减水剂与水泥的相容性
水泥与减水剂相容性的检验与探索

关于水泥与减水剂的相容性,发改委于2008年颁布并实施了行业标准JC/T1083《水泥与减水剂相容性试验方法》,使水泥行业对水泥与减水剂相容性的检验、评价有了标准依据。
我国水泥厂重视和控制水泥流变性能的历史较短,对水泥流变性的研究处于初级阶段。
修订与颁布《水泥与减水剂相容性试验方法》标准时,国内减水剂市场还是蔡系减水剂的天下,现在减水剂市场呈多元化状态,聚竣酸系减水剂成为市场主角。
减水剂市场的变化使得《水泥与减水剂相容性试验方法》在某些方面存在滞后的情况。
1水泥与减水剂相容性的现象特征关于水泥与减水剂相容性的现象特征,《水泥与减水剂相容性试验方法》对水泥与减水剂相容性的定义包含了初始流动性、流动性经时损失和减水剂用量三个要素。
实际上,在饱和掺量(或接近饱和掺量,下同)下的保水性也是水泥与减水剂相容性的一个重要方面。
要全面表征水泥与减水剂相容性,至少应包括以下指标:减水剂的饱和掺量、减水剂推荐掺量下的净浆初始流动度、减水剂推荐掺量下的净浆60min(30min)经时流动度、一定减水剂掺量下净浆的保水性。
《水泥与减水剂相容性试验方法》中定义的水泥与减水剂相容性未包含保水性,也未包含保水性检验方法。
某些减水剂和水泥虽然可以得到很大的净浆流动度,但如果已经产生明显泌水,则净浆流动度再大也是没有应用意义的。
上述表征水泥与减水剂相容性的指标,对应着混凝土性能的不同方面,全部被水泥的使用者所关注。
水泥厂对水泥与减水剂相容性的控制,应该至少包括上述4项指标。
水泥与减水剂相容性良好,应包括以下现象特征:饱和掺量点明确;饱和掺量不高,初始流动度较大;经时流动度损失较小;一定减水剂掺量时净浆没有明显泌水。
上述任何一个方面存在问题,均视为水泥与减水剂相容性不好。
某种与减水剂相容性不好的水泥,可能存在其中一个问题,也可能同时存在多个问题。
问题不同,给混凝土带来的影响不同,在水泥厂的质量控制方法、纠正措施也不同。
减水剂的饱和掺量是随减水剂掺量增加、净浆初始流动度不再明显增加的掺量,也可以是经时流动度损失不再明显减小的掺量。
混凝土减水剂密度、 与水泥相容性快速测定方法

DB53/T XXXXX—202030附录A(资料性附录)混凝土减水剂密度、与水泥相容性快速测定方法A.1试验材料、仪器A.1.1试验材料本方法所使用的材料为实际工程所用的水泥、减水剂、细集料和水,对各种材料的要求如下:a)测试前水泥、减水剂、细集料和水应提前放置在A.2要求的环境中直至恒温;b)细集料性能应满足本标准规定的连续级配以及有害物质含量要求;c)减水剂密度测试时应保证其温度为(20±1)℃,如有沉淀应滤去。
A.1.2仪器仪器要求如下:a)波美比重计,量程1.000 g/cm3~2.000 g/cm3,1支,精度为0.001 g/cm3;b)精密密度计,量程分别为1.000 g/cm3~1.100 g/cm3、1.100 g/cm3~1.200 g/cm3、1.200 g/cm3~1.300 g/cm3、1.300 g/cm3~1.400 g/cm3、1.400 g/cm3~1.500 g/cm3各1支,精度为0.001 g/cm3;c)超级恒温器或同等条件的恒温设备;d)水泥净浆搅拌机,其性能参数应符合《水泥净浆搅拌机》JC/T729的要求;e)净浆流动度试模,为深60 mm、顶内径Ф36 mm、底内径Ф60 mm的截顶圆锥体。
试模由耐腐蚀的、有足够硬度的、内壁光滑无暗缝的金属制成;f)玻璃板,边长为400 mm、厚度5 mm的平板玻璃,稠度试验每个试模应配备一个边长或直径约100 mm、厚度4 mm~5 mm的平板玻璃底板;g)刮刀;h)直尺,量程300 mm,分度值1 mm;i)天平,量程100 g,分度值0.01 g;量程1000 g,分度值1 g;j)烧杯,容量400 mL;k)量筒,容量250 mL,分度值1 mL;l)抹刀。
A.2环境条件A.2.1试验室的温度应保持在(20±2)℃,相对湿度应不低于50 %。
A.2.2水泥试样、拌合水、仪器和用具的温度应与试验室一致。
影响水泥与减水剂相溶性的原因分析及解决方法

19 .8 20 .2
23 -5 22 . 4
取回水泥样
21 . 8
2. 02 2
58 . 4
26 . 9
6. 24 2
29 . 0
2 1 . 4
11 对 水 泥 的分 析 .
