2015-2016年云南省曲靖市罗平县大水井中学八年级上学期期末数学模拟试卷和答案

合集下载

曲靖市八中八年级上册期末数学模拟试卷含详细答案

曲靖市八中八年级上册期末数学模拟试卷含详细答案

曲靖市八中八年级上册期末数学模拟试卷含详细答案一、选择题1.在等式a 3•a 2•( )=a 11中,括号里填入的代数式应当是( ) A .a 7B .a 8C .a 6D .a 32.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做40个所用的时间与师傅做60个所用的时间相同.如果设徒弟每天做x 个,那么可列方程为( ) A .40606x x =+ B .40606x x =- C .40606x x=- D .40606x x=+ 3.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .88203x x+= B .88133x x =+ C .88203x x =+ D .81833x x+= 4.甲、乙两地相距360,km 新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2,h 设原来的平均速度为/,xkm h 根据题意:下列所列方程中正确的是( ) A .()3603602150%x x =++ B .()3603602150%x x -=+C .360360250%x x-= D .360360250%x x-= 5.若代数式11x x +-有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1 C .x≠1 D .x≥﹣1且x≠1 6.若等式(x +6)x +1=1成立,那么满足等式成立的x 的值的个数有( ) A .5个B .4个C .3个D .2个7.如图,在△ABD 中,AD=AB ,∠DAB=90⁰,在△ACE 中,AC=AE ,∠EAC=90⁰,CD ,BE 相交于点F ,有下列四个结论:①DC=BE ;②∠BDC=∠BEC ;③DC ⊥BE ;④FA 平分∠DFE .其中,正确的结论有( )A .4个B .3个C .2个D .1个8.如图是5×5的正方形方格图,点A ,B 在小方格的顶点上,要在小方格的项点确定一点C ,连接AC 和BC ,使△ABC 是等腰三角形,则方格图中满足条件的点C 的个数是( )A .4B .5C .6D .79.如图,矩形ABCD 中,已知2AD AB BAD =∠,的平分线交BC 于点E DH AE ⊥,于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①AED CED ∠=∠;②OE OD ,③BH HF =;④2BC CFHE -=.其中正确的有( )A .①②③B .①②④C .②③④D .①②③④10.如图,已知30MON ∠=︒,点1A ,2A ,3A ,在射线ON 上,点1B ,2B ,3B ,在射线OM 上,112A B B ∆,223A B B ∆,334A B B ∆,均为等边三角形.若11OB =,则889A B B ∆的边长为( )A .64B .128C .132D .256二、填空题11.已知为等腰三角形ABC ,其中两边,a b 满足,244|3|0a a b -++-=,则ABC ∆的周长为_______________________12.如图,BP 是ABC 中ABC ∠的平分线,CP 是ACB ∠的外角的平分线,如果20,ABP ∠=︒50ACP ∠=︒,则A ∠=____________.13.等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为__________.14.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.15.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.16.如果实数m ,n 满足方程组212m n m n -=⎧⎨+=⎩,那么2021(2)m n -=______.17.若(x-2)(x+3)=x 2+px+q,则p+q=____________. 18.如图所示的方格中,∠1+∠2+∠3=_____度.19.小敏设计了一种衣架,如图,在使用时能轻易收拢,然后套进衣服后松开即可,衣架杆18OA OB cm ==,若衣架收拢时,60AOB ∠=,则A 、B 的距离为_____cm .20.计算:201(1)3π-⎛⎫+-= ⎪⎝⎭____________.三、解答题21.计算: (1)23()x x ⋅; (2)(3)(2)x y x y +-;22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______________;(请选择正确的一个) A 、2222()a ab b a b -+=-, B 、22()()a b a b a b -=+-, C 、2()a ab a a b +=+.(2)应用你从(1)选出的等式,完成下列各题:①已知22412x y -=,24x y +=,求2x y -的值.②计算:2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 23.先化简:2222421121m m m m m m m ---÷+--+,其中m 从0,1,2中选一个恰当的数求值.24.