k =1时,函数f (x )的单调增区间为5π12,11π12,所以C 选项正确;当x =2π3时,f 2π3 =sin2π=0≠±1,所以直线x =2π3不是f (x )的对称轴,所以D 选项不正确;故选:AC .30.(2022·福建·闽江学院附中高三开学考试)关于函数f (x )=sin |x |+|sin x |,下列叙述正确的是( )A.f (x )是偶函数B.f (x )在区间π2,π单调递增C.f (x )的最大值为2 D.f (x )在[-π,π]有4个零点【答案】AC【解析】f (-x )=sin -x +sin (-x ) =sin x +sin x =f (x ),f (x )是偶函数,A 正确;x ∈π2,π 时,f (x )=sin x +sin x =2sin x ,单调递减,B 错误;试卷第2页,共40页f (x )=sin x +sin x ≤1+1=2,且f π2=2,因此C 正确;在[-π,π]上,-π<x <0时,f (x )=sin (-x )+(-sin x )=-2sin x >0,0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错.故选:AC .31.(2022·江苏·常州市平陵高级中学高三开学考试)已知关于x 的不等式a (x -1)(x +3)+2>0的解集是x 1,x 2 ,其中x 1<x 2,则下列结论中正确的是( )A.x 1+x 2+2=0 B.-3<x 1<x 2<1C.x 1-x 2 >4D.x 1x 2+3<0【答案】ACD【解析】由题设,a (x -1)(x +3)+2=ax 2+2ax -3a +2>0的解集为x 1,x 2 ,∴a <0,则x 1+x 2=-2x 1x 2=2a-3<0,∴x 1+x 2+2=0,x 1x 2+3=2a<0,则A 、D 正确;原不等式可化为f (x )=a (x -1)(x +3)>-2的解集为x 1,x 2 ,而f(x )的零点分别为-3,1且开口向下,又x 1<x 2,如下图示,∴由图知:x 1<-3<1<x 2,x 1-x 2 >4,故B 错误,C 正确.故选:ACD .32.(2022·江苏·盐城市伍佑中学高三开学考试)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,f (x )+f (x +6)=0,且对任意的x 1,x 2∈[-3,0],当x 1≠x 2时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1),则以下判断正确的是( )A.函数f (x )是偶函数B.函数f (x )在[-9,-6]上单调递增C.x =2是函数f (x +1)的对称轴D.函数f (x )的最小正周期是12【答案】BCD【解析】因为定义在R 上的函数f (x ) 满足f (x )+f (-x )=0,即f (-x )=-f (x ),故函数f (x )是奇函数,故A 错误;因为f (x )+f (x +6)=0,故f (x +6)=-f (x ),而f (-x )=-f (x ),所以f (x +6)=f (-x ),即f (x )的图象关于x =3对称,则x =2是函数f (x +1)的对称轴,故C 正确;因为f (x +6)=f (-x ),所以f (x +12)=-f (x +6)=f (x ),故12是函数f (x )的周期;对任意的x 1,x 2∈[-3,0] ,当x 1≠x 2 时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) ,即(x 1-x 2)⋅[f (x 1)-f (x 2)]<0,故x ∈[-3,0]时,f (x )单调递减,又因为f (x )为奇函数,所以x ∈[0,3]时,f (x )单调递减,又因为f (x )的图象关于x =3对称,故x ∈[3,6]时,f (x )单调递增,因为12是函数f (x )的周期,故函数f (x )在[-9,-6] 单调性与x ∈[3,6]时的单调性相同,故函数f (x )在[-9,-6]上单调递增,故B 正确,作出函数f (x )的大致图象如图示:结合图象可得知12是函数f (x )的最小正周期,D 正确;故选:BCD33.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f (x )=ln (x +1)x,下列选项正确的是( )A.函数f (x )在(-1,0)上为减函数,在(0,+∞)上为增函数B.当x 1>x 2>0时,f (x 1)x 22>f (x 2)x 21C.若方程f (|x |)=a 有2个不相等的解,则a 的取值范围为(0,+∞)D.1+12+⋯+1n -1 ln2≤ln n ,n ≥2且n ∈N +【答案】BD【解析】对于选项A :f x =ln x +1 x ,x ∈-1,0 ∪0,+∞ .