从工地现场 取回的减水剂 与不同时间生 产的水泥进 行净浆流动 度 试验 。试验结果见表 1 。
[ 范江 团. 1 ] 灰土 挤密桩法 在公路软 土地基处 理的应用 『. J 山西 建筑 ,0 8 3 (6 : ] 20 ,4 2 )
2 8 2 9 7-7.
23 公 路 施 工 的周 围环 境 . ① 公路施工 中对周围环境 的影 响, 如处理地基 时的振动 、 噪声及地
表 4 不同时间采购 的熟料化学成分 、 率值 、 矿物组成 采购熟料时间平均值
L s os SO i2
减水剂掺量
% 25 .
25 .
净浆流动度, m m
S % O3 23 _5
24 .2
初 始 20 5
26 4
3 0
mi n
6 mi 0 n
21 3
24 2
l9 9
坍落度损失大的问题。现分别为这两大原因作分析。
化学成分/ %
A2 l 03 F2 e 03 C .2 27 .8
2 .1 04 2 .8 02
51 .9 5O .8
31 .6 31 .8
6 .1 28 6 .4 27
表 2 同一水泥与不同减水剂的相容 性试验
减水剂试验代号 减 水剂掺量
I减 水剂 Ⅱ减 水剂 25 . 25 . % S % O3 23 _5 23 _5
O2 .7
改善水泥与减水剂相容性的技术措施

1 1减 水 剂 的 定义 .
据 J / l 8 — 0 8 《 C T 0 320 混凝 土 外 加剂 定 义 、分
这是 我 国在水 泥混 凝土 里掺 加外 加剂 的最 早记载 ,
我 国正式 使用 减水剂 是在 2 世 纪5 年代 ,使用 以亚 0 0 硫 酸 盐法 造纸 的纸浆 废 液 、制 糖 工业废 蜜 为原料 的
场 份额 ;2 世纪 8 年代末 , 日本开 发 了 以芳香 族氨 0 0
物) ,也在 国 内得到开发 或 由外商 引进 。2 世 纪9 年 0 0 代, 随着 大 型 、超 大 型基础 设施 建设 的开展 , 以及混 凝 土强度 等 级进一 步提 高, 筋配 置更 加密集 , 于 钢 对
混凝 土 降低 水胶 比、提 高 拌合 物 流动 性 的要 求 愈
研 究 所 成 立 后 不 久 ,研 制 成 功 了松 香 热 聚 物 引气 剂 ,这 是我 国最早 的混凝 土外 加剂 。2 世纪 5 年代 0 0 初, 在建 设塘 沽新 港工 程 中加入松 香热 聚物 引气 剂,
建筑材料及减水剂使用 的例证 。
2 减 水 剂 的作 用 机 理
2 1减水剂在水泥颗粒上 的吸 附 .