化简:(1)2(2)(2)(2)42x y x y x y xy y ⎡⎤--+-+÷⎣⎦; (2)24442244a a a a a a --⎛⎫--÷⎪--+⎝⎭25.如图,等边ABC 中,D 为BC 边中点,CP 是BC 的延长线.按下列要求作图并回答问题:(要求:尺规作图,不写作法,保留作图痕迹)(1)作ACP ∠的平分线CF ;(2)作60ADE ∠=︒,且DE 交CF 于点E ;(3)在(1),(2)的条件下,可判断AD 与DE 的数量关系是__________;请说明理由.26.如图,等边△ABC 的边AC ,BC 上各有一点E ,D ,AE=CD ,AD ,BE 相交于点O .(1)求证:△ABE ≌△CAD ; (2)若∠OBD =45°,求∠ADC 的度数.27.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F .(1)求证:△DAE ≌△CFE ; (2)若AB =BC +AD ,求证:BE ⊥AF . 28.如图,已知直线y =13x -+1与x 轴、y 轴分别交于点A 、B ,以线AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90o 、点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),设△OPA 的面积为S .(1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的的取值范围;(3)△OPA 的面积能于92吗,如果能,求出此时点P 坐标,如果不能,说明理由. 29.如图所示,在不等边ABC 中,2AB =,3AC =,AB 的垂直平分线交BC 边于点E ,交AB 边于点D ,AC 垂直平分线交BC 边于点N ,交AC 边于点M .(1)若100BAC ∠=︒,求EAN ∠的度数; (2)若BC 边长为整数,求AEN △的周长. 30.观察下列各式 (x -1)(x +1)=x 2-1 (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)(2)你能否由此归纳出一般规律(x -1)(x n +x n-1+…+x +1) (3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】本题根据同底数幂的乘法法则计算32a a ,继而利用同底数幂除法运算法则求解本题. 【详解】 ∵325a a a =, ∴1156a a a ÷=;故括号里面的代数式应当是6a . 故选:C . 【点睛】本题考查同底数幂的运算法则,解题关键在于对乘除法则的熟练运用,其次注意计算仔细即可.解析:A 【解析】 【分析】根据题目中数量关系徒弟做40个所用的时间与师傅做60个所用的时间相同,可以列出相应的分式方程,本题得以解决. 【详解】 解:由题意可得,40606x x =+, 故选:A . 【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.3.B解析:B 【解析】 【分析】关键描述语为:“乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟”;等量关系为:乘公交车所用时间=乘坐私家车所用时间+13. 【详解】解:设乘公交车平均每小时走x 千米,根据题意可列方程为:88133x x =+. 故选:B . 【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解题关键.4.A解析:A 【解析】 【分析】设原来的平均速度为xkm/h ,则提速以后的平均速度为(1+50%)xkm/h ,根据提速以后时间缩短了2h ,列出方程即可. 【详解】设原来的平均速度为xkm/h ,则提速以后的平均速度为(1+50%)xkm/h ,由题意得:()3603602150%x x=++. 故选:A .本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列出方程.5.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.C解析:C【解析】【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有-1的偶次幂都等于1.【详解】如果(x+6)x+1=1成立,则x+1=0或x+6=1或-1,即x=-1或x=-5或x=-7,当x=-1时,(x+6)0=1,当x=-5时,1-4=1,当x=-7时,(-1)-6=1,故选C.【点睛】本题考查了零指数幂的意义和1的指数幂,关键是熟练掌握零指数幂的意义和1的指数幂. 7.B解析:B【解析】【分析】根据∠BAD=∠CAE=90°,结合图形可得∠CAD=∠BAE,再结合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根据全等三角形的性质即可判断①;根据已知条件,结合图形分析,对②进行分析判断,设AB与CD的交点为O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再结合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,进而判断③;对④,可通过作△CAD和△BAE的高,结合全等三角形的性质得到两个高之间的关系,再根据角平分线的判定定理即可判断.