则f x =x -x +1 ln x +1x +1 x2,令g x =x -x +1 ln x +1 ,x ∈-1,0 ∪0,+∞ ,则g x =-ln x +1 ,当x ∈-1,0 时,g x >0,g x 单调递增;当x ∈0,+∞ 时,g x <0,g x 单调递减.所以对任意x ∈-1,0 ∪0,+∞ ,g x <g 0 =0,即f x <0,所以f x 在-1,0 ,0,+∞ 都是减函数,故A 错误;对于选项B :令h x =x 2f x =x ln x +1 ,x ∈0,+∞ ,则h x =x +x +1 ln x +1x +1,当x ∈0,+∞ 时,h x >0,h x 单调递增,所以当x 1>x 2>0时,h x 1 >h x 2 ,即x 12f x 1 >x 22f x 2 ,所以f x 1 x 22>f x 2 x 12,故B 正确;对于选项C :因为y =f x 是偶函数,所以“方程f x =a 有2个不相等的解”等价于“方程f x =a 在0,+∞ 上有1个解”.由A 可知,f x 在0,+∞ 上单调递减,且x →0时,f x →1;x →+∞时,f x →0,所以,当0<a <1时,方程f x =a 在0,+∞ 上有1个解,即f x =a 有2个不相等的解,故C 错误;对于选项D :由A 知,f x 在0,12 上单调递减,则对任意x ∈0,12 ,f x ≥f 12 =2ln 32=ln 94>ln2,即ln x +1 x >ln2,所以当n ≥2时,ln 1n+1 1n>ln2,即1n ln2<ln n +1n.所以ln2=ln2,12ln2<ln 32,13ln2<ln 43,⋯,1n -1ln2<ln nn -1,以上式子相加得ln2+12ln2+13ln2+⋯+1n -1ln2≤ln2+ln 32+ln 43+⋯+ln n n -1,即1+12+13+⋯+1n -1 ln2≤ln n (n =2时,等号成立),故D 正确.故选:BD .34.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =A cos ωx +φ (A >0,ω>0,0<φ<π)的图象的一个最高点为-π12,3 ,与之相邻的一个对称中心为π6,0 ,将f x 的图象向右平移π6个单位长度得到函数g x 的图象,则( )A.g x 为偶函数B.g x 的一个单调递增区间为-5π12,π12试卷第2页,共40页C.g x 为奇函数D.g x 在0,π2上只有一个零点【答案】BD 【解析】由题意,可得T 4=π6--π12 =π4,所以T =π,可得w =2πT=2,所以f x =3cos (2x +φ),因为f -π12 =3cos 2×-π12 +φ =3,所以φ-π6=2k π,k ∈Z ,因为0<φ<π,所以φ=π6,即f x =3cos 2x +π6 ,所以g x =3cos 2x -π6 +π6 =3cos 2x -π6 ,可得函数g x 为非奇非偶函数,令-π+2k π≤2x -π6≤2k π,k ∈Z ,可得-5π12+k π≤x ≤π12+k π,k ∈Z ,当k =0时,函数g x 的一个单调递增区间为-5π12,π12;由2x -π6=π2+k π,,k ∈Z ,解得x =π3+k π,k ∈Z ,所以函数g x 在0,π2上只有一个零点.故选:BD35.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知f x 为函数f x 的导函数,若x 2f x +xf x =ln x ,f 1 =12,则下列结论错误的是( )A.xf x 在0,+∞ 上单调递增B.xf x 在0,+∞ 上单调递减C.xf x 在0,+∞ 上有极大值12D.xf x 在0,+∞ 上有极小值12【答案】ABC【解析】由x 2f x +xf x =ln x ,可知x >0,则xf x +f x =ln x x ,即xf x =ln xx.设g x =xf x ,则由g x =ln xx>0得x >1,由g x <0得0<x <1,所以g x =xf x 在1,+∞ 上单调递增,在0,1 上单调递减,所以当x =1时,函数g x =xf x 取得极小值g 1 =f 1 =12.故选:ABC .36.(2022·重庆·临江中学高三开学考试)若4x -4y <5-x -5-y ,则下列关系正确的是( )A.x <yB.y -3>x -3C.x >yD.13 y <3-x【答案】AD【解析】由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f x =4x -5-x ,则f x <f y .