基 磺酸 盐和 苯酚类 化合 物 的 甲醛 缩聚 物 为主要 成分 的氨 基磺 酸 系高效 减水 剂 ,发现 它不 但有 较强 的分 散 能力 , 同时混凝 土坍 落度 比传 统 的水泥 分散 剂强 几倍 。从 此对 氨基 磺酸 系高 效减 水剂 的研 究就迅 速 发展起来 ,最早, 由日本专利P )- 49 J 113 1介绍用氨 1 基芳基磺酸和苯酚 与甲醛缩合而成的水泥分散剂 。 1 4 年 我 国最早 的建材 工业 管理 机构—— 华 北 99 窑业公 司成 立, 邀请后 来成为我 国混凝土 科学技术先
浅谈水泥与减水剂的相容性

浅谈 水泥与减 水剂 的相 容性
席 鹏 飞
( 中铁 十八局 集团第一工程有限公司 , 河北 涿 州 0 7 2 7 5 0 ) 摘 要: 随着现代混凝土技术的持 续提 高, 高效减水剂成 为增强混凝土功效的重要 成分之 一。 减水剂使 用不 当, 会 严重影响施 工质量 , 延 长施 工时问, 甚至会造成重大施工事故。不同的水 泥和 高效减水剂之 间相 容性 差别很 大, 这是现代混凝土生产和施 5 - 中常遇到的 问题 。 主要探讨 了影响水泥与高效减 水剂相容性的 因素与相 应的提 高措施 。 关键词 : 减水 剂; 相容性; 因素 研究表明,同种高效减水剂与不同厂家的硅酸盐水泥之间的相容 活性掺合料和外加剂是两个必要的条件。偏岭高土, 硅灰 , 矿渣等是经 性差异较大 ;相同厂家的水泥产品与不 同高效减水剂之间的相容性差 常使用的掺合材料 。 各种掺合材料的化学 眭质不同, 对混凝土产生的作 异也较大。 在生产实践中发现, 有些水泥与高效减水剂之间相容 陛较差, 用也不同,同时也深刻影响着外加剂作用的发挥。在当今的水泥生产 有些水泥掺人高效减水剂后, 流动度严重减弱需 要掺入非常多 的附加 中, 煤矿粉和矿渣是最受欢迎的掺合材料 。煤矿粉外形是球状 , 表层是 材料才能使流动度有所改善洧 的水泥掺人某些高效减水剂流动度不存 经过熔融过程而形成的琉体, 内部是多孔的球状材料。 煤矿粉对减水剂 而且可 以改变水泥的流变性能 , 从而改善水泥与减水 在, 而且掺入其它高效减水剂流动度增加也很少。因此 , 解决水泥与减 的吸附比水泥弱, 水剂的相容性问题迫在眉睫。要解决这一问题既要从水泥的生产过程 剂的相容陛。普通的煤矿粉又叫煤灰粉 , 一般含碳量偏大。当减水剂存 掺杂煤矿粉在水泥浆体初始流动初时作用十分明显 , 后期作用减 人手 , 也应该从实际施工过程中寻找途径 , 从减水剂方面人手 , 寻找合 在时 , 适 的减 水剂 弱。粒化高炉矿渣具有胶凝陛, 火山灰性和微填充效应。粉磨成颗粒以 1影响水泥与减水剂相容性的因素 后形状不佳 , 一般属 于多角型。高炉矿渣与水泥颗粒的接触点小 , 当掺 1 . 1 水泥熟料中的矿物含量 。 水泥熟料中四大矿物质对外加剂的吸 入水泥中取代部分水泥后置换出其中的水分 ,由于矿渣的需水量较水 附能力 由小 到大 的排序是 : C 2 S < C 3 S < C . A F < C  ̄ A 。c 和C , A F特别是 泥的少 , 这就使用于浆体流动的水相对较 多, 因此可以提高流动性 , 提 C A与 ̄ 3 - J K 剂的相容『 生 最差。 由于不同地 区的土质不同, 土壤中的各种 高水泥与减水剂的相容性。