【详解】∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠CAD=∠BAE,又∵AD=AB,AC=AE,∴△CAD≌△EAB(SAS),∴DC=BE.故①正确.∵△CAD≌△EAB,∴∠ADC=∠ABE.设AB与CD的交点为O.∵∠AOD=∠BOF,∠ADC=∠ABE,∴∠BFO=∠BAD=90°,∴CD⊥BE.故③正确.过点A作AP⊥BE于P,AQ⊥CD于Q.∵△CAD≌△EAB,AP⊥BE,AQ⊥CD,∴AP=AQ , ∴AF 平分∠DFE . 故④正确.②无法通过已知条件和图形得到. 故选B. 【点睛】本题考查三角形全等的判定和性质,掌握三角形全等的判定方法和性质应用为解题关键.8.C解析:C 【解析】 【分析】根据等腰三角形的判定找出符合的所有点即可. 【详解】 解:如图所示:C 在C 1,C 2,C 3,C 4位置上时,AC =BC ; C 在C 5,C 6位置上时,AB =BC ; 即满足点C 的个数是6, 故选:C . 【点睛】本题考查了等腰三角形的判定,能找出符合的所有点是解此题的关键,注意:有两边相等的三角形是等腰三角形.9.D解析:D 【解析】 【分析】根据角平分线的定义可得45BAE DAE ∠=∠=︒,然后可证得ABE △是等腰直角三角形,根据等腰三角形的性质可得到=2AE ,从而得到AE AD =,然后利用全等三角形的判定定理证明ABE AHD △≌△,根据全等三角形的性质可得BE DH =,再根据等腰三角形两底角相等求出67.5ADE AED ==︒∠∠,根据平角等于180︒求出=67.5CED ︒∠,即可判断出①;求出67.5AHB ∠=︒,=22.5DHO ODH =︒∠∠,然后根据等角对等边可得OE OD OH ==,即可判断出②;求出EBH OHD =∠∠,==45AEB HDF ︒∠∠,然后利用全等三角形的判定定理证明BEH HDF △≌△,可得出BH HF =,即可判断③;根据全等三角形的性质可得DF HE =,然后根据HE AE AH BC CD =-=-,()2BC CF BC CD DF HF -=--=,即可判断④【详解】∵在矩形ABCD 中,AE 平分BAD ∠∴45BAE DAE ∠=∠=︒∴ABE △是等腰直角三角形,∴AE∵AD∴AE AD =在ABE △和AHD 中90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ABE AHD AAS △≌△∴BE DH =∴AB BE AH HD === ∴1(18045)67.52ADE AED ==︒-︒=︒∠∠ ∴=1804567.567.5CED ︒-︒-︒=︒∠∴=CED AED ∠∠,故①正确;∵AB AH = ∵1(18045)67.52AHB =︒-︒=︒∠,=OHE AHB ∠∠ ∴67.5OHE AED =︒=∠∠∴OE OH =∵9067.5=22.5DHO =︒-︒︒∠,=67.545=22.5ODH ︒-︒︒∠∴=DHO ODH ∠∠∴OH OD =∴OE OD OH ==,故②正确∵9067.522.5EBH =︒-︒=︒∠∴EBH OHD =∠∠∴在BEH △和HDF 中=22.5==45EBH OHD BE DH AEB HDF ∠=∠︒⎧⎪=⎨⎪∠∠︒⎩∴()BEH HDF ASA △≌△∴BH HF =,HE DF =,故③正确∵HE AE AH BC CD =-=-∴()()()2BC CF BC CD DF BC CD HE BC CD HE HE HE HE -=--=--=-+=+= ,故④正确综合所述,结论正确的有①②③④故答案选D【点睛】本题主要考查了全等三角形的判断与性质,等腰三角形的判定与性质,角平分线的性质,矩形的性质,灵活运用三角形的判定方法判定三角形全等,找出对应关系是解题的关键.10.B解析:B【解析】【分析】根据等腰三角形的性质以及平行线的性质得出112233////.B A A B A B 以及221222A B A B ==,得出231334422, .... 2n n n A B A B A B -===,进而得出答案.【详解】解:∵112A B B ∆ 是等边三角形,∴111211122,60A B A B A B B A B O =∠=∠=︒, ∵∠O=30°,∴2121290A A B A B O O ∠=∠+∠=︒,∵11211A B B OA B O ∠=∠+∠,∴1130O OA B ∠=∠=︒,∴111211,OB A B A B === 在212Rt A A B 中,∵22130A A B ∠=︒∴221222A B A B ==,同法可得231334422, (2)n n n A B A B A B -===,∴889A B B ∆的边长为:72128= ,故选:B.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出221222A B A B ==,得出231334422, .... 2n n n A B A B A B -===,进而发现规律是解题关键.二、填空题11.7或8【解析】【分析】先运用平方差公式将等式的前三项因式分解得,再根据非负性求出,的值,再代入求值即可.【详解】解:,,,,当腰为3时,等腰三角形的周长为,当腰为2时,等腰三角形的解析:7或8【解析】【分析】先运用平方差公式将等式的前三项因式分解得2(2)|3|0a b -+-=,再根据非负性求出a ,b 的值,再代入求值即可.