因为g x =4x ,h x =-5-x 在R 上都是增函数,所以f x 在R 上是增函数,所以x <y ,故A 正确;因为G x =x -3在0,+∞ 和-∞,0 上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y =13 x 在R 上是减函数,且x <y ,所以13 y <13 x ,即13y<3-x ,故D 正确.故选:AD .37.(2022·重庆·临江中学高三开学考试)已知函数f x 的定义域是0,+∞ ,且f xy =f x +f y ,当x >1时,f x<0,f 2 =-1,则下列说法正确的是( )A.f 1 =0B.函数f x 在0,+∞ 上是减函数C.f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =2022D.不等式f 1x -f x -3 ≥2的解集为4,+∞【答案】ABD【解析】对于A ,令x =y =1 ,得f 1 =f 1 +f 1 =2f 1 ,所以f 1 =0,故A 正确;对于B ,令y =1x >0,得f 1 =f x +f 1x =0,所以f 1x=-f x ,任取x 1,x 2∈0,+∞ ,且x 1<x 2,则f x 2 -f x 1 =f x 2 +f 1x 1 =f x 2x 1,因为x 2x 1>1,所以f x 2x 1<0,所以f x 2 <f x 1 ,所以f x 在0,+∞ 上是减函数,故B 正确;对于C ,f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =f 12022×2022 +f 12021×2021 +⋅⋅⋅+f 13×3 +f 12×2 =f 1 +f 1+⋅⋅⋅+f 1 +f 1 =0,故C 错误;对于D ,因为f 2 =-1,且f 1x =-f x ,所以f 12=-f 2 =1,所以f 14 =f 12 +f 12 =2,所以f 1x -f x -3 ≥2等价于f 1x +f 1x -3≥f 14 ,又f x 在0,+∞ 上是减函数,且f xy =f x +f y ,所以1x x -3 ≤141x >01x -3>0,解得x ≥4,故D 正确,故选:ABD .38.(2022·重庆南开中学高三阶段练习)在棱长为3的正方体ABCD -A 1B 1C 1D 1中,点P 在棱DC 上运动(不与顶点重合),则点B 到平面AD 1P 的距离可以是( )A.2B.3C.2 D.5【答案】CD【解析】以D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A (3,0,0),B (3,3,0),D 1(0,0,3),设P (0,t ,0),所以AP =-3,t ,0 ,AD 1 =-3,0,3 ,AB =(0,3,0),设n 1=x 1,y 1,z 1 为平面AD 1P 的法向量,则有: n 1 ⋅AP=-3x 1+ty 1=0n 1 ⋅AD 1 =-3x 1+3z 1=0,令y 1=3,可得n=(t ,3,t ),试卷第2页,共40页则点B 到平面AD 1P 的距离为d =AB ⋅nn=92t 2+9,因为0<t <3,所以距离的范围是(3,3).故选:CD .39.(2022·重庆南开中学高三阶段练习)已知a >b >1,则( )A.a ln b >b ln aB.e 1a-1b<a bC.a >e1-1bD.若b m =b +n ,则a m >a +n【答案】BC【解析】因为a >b >1,所以a ln b >b ln a ⇔ln b b>ln aa ,设函数f (x )=ln x x (x >1),f (x )=1-ln xx 2,当x ∈(1,e )时,f (x )>0,函数f (x )单调递增,当x ∈(e ,+∞)时,f (x )<0,函数f (x )单调递减,所以A 选项错误;因为a >b >1,所以由e 1a-1b<a b ⇔1a -1b <ln a -ln b ⇔ln a -1a >ln b -1b,设函数g (x )=ln x -1x ,g (x )=1x +1x 2,当x ∈(0,+∞)时,g(x )>0,函数g (x )单调递增,所以B 选项正确;因为a >e 1-1b ⇔ln a >1-1b ,设函数h (a )=ln a -1-1a ,所以h (a )=a -1a 2,当a ∈1,+∞ 时,h (a )>0,函数h (a )单调递增,当a ∈0,1 时,h (a )<0,函数h (a )单调递减,所以h (a )>h (1)=0,即ln a -1-1a >0⇒ln a >1-1a,因为a >b >1,所以1a <1b ⇒1-1a >1-1b ,因此ln a >1-1a >1-1b,所以C 选项正确.令b =2,m =0,则有n =-1,又令a =3,所以a m =a 0=1,a +n =2,显然不成立,所以D 选项错误,故选:BC40.