此外 , 矿渣粉颗粒排斥水 , 对减水剂的吸附 矿物含量差别较大 ,由此就导致不同地区的厂家生产的高效减水剂与 作用小, 因此用矿渣代替部分水泥能够改善浆体的流动效果。 2 改善高 效减 水剂与 水泥 相容 性可 采取 的措施 水泥的相容性不同。不同 C A含量的硅酸盐水泥对减水剂的吸附量也 证 明这一点华 北的水泥厂与华南水泥厂以及珠江流域水泥厂水泥中的 2 1 减小水泥比表面积。 一般来说 比表面积较小的水泥与减水剂的 水化速度会大大加快 , 水化产物也会 C A含量分别为 1 0 A 5 %、 5 . O O %和 2 . 8 2 %, 其A F和 N F 减水剂 的表观 : 吸 相容性较好 。水泥比表面积过大 , 附量的顺序为华 北 >华南 >珠江 。 水泥中某种元素含量过高时 , 则水泥 被包裹在没有水化的水泥颗粒与减水剂表面 ,同时也会增强水泥颗粒 吸附咸水剂 的能力会严重发生变化 , 影响施工作业。 对减水剂的吸附能力, 减弱减水剂的分散效果。 减小水泥表面积的方法 不同的厂家由于选取的生产材料不 同, 对水 假如水泥中主要矿物硅酸盐含量不足,那么则会形成非常多的絮 在于选择颗粒较小的水泥。 凝结构 , 从而降低水泥与减水剂的相容性。 泥颗粒大小的控制也不同, 在选择施工所用的水泥材料时 , 应该尽量选 1 _ 2 水泥含碱量的大小。 水泥 中的碱主要来 自烧制石灰时所用的页 择小颗粒水泥。 岩、 石灰石以及混凝土等材料。碱含量的高低主要是根据 N a = O和 K 2 0 2 . 2 改变高效减水剂的掺加方法。减水剂的掺加方法一般包括先掺 含量的高低来判断。在水泥生产过程中碱的主要作用是通过一系列化 法 、 同掺法 、 后掺法与滞水法等几种经常使用的方法 。不同的掺加方法 学反应表现出来的。 碱能够改变水泥标准需水程度。 使水泥吸水量增大 对其与水泥 的相容 陛作用不 同。因此 , 选择合适的掺加方法非常重要。 或者是减。 但是, 水泥成分不同, 矿物质与碱的化学反应速度也不同, 即 掺加方法的选择收到施工地点, 施工季节和施工方法的影响。不同的掺 碱的可涪陛不同。影响水泥与减水剂相容性 的直接因素是可洛 『 生 碱的 合方法也都有优势和局限陛。例如 , 高效减水剂后掺法能够克服浆体在 含量。 每一种水泥都存在可溶性碱含量的最佳值。 把握好最佳值是合理 运输过程中的分层效果 , 较小运输损耗, 塑化效果好 。同掺法能够使游 使得水泥的分散作用减弱。 滞水法能显著提 使用水泥的关键因素。另外, 碱在影响水泥的同时也会影响减水剂作用 离的高效减水剂数量减少 , 的发挥。碱在使用中与减水剂发生化学反应 , 改变减水剂性能 , 从而降 高减水剂的塑化作用效果, 提高减水剂对水泥的适应性 。后掺法不仅可 低或者提高水泥与减水剂的可溶 f 作 用。 以克服拌合物在运输过程中的分层离析和塌落度损失, 减水剂的塑化作 1 . 3 石膏的含量。 在水泥的生产中, 必须加入石膏作为调节剂 。 作为 用效果及对水泥的适应陛也较好 。 原料 , 石膏是石膏矿渣水泥 、 石膏铝矾土膨胀水泥等的必备原料 , 在水 2 . 3掺加两种以上高效减水剂。 多种表面活性剂掺合后 , 会产生许多 泥生产 中 占有举 足轻 重 的地位 。 种不 同的作用 , 包括协和作用 、 负面协和作用以及不协和作用。