【详解】解:244|3|0a a b -++-=,2(2)|3|0a b ∴-+-=,2a ∴=,3b =,∴当腰为3时,等腰三角形的周长为3328++=,当腰为2时,等腰三角形的周长为3227++=.故答案为:7或8.【点睛】此题考查了配方法的应用,三角形三边关系及等腰三角形的性质,解题的关键熟练掌握完全平方公式.12.60°【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠A解析:60°【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM-∠ABC=60°,故答案为:60°.【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握“一个三角形的外角等于与它不相邻的两个内角之和”是解题的关键.13.或【解析】【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【详解】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=3解析:75︒或15︒【解析】【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【详解】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=12∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75︒或15︒.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.14.a5+5a4b+10a3b2+10a2b3+5ab4+b5【解析】【分析】利用已知各项系数变化规律进而得出答案.【详解】解:可得:(a+b)4=a4+4a3b+6a2b2+4ab3+b4;解析:a5+5a4b+10a3b2+10a2b3+5ab4+b5【解析】【分析】利用已知各项系数变化规律进而得出答案.【详解】解:可得:(a+b)4=a4+4a3b+6a2b2+4ab3+b4;则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.15.【解析】【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:本题考查了同底数幂的乘法,利用错 解析:2019112-【解析】【分析】 根据题目所给计算方法,令23201911112222S ,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值.【详解】 解:令23201911112222S ,则22023401111122222S , ∴2020111222S S , ∴2020111222S ,则2019112S .故答案为:2019112-【点睛】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键. 16.1【解析】【分析】方程组中的两个方程相减可得,然后整体代入所求式子计算即可.【详解】解:对方程组,①-②,得,所以.故答案为:﹣1.【点睛】本题考查了二元一次方程组的解法和代数式求解析:-1【解析】【分析】方程组中的两个方程相减可得21m n -=-,然后整体代入所求式子计算即可.解:对方程组21{2m n m n -=+=①②,①-②,得21m n -=-, 所以()()20212021211m n -=-=-.故答案为:﹣1.【点睛】本题考查了二元一次方程组的解法和代数式求值,灵活应用整体的思想是解题的关键.17.-5【解析】【分析】利用多项式乘以多项式法则直接去括号,再得出p 和q 的值,进而得出答案.【详解】解:∵(x-2)(x+3)=x2+x-6=x2+px+q ,∴p=1,q=-6,∴p+q 的解析:-5【解析】【分析】利用多项式乘以多项式法则直接去括号,再得出p 和q 的值,进而得出答案.【详解】解:∵(x-2)(x+3)=x 2+x-6=x 2+px+q ,∴p=1,q=-6,∴p+q 的值为-5.故答案为-5.【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解题关键.18.135【解析】由题意得,在与中, ∵AB=DE, ∠ABC=∠ADE,BC=AD, , ,,又∵△DEF 是等腰直角三角形, ,.解析:135【解析】由题意得,在与中, ∵AB =DE ,∠ABC =∠ADE ,BC =AD ,()ABC ADE SAS ∴∆≅∆ , ,, 又∵△DEF 是等腰直角三角形, ,. 19.18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接,如图所示:∵,,∴是等边三角形,∴,故答案为:18.【点睛】本题考查了等边三角形解析:18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接AB ,如图所示:∵OA OB =,60AOB ∠=,∴AOB ∆是等边三角形,∴18AB OA cm ==,故答案为:18.【点睛】本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定方法是解题的关键. 