(2022·辽宁·高三开学考试)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( )A.52B.32C.132D.172【答案】AC【解析】方法一(几何法,双曲线定义的应用)情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为B ,所以OB ⊥F 1N ,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的左支,OB =a ,OF 1 =c , F 1B =b ,设∠F 1NF 2=α,由即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a52a -32a +2b =2a ,2b =a ,∴e =52选A 情况二若M 、N 在双曲线的两支,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,所以OB =a ,OF 1 =c ,F 1B =b ,设∠F 1NF 2=α,由cos ∠F 1NF 2=35,即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a 32a +2b -52a =2a ,所以2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a2=132选C方法二(答案回代法)A 选项e =52特值双曲线x 24-y 2=1,∴F 1-5,0 ,F 25,0 ,过F 1且与圆相切的一条直线为y =2x +5 ,∵两交点都在左支,∴N -655,-255 ,∴NF 2 =5,NF 1 =1,F 1F 2 =25,则cos ∠F 1NF 2=35,C 选项e =132特值双曲线x 24-y 29=1,∴F 1-13,0 ,F 213,0 ,过F 1且与圆相切的一条直线为y =23x +13 ,∵两交点在左右两支,N 在右支,∴N 141313,181313 ,∴NF 2 =5,NF 1 =9,F 1F 2 =213,则cos ∠F 1NF 2=35,解法三:依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为G ,若M ,N 分别在左右支,因为OG ⊥NF 1,且cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,又OG =a ,OF 1 =c ,GF 1 =b ,设∠F 1NF 2=α,∠F 2F 1N =β,在△F 1NF 2中,有NF 2 sin β=NF 1 sin α+β=2csin α,故NF 1 -NF 2 sin α+β -sin β=2c sin α即a sin α+β -sin β=c sin α,试卷第2页,共40页所以a sin αcos β+cos αsin β-sin β=csin α,而cos α=35,sin β=a c ,cos β=b c ,故sin α=45,代入整理得到2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a 2=132若M ,N 均在左支上,同理有NF 2sin β=NF 1sin α+β=2c sin α,其中β为钝角,故cos β=-bc,故NF 2 -NF 1 sin β-sin α+β=2c sin α即a sin β-sin αcos β-cos αsin β=c sin α,代入cos α=35,sin β=a c ,sin α=45,整理得到:a 4b +2a=14,故a =2b ,故e =1+b a 2=52,故选:AC .41.(2022·辽宁·沈阳市第四中学高三阶段练习)将以下四个方程e x =a -x 、x 2=a -x (x >0)、x =a -x 、ln x =a -x 的正数解分别记为x 1,x 2,x 3,x 4,则以下判断一定正确的有( )A.x 1<x 2<x 3<x 4 B.x 1+x 2+x 3+x 4=2aC.x 3-x 1=x 4-x 2D.x 1x 4=x 2x 3【答案】BC【解析】画出y =e x ,y =x 2x >0 ,y =x ,y =ln x ,y =a -x 的图象如下图所示,y =x y =a -x ⇒x =y =a 2,由图可知x 1,x 4关于x =a 2对称,x 2,x 3关于x =a2对称,所以x 1+x 4=a ,x 2+x 3=a ,则x 1+x 2+x 3+x 4=2a ,x 1-x 2+x 4-x 3=0,x 3-x 1=x 4-x 2,所以BC 选项正确.当a =2时,x 1+x 4=x 2+x 3=2且x 2=x 3=1,x 1<x 2=x 3<x 4所以A 选项不正确,对于D 选项,x 1x 4<x 1+x 422=1=x 2x 3,所以D 选项不正确.