掺加多 作为矿化剂 , 在生产水泥过程中, 石膏能够降低煅烧的温度 , 从而 种不 同的减水剂后 , 会产生许多种不 同的作用 , 比单独掺加任何一种减 保证生产的质量 , 并且节省煤的使用量。此外, 石膏还起到急凝剂的作 水剂的效果要好 。前提是要控制量的作用,将负面协调作用减小到最 适 当的参数控制 , 能够使减水剂的正 用, 使水泥凝结时间符合国标和用户要求 ; 在水泥生产 中加入一定成分 少。选取适当的高效减水剂品种 , 的石膏能够从强度 、 腐蚀f 生 等几个方面改善水泥的陛能。 石膏在水泥加 面协调作用发挥到最大 , 从而实现工程建筑质量更加标准 , 减少施工危 入水后 , 也就是水泥用到实际施工时 , 会 与水发生化学反应 , 生成碳酸 险 系数 。 结 束语 钙, 在这个过程 中伴随着放热的过程 , 并且在冷却以后 固化水泥浆体 , 也就是所谓的急凝。 急凝剂使新拌混凝土失去可塑性 , 严重降低混凝土 高性能混凝土中, 高效减水剂 已成 了极其重要 的—个组成部允 它可 的质量, 因此应该加入适量的石膏。 石膏具有调节水泥凝结时间 , 提高早 以改善新拌混凝土的工作性能, 提高硬化混凝土的物理力学和耐久性性 期强度的作用 。 当水泥中未掺石膏时, 水泥中铝酸三钙( c ) 会与水迅速 能。但是在生产实践中发现 些水泥与高效减水剂之间相容性存在较 反应, 硅酸三钙( C 3 S ) 也会有显著的水化作用。 当水泥中石膏含量过多时, 大的差别。由于现代建筑技术的发展 , 对施工的要求提高 , 因此对水泥 则会导致冷凝作用过于强烈 , 类似于在混凝土中掺人过多石灰粉 , 严重 与Ne g  ̄ ! 的系数 日益严格。水泥与减水剂相容性这一环节的质量在将 如何改善水泥与减水剂的相容性 , 也将成 导致混凝土不能与石灰相融合 , 此时, 水泥与减水剂的融合性不存在 , 来的建筑施工中将更加重要。 施工无法进行。 当水泥中石膏含量太少的时候 , 则石灰 中的矿物质原料 为未来研究施工质量的一 — 个十分重要的课题。 参 考文 献 不足 , 无法与减水剂发生化学作用, 石灰质量下降 , 减水剂作用不明显 , 仍然会严重影响水泥与减水剂的相容性。因此石膏在水泥的生产过程 [ 1 传煊. 表面物理化学 . 北赢 科学技术文献 出版社, 2 0 1 3 . 中占有非常
浅谈水泥与高效减水剂的相容性

浅谈水泥与高效减水剂的相容性浅谈水泥与高效减水剂的相容性摘要本文以水泥为材料进行多种实验,证实水泥与减水剂之间的相容性关系。
关键词水泥高效减水剂相容性高效减水剂与水泥相容性的试验方法在我国已广泛应用,然而在实际应用中,并不是所有的减水剂与水泥都具有很好的相容性。
因此,在实际工程使用减水剂时了解减水剂与水泥的相容性是很必要的。
1相容性试验方法及原材料水泥与高效减水剂相容性的检测,最终都是要通过检验新拌混凝土的流动性能来进行的。
目前常用的研究方法有微型塌落度筒法及Marsh筒法。
1.1实验材料减水剂采用某外加剂厂生产的萘系高效减水剂,少数为羧酸系减水剂,水泥净浆水灰比固定为 0.35,萘系高效减水剂的掺量固定为 1.0%。
1.2实验方法按 GB/T8077-2000《混凝土外加剂匀质性试验方法》中规定的水泥净浆流动度试验方法进行。
用水泥净浆流动度作为评价相容性的宏观指标。
本试验综合微型塌落度仪法以及Marsh筒法来检测水泥与高效减水剂的相容性。