20.10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.解析:10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.三、解答题21.(1)7x ;(2)22253x xy y +-【解析】【分析】(1)首先利用幂的乘方的性质进行计算,再利用同底数幂的乘法运算法则计算即可; (2)利用多项式的计算法则进行计算即可.【详解】(1)23()x x ⋅6x x =⋅7x =;(2)(3)(2)x y x y +-22263x xy xy y =-+-22253x xy y =+-.【点睛】本题主要考查了多项式乘多项式,以及幂的乘方和积的乘方,关键是掌握整式运算的各计算法则.22.(1)B ;(2)①3;②51100【解析】【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【详解】(1)根据图形得:22()()a b a b a b -=+-,上述操作能验证的等式是B ,故答案为:B ;(2)①∵224(2)(2)12x y x y x y -=+-=, 24x y +=,∴23x y -=; ②2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111223⎛⎫⎛⎫⎛⎫=-+- ⎪⎪⎪⎝⎭⎝⎭⎝⎭1111111111349495050⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1324354850495122334449495050=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ 515120=⨯ 51100=. 【点睛】本题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.23.21m +,2 【解析】【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把0m =代入计算即可求出值.【详解】解:2222421121m m m m m m m ---÷+--+222(2)(1)1(1)(1)2m m m m m m m --=-⋅++-- 21m =+ 因为m+10≠ ,m-10≠,m-20≠所以m 1≠- ,m 1≠,m 2≠当0m =时,原式2=.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.24.(1)y ;(2)22a a -+【解析】【分析】(1)先运用完全平方公式和平方差公式化简括号内,最后运用整式除法法则计算即可; (2)先将括号内通分计算,然后再对能因式分解的部分因式分解,最后运用整式除法法则计算即可.【详解】(1)原式()222244442x xy y x y xy y =-+-++÷ 222y y =÷=y ;(2)解:原式()22(44)442(2)a a a a a ----=⋅-- 2(4)(2)24a a a a a ---=⋅-- 22a a =-+.【点睛】本题考查了整式的混合运算和分式的混合运算,掌握并灵活运用相关运算法则和计算技巧是解答本题的关键.25.(1)见解析;(2)见解析;(3)AD DE =,见解析【解析】【分析】(1)根据角平分线的作法作图即可;(2)根据作一个角等于已知角的方法作图即可;(3)连接AE ,首先根据等边三角形的性质计算出30BAD EDC ∠=∠=︒,30DEC EDC ∠=∠=︒,进而得到CE CD BD ==,然后证明ABD ACE ∆≅∆可得AD AE =,再由60ADE ∠=︒,可得ADE ∆是等边三角形,进而得到AD DE =.【详解】(1)尺规作图,如下图;(2)尺规作图,如下图;(3)AD DE =理由如下:如图,连接AE∵等边ABC 中,D 为BC 边中点,∴BD DC =,90ADB ADC ∠=∠=︒,∵60B ADE ∠=∠=︒,∴30BAD EDC ∠=∠=︒,∵120ACP ∠=︒,CE 为ACP ∠的平分线,∴60ACE ECP ∠=∠=︒,∴30DEC ECP EDC ∠=∠-∠=︒,∴30DEC EDC ∠=∠=︒,∴CE CD BD ==,在ABD △和ACE △中,∵AB AC =,60B ACE ∠=∠=︒,BD CE =,∴ABD ACE SAS △≌△(),∴AD AE =,又∵60ADE ∠=︒,∴ADE 是等边三角形,∴AD DE =.【点睛】此题主要考查了基本作图,以及全等三角形的判定与性质,解题的关键是正确掌握全等三角形的判定方法.26.(1)见解析;(2)∠ADC =105°【解析】【分析】(1)根据等边三角形的性质可得AB=AC ,∠BAE =∠C=60 °,再根据SAS 即可证得结论;(2)根据全等三角形的性质可得∠ABE =∠CAD ,然后根据三角形的外角性质和角的和差即可求出∠BOD 的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC 为等边三角形,∴AB=AC ,∠BAE =∠C=60 °,在△ABE 与△CAD 中,∵AB=AC ,∠BAE =∠C ,AE=CD ,∴△ABE ≌△CAD (SAS );(2)解:∵△ABE ≌△CAD ,∴∠ABE =∠CAD ,∴∠BOD =∠ABO+∠BAO =∠CAD +∠BAO =∠BAC=60°,∴∠ADC =∠OBD+∠BOD =45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.27.