故选:BC42.(2022·辽宁·沈阳市第四中学高三阶段练习)已知函数f (x )在R 上有定义,记f (x )为函数f (x )的导函数,又f (2x -1)是奇函数,则以下判断一定正确的有( )A.f 4x -2 是奇函数 B.f x -1 +f 3x -1 是奇函数C.f 4x 2-2 是偶函数 D.f (-5x -1)是偶函数【答案】BCD【解析】若f x =x +1,则f 2x -1 =2x 为奇函数,而f 4x -2 =4x -1为非奇非偶函数,所以A 选项错误.由于f 2x -1 是奇函数,所以f -2x -1 =-f 2x -1 ,对于函数f x -1 +f 3x -1 ,f -x -1 +f -3x -1 =-f x -1 -f 3x -1 =-f x -1 +f 3x -1 ,所以f x -1 +f 3x -1 是奇函数,B 选项正确.对于函数f 4x 2-2 ,f 4-x 2-2 =f 4x 2-2 ,所以函数f 4x 2-2 是偶函数,C 选项正确.对于D 选项,先证明奇函数的导数是偶函数:若f x 是定义在R 上的奇函数,则f -x =-f x ,两边求导得f -x =-f x ,即-f -x =-f x ,即f -x =f x ,所以奇函数的导数是偶函数.然后证明f -5x -1 为奇函数:由于f 5x -1 =-f -5x -1 ,所以f -5x -1 为奇函数,所以f (-5x -1)是偶函数,D 选项正确.故选:BCD43.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x 的定义域为-∞,0 ∪0,+∞ ,图象关于y 轴对称,导函数为f x ,且当x <0时,f x >f xx,设a >1,则下列大小关系正确的是( )A.a +1 f 4aa +1 >2a f 2a B.f 2a >a f 2aC.4af a +1 a +1>a +1 f 4a a +1D.2f 2a <a +1 f 4a a +1 【答案】AD【解析】当x <0时,fx >f x x ,即f x -f x x =xf x -f x x>0,所以xf (x )-f (x )<0,构造函数g x =f x x ,则g(x )=xf (x )-f (x )x 2<0,∴当x <0时,g x 单调递减,又由题意可得f x 是偶函数,∴g x 是奇函数,则当x >0时,g x 也单调递减.对于A ,∵a >1,∴0<4a a +1<4a 2a=2a ,∴g 4aa +1 >g 2a ,即f 4a a +1 4a a +1>f 2a 2a ,∴a +1 f 4a a +1 >2a f 2a ,故A 正确;对于B ,∵a >1,∴2a >2a >0,∴g 2a <g 2a ,即f 2a2a <f 2a 2a,可得f 2a <a f 2a ,故B 错误;对于C ,∵a >1,a +1-4a a +1=a -1 2a +1>0,即a +1>4a a +1>0,∴g a +1 <g 4aa +1 ,即f a +1 a +1<f 4a a +1 4a a +1,∴4af a +1 a +1<a +1 f 4aa +1,故C 错误;对于D ,∵a >1,2a -4a a +1=2a 2+2a -4a a +1=2a a -1 a +1>0,∴2a >4aa +1>0,g 2a <g 4a a +1 ,即f 2a 2a <f 4a a +1 4a a +1,∴2f 2a <a +1 f 4a a +1 ,故D 正确.故选:AD .44.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x =sin ωx +φ ω>0,φ∈R 在区间7π12,5π6上单调,且满足f 7π12=-f 3π4 有下列结论正确的有( )A.f 2π3 =0B.若f 5π6-x =f x ,则函数f x 的最小正周期为π;试卷第2页,共40页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省各地市高考数学最新试题大汇编:第16部分算法框图与选
修系列
一、选择题:
1.(福建省福州市2011年3月高中毕业班质量检查理科)某程序框图如图所示,则该程序运行后输出的S的值为( C )
A.1
B.1
2
C.
1
4
D.
1
8
2.(福建省福州市2011年3月高中毕业班质量检查文科对任意非零实数a,b,若a b
⊗的运算规则如右图的程序框图所示,则(32)4
⊗⊗的值是( C).
A.0
B.1 2
C.3
2
D.9
3.(福建省厦门市2011年高三质量检查文科)执行右边的程序框图,输出的S等于( C )
A.3
4
B.
4
5
C.5
6
D.