在高效减水剂的推广应用中,发现减水剂的减水功能与水泥的品种有关,即使是同一品牌、同一品种的水泥,减水剂的减水效果也会出现差异。
2 试验结果与讨论在评价水泥与高效减水剂相容性的时候,有必要将两种方法结合起来,才能做出较全面的评价。
但是,水泥与高效减水剂之间存在相容性问题,相容性不好,不仅会影响高效减水剂的减水率,更重要的是会造成混凝土严重的坍落度损失,使混凝土拌和物不能正常地运输与浇筑施工,降低混凝土强度。
2.1 两种方法试验结果存在的差异①基于的原理是不同的。
Marsh筒法是由加拿大Sherbrooke大学提出。
Marsh筒法是基于筒内水泥净浆在重力的剪切作用下往下流动,其流动的快慢与水泥净浆的表观粘度有关,表观粘度越大,流动越慢,Marsh时间就越长;微型塌落度仪法是基于水泥净浆在重力的作用下,自然摊平而流动开来的情况,反映的是重力在流动方向上的分力(相当于剪切应力)与水泥净浆的屈服应力之间的关系。
浅谈水泥与减水剂适应性问题

浅谈水泥与减水剂适应性问题摘要:本文通过对52组减水剂与水泥相容性试验,从水泥、减水剂以及环境的各个方面分析了影响水泥与减水剂适应性的因素.关键字:水泥、减水剂、适应性、试验、饱和掺量点引言外加剂被人称之为混凝土的第五组份,随着当今科学技术的不断发展,外加剂在混凝土中的应用越来越广泛。
它与水泥的适应性称为相容性,即将某种减水剂掺入某种水泥,由水泥质量引起浆体流动性大,经时损失小,称水泥与减水剂相容性好;或者获得相同流动度减水剂掺量小的水泥,则该减水剂与水泥相容性好。
也称之为水泥与外加剂的双向适应性。
在实际施工中,外加剂按规定掺量掺入混凝土中,如果不能产生应有的作用和效果,会使混凝土流动度降低或经时损失加大;外加剂掺量过多时,虽然流动性好,但又出现离析、泌水、板结等不正常现象,不仅使混凝土匀质性得不到保障,严重时还会导致硬化混凝土出现塑性收缩裂纹等工程质量问题。
这些都是减水剂与水泥适应性问题的表现。
例如,在泵送混凝土中经常会出现坍落度损失的问题,这一问题就是外加剂与水泥适应性典型的工程问题。
一、试验方法试验采用净浆流动度法,即将制备好的水泥浆体装入圆模(上口直径36mm、下口直径60mm、高度60mm,内壁光滑无暗缝的金属制品)后,稳定提起圆模,使浆体在重力作用下在玻璃板上自由扩展,稳定后的直径即流动度,流动度的大小反映了水泥浆体的流动性。
二、试验分析(一)饱和掺量点的确定我们对52家搅拌站的减水剂与水泥做了相容性试验,减水剂包括粉剂与液体,有高效减水剂和聚羧酸高性能减水剂。
试验的目的有两个,一是检验外加剂与水泥的适应性;二是确定最佳掺量。
试验中我们发现,按照试验掺量,外加剂从0.4%提高到1.4%时,不一定能找到饱和掺量点,根据标准要求此时需增加减水剂掺量,直到找到饱和点为止。
试验中发现个别减水剂掺量非常大,且流动性也不是很好,如果工程中使用了这种水泥和减水剂,一来增加了成本;二来流动性很差,如果是泵送混凝土,必定要出问题。
水泥与减水剂相容性的评价方法

水泥与减水剂相容性的评价方法随着预拌商品混凝土的飞速发展,商品混凝土配合比设计除了考虑商品混凝土的强度、耐久性之外,还更注重其工作性能。
水泥与减水剂的相容性是影响商品混凝土工作性能的重要因素。
目前,评价水泥与减水剂相容性通常采用水泥净浆流动度法,但实践表明,水泥净浆的流变性能不能完全代表商品混凝土的流变性能,这主要是由于分散相为水的水泥浆体系与分散相为砂浆的商品混凝土体系中的粒径差别太大所致。
本试验选择分散相为水泥浆的砂浆体系为对象来评价水泥与减水剂相容性,确定商品混凝土减水剂的饱和掺量及最佳掺量,并与净浆流动度法进行对比。
1试验材料与方法1.1试验材料试验用水泥为日本佐伯产的小野田水泥PⅡ52.5、PO42.5,其化学成分见表l,物理性能见表2。
外加剂为3种萘系减水剂,品质指标见表3。
1.2试验方法1.2.1水泥胶砂扩展度试验方法1)测试仪器①GB/T2419-2005中规定的水泥胶砂流动度截锥试模,高60mm,上FI内径70mm,下口内径lOOmm;②玻璃板500mm*500mm*5mm;③水泥胶砂拌合机。
2)材料一次试验材料用量为:水泥450g,水泥标准砂l350g,水225ml。
3)试验方法掺减水剂的砂浆先干拌30s,加拌和水,搅拌3min。
一次性将搅拌后的砂浆装入试模,刮平后,将试模提起。
扩展度值取砂浆纵向及横向直径的平均值。
一次性胶砂扩展度试验过程需时约3-5min。
如果减水剂掺量由低到高增加,预先计算并称取相邻掺量间减水剂的增加量;完成前一次扩展度的测量后,将砂浆倒回搅拌锅,然后将增加的减水剂加入,搅拌1min再测量。
按此方法做至两次扩展度几乎无变化或扩展度缩小,或砂浆出现泌水环为止。
一般3~4 次试验即可完成,全部试验约为20min左右。
1.2.2其他检验方法水泥的物理性能检验按GB1346-2000《水泥标准稠度用水量、凝结时间、安定性检验方法》及GB/T17671-1999《水泥胶砂强度检验方法(ISO法)》进行;水泥的净浆流动度及减水剂检验按GB/T8O77-2000《商品混凝土外加剂匀质性试验方法》、GB8076-1997(商品混凝土外加剂》及GB50119-2003《商品混凝土外加剂应用技术规范》进行;商品混凝土试验按JGJ55-2000(普通商品混凝土配合比设计规程》及GB/T5008O-2002(普通商品混凝土拌合物性能试验方法标准》进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减水剂与水泥的相容性
作者:韩越等
来源:《建筑科技与经济》2015年第10期
摘要:外加剂对不同厂家生产的水泥性能表现出不同程度的影响,本文分析了水泥各组分对减水剂性能的影响,提出了提高适应性的方法。
关键词:减水剂;相容性;水泥
The compatibility of superplasticizer with cement
Han Yue Zhang Xin-dong Niu Xin-pin Wang Chen
(College of water resources and architectural engineering, Tarim university, alar,xinjiang,843300, china)
Abstract: Admixture on cement properties of different manufacturers showed different degrees of impact, this paper analyzes the influence on performance of plasticizer of cement component, is proposed to improve the adaptability of the method.