6
7
4.(福建省厦门市2011年高三质量检查理科)右图是判断“美数”的流程图,在[30,40]内的所有整数中,“美数”的个数是( C )
A.1 B.2
C.3 D.4
5.(福建省莆田市2011年高中毕业班质量检查理科)某程序框图如右图所示,若该程序运行后
输出n 的值是4,则自然数0S 的值为
( C )
A .3
B .2]
C .1
D .0
6.(福建省古田县2011年高中毕业班高考适应性测试文科) 某程序框图如图所示,该程序运行后输出i 的值是( B
A .63
B .31
C .27
D .15
7.(福建省三明市2011年高三三校联考理科)如图是将二进制数11111(2)化为
十进制数的一个程序框图,判断框内应填入的条件是( D ) A .i ≤5 B .i ≤4 C .i >5 D .i >4
二、解答题:
8 (福建省福州市2011年3月高中毕业班质量检查理科)(本小题满分7分)选修4-2:矩阵与变换
(第9题)
已知二阶矩阵M 有特征值3λ=及对应的一个特征向量111⎡⎤
=⎢⎥⎣⎦
e ,并且矩阵M 对应的变换将
点(1,2)-变换成(9,15). 求矩阵M .
解:设M =a
b c
d ⎡⎤⎢
⎥⎣⎦,则a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=311⎡⎤⎢⎥⎣⎦=33⎡⎤
⎢⎥⎣⎦,故3,3.a b c d +=⎧⎨+=⎩
……………3分
a b c d ⎡⎤⎢⎥⎣⎦12-⎡⎤⎢⎥⎣⎦=915⎡⎤
⎢⎥⎣⎦,故29,215.a b c d -+=⎧⎨-+=⎩
……………5分 联立以上两方程组解得a =1-,b =4,c =3-,d =6,故M =1436-⎡⎤
⎢⎥
-⎣⎦
. ………7分 9.(福建省福州市2011年3月高中毕业班质量检查理科)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,已知曲线C 的参数方程是22sin ,
2cos x y αα=+⎧⎨=⎩
(α是参数).
现以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,写出曲线C 的极坐标方程. 解:曲线C 的直角坐标方程是22(2)4x y -+=,……3分 因为222x y ρ+=,cos y ρθ=,…5分
故曲线C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=.……7分
10.(福建省福州市2011年3月高中毕业班质量检查理科)(本小题满分7分)选修4-5:不等式选讲.解不等式2142x x +-->. 解:令214y x x =+--,则
1521334254x x y x x x x ⎧
---⎪⎪
⎪
=--<<⎨⎪
⎪+⎪⎩
, ,, ,, .≤≥ .......3分
作出函数214y x x =+--的图象,
它与直线2y =的交点为(72)-,和5
23⎛⎫ ⎪⎝⎭
,.
.......6分 所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭
,,.
.......7分 11.(福建省古田县2011年高中毕业班高考适应性测试理科)选修4-1:几何证明选讲
如图,圆O 的直径AB=10,弦DE ⊥AB 于点H , HB=2 . (1)求DE 的长;
(2)延长ED 到P ,过P 作圆O 的切线,
切点为C ,若PC=25,求PD的长。
解:(1)AB为圆O的直径,AB⊥DE,DH=HE,
DH2
=AH·BH=(10-2)×2=16, DH=4,DE=8
(2) PC切圆O于点C,PC2
=PD·PE,
()2
52=PD·(PD+8), PD=2。
20.(福建省古田县2011年高中毕业班高考适应性测试理科)选修4—4:坐标系与参数方程
已知曲线1C 的极坐标方程为θρcos 6=,曲线2C 的极坐标方程为4
π
θ=()R ∈ρ,
曲线1C 、2C 相交于点A ,B 。
(1)将曲线1C 、2C 的极坐标方程化为直角坐标方程; (2)求弦AB 的长。
解:(1)y=x, x 2+y 2=6x (2) 圆心到直线的距离d=
2
2
3, r=3, 弦长AB=32 20.(福建省古田县2011年高中毕业班高考适应性测试理科)选修4-5:不等式选讲
已知不等式x 2+px +1>2x +p .
(1) 如果不等式当|p |≤2时恒成立,求x 的范围; (2) 如果不等式当2≤x ≤4时恒成立,求p 的范围.
12.(福建省四地六校联考2011届高三第三次月考理科)(本大题分两小题,每小题7分,共14分)
(1)极坐标系中,A 为曲线2
2cos 30ρρθ+-=上的动点,B 为直线cos sin 70ρθρθ+-=的动点,求AB 距离的最小值。
解:圆方程为()2
2
14x y ++=,圆心(-1,0),直线方程为70x y +-=
B
B
圆心到直线的距离d =
=min AB
=2
(2)求函数
y=
解:
()()22223415100
10
y x x y =≤+∙-+-=∴≤
=
6125x =时等号成立。