Key words: plasticizer; compatibility; cement
1.问题的提出
外加剂的加入使混凝土流动性增强,水灰比降低,强度提高或水泥用量大幅度减少。
然而在实际使用过程中也出现了许多工程质量问题,如对于不同原材料的混凝土或砂浆,外加剂减水率和掺量不同;混凝土拌合物的流动性能在推荐用量下达不到要求;坍落度经时损失过大;有时出现严重的离析和泌水或凝结时间不正常等问题。
从实践中可看到,不同厂家生产的符合国家标准质量要求的水泥和外加剂在配制混凝土时性能有差异,甚至很大。
人们把这些问题归结为水泥与外加剂的相容性(也称适应性)。
随着外加剂日益广泛使用,水泥与外加剂相容性问题更加突出。
2.相容性
相容性是一个范围很广的概念,包括了外加剂与水泥及胶凝材料在相互作用中表现出来的砂浆及混凝土的工作性能、力学性能、耐久性能、体积稳定性等方面的变化的合理性和优劣性。
目前认识水泥与外加剂相容性的好外,通常是从掺外加剂后混凝土工作性能好坏的角度进行评价,即在相同条件下,混凝土拌合物和易性的好坏。
外加剂与水泥相容性好表现为在同一配合比、同一水泥用量条件下获得相同强度等级、相同流动性能的混凝土,所需外加剂用量少,混凝土拌合物坍落度经时损失小,混凝土拌合物抗离析、泌水性能好,凝结时间正常等。
3.评价方法
目前还没有一个评定水泥与外加剂相容性的标准试验方法,更多的是靠经验的积累。
采用较多的是测定掺外加剂的混凝土的坍落度及坍落度损失率、水泥净浆或砂浆流动度及其随外加剂掺量的变化等方法,但这些方法不能反映混凝土随时间及外加剂掺量变化其流动性的动态变化,而且工作繁琐,材料浪费大。
4.各因素对减水剂性能的影响
我国水泥品种较多,其中硅酸盐系列水泥有几种,即硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥和粉煤灰硅酸盐水泥,它们的熟料矿物组成的变化也很大。
从一些大中型水泥厂的统计结果看,主要矿物组成的波动范围:C3S为44%~61%,C3A为2.5%~15%,碱含量小于2%,其次是混合材的品种性能、水泥的细度、水泥生产工艺等也不相同。
这些都影响减水剂的使用效果。
4.1水泥中C3A、C3S的质量分数
通过水泥单矿物C3A、C4AF、C3S和C2S对减水剂溶液等温吸附的研究证明,对减水剂的吸附性铝酸盐大于硅酸盐,其吸附活性顺序C3A>C4AF>C3S>C2S。
由于C3A对减水剂选择吸附,使吸附量显著增大,这会降低减水作用。
高效减水剂在不同C3A质量分数的水泥,随着C3A质量分数增高,对减水剂的吸附增大,因此,减水作用减小。
4.2减水剂对石膏溶解度的影响
石膏作为缓凝剂在水泥熟料粉磨过程中加入。
由于粉磨过程中温度升高,使一部分二水石膏转变成半水石膏或无水石膏(硬石膏)。
另外,有少数水泥厂是用硬石膏作缓凝剂的。
水泥中石膏的添加量是与水泥熟料中C3A含量相匹配的,加水后在水泥中形成足够的钙矾石,控制C3A的水化,从而调整水泥的凝结时间。
木钙和糖蜜减水剂用于二水石膏作缓凝剂时,水泥混凝土凝结正常,但是当用于硬石膏(CaSO4)作缓凝剂的水泥中时就会产生异常凝结(假凝)。
其原因是木钙和糖蜜减水剂对二水石膏和硬石膏的溶解度影响程度不同。
4.3水泥的碱含量
水泥的碱(K2O+Na2O)含量对减水剂的作用有较大影响。
碱含量越大,流动度越小。
此外,水泥的碱含量高使凝结时间缩短、早期强度提高,而后期强度降低。
4.4水泥混合材的影响
吸附实验证明,高效减水剂NF的吸附活性:C3A>C3A+石膏>煤矸石>C3S>矿渣。
我国的硅酸盐水泥中大多掺有矿渣、火山灰、粉煤灰、煤矸石等混合材。
由于混合材的品种和性质不同,影响减水剂的作用。
通常掺粉煤灰和矿渣有利于提高水泥净浆流动性,而减水剂对掺煤矸石混合材的水泥分散的作用效果较差。
此外,掺膨胀剂时也会影响减水剂的作用效果。
4.5水泥的比表面积
水泥的比表面积影响减水剂掺量,比表面积越大,高效减水剂掺量越大,流动性提高越大。
掺减水剂时,水泥合适的比表面积应在4500~ 6000cm2/g,这时得到最高的强度。
5.结论
综上所述,对减水剂,特别是高效减水剂,用于C3S高、C3A低、含碱量低和比表面积较高的硅酸盐水泥时适应性较好。