(1)见解析;(2)见解析【解析】【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ; (2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论.【详解】证明:(1)∵AD ∥BC (已知),∴∠ADC =∠ECF (两直线平行,内错角相等),∵E 是CD 的中点(已知),∴DE =EC (中点的定义).∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC +AD ,∴AB =BC +CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AF .【点睛】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.28.(1)(4,3);(2)S=3342x +, 0<x <4;(3)不存在. 【解析】【分析】(1)直线y =13x -+1与x 轴、y 轴分别交于点A 、B ,可得点A 、B 的坐标,过点C 作CH ⊥x 轴于点H ,如图1,易证△AOB ≌△CHA ,从而得到AH =OB 、CH =AO ,就可得到点C 的坐标;(2)易求直线BC 解析式,过P 点作PG 垂直x 轴,由△OPA 的面积=1OA PG 2即可求出S 关于x 的函数解析式.(3)当S =92求出对应的x 即可. 【详解】解:(1)∵直线y =13x -+1与x 轴、y 轴分别交于点A 、B , ∴A 点(3,0),B 点为(0,1),如图:过点C 作CH ⊥x 轴于点H ,则∠AHC =90°.∴∠AOB =∠BAC =∠AHC =90°,∴∠OAB =180°-90°-∠HAC =90°-∠HAC =∠HC A .在△AOB 和△CHA 中,AOB CHA OAB HCA AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△CHA (AAS ),∴AO =CH =3,OB =HA =1,∴OH =OA +AH =4∴点C 的坐标为(4,3);(2)设直线BC 解析式为y =kx +b ,由B (0,1),C (4,3)得:143b k b =⎧⎨+=⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线BC 解析式为112y x =+, 过P 点作PG 垂直x 轴,△OPA 的面积=12OA PG ,∵PG =112y x =+,OA =3, ∴S =113(1)22x +=3342x +; 点P (x 、y )为线段BC 上一个动点(点P 不与B 、C 重合),∴0<x <4. ∴S 关于x 的函数解析式为S =3342x +, x 的的取值范围是0<x <4; (3)当s =92时,即339422x +=,解得x =4,不合题意,故P 点不存在. 【点睛】本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.29.(1)20°;(2)4【解析】【分析】(1)根据垂直平分线的性质得到EBA EAB ∠=∠和NAC NCA ∠=∠,再根据三角形内角和去算出角EAN ∠的度数;(2)根据三角形三边关系求出BC 长,再根据垂直平分线的性质证明AEN △的周长等于BC 的长.【详解】解:(1)∵DE 、MN 分别是线段AB 和线段AC 的垂直平分线,∴AE=BE ,AN=CN ,∴EBA EAB ∠=∠,NAC NCA ∠=∠,∵EAN BAC EAB NAC ∠=∠-∠-∠,∴()100EAN EBA NCA ∠=︒-∠+∠,∴()()10018010018010020EAN BAC ∠=︒-︒-∠=︒-︒-︒=︒;(2)在ABC 中,AC AB BC AC AB -<<+,即15BC <<,∵BC 边长是整数,∴BC 的长度可以取2、3、4,∵ABC 是不等边的,∴BC=4,由(1)知AE=BE ,AN=CN ,∴4AEN C AE EN AN BE EN NC BC =++=++==.【点睛】本题考查垂直平分线的性质,三角形三边关系和内角和,解题的关键是掌握垂直平分线的性质.30.(1)x 7﹣1;(2)x n+1﹣1;(3)2019312-. 【解析】【分析】 (1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7﹣1;(2)总结题中规律得:(x ﹣1)(x n +x n ﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312-. 【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。

云南省曲靖市八年级上学期期末数学试卷

云南省曲靖市八年级上学期期末数学试卷

云南省曲靖市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016八上·锡山期末) 下列各数中,是无理数的是()A .B .C .D .2. (2分)计算106×(102)3÷104之值为何()A . 108B . 109C . 1010D . 10123. (2分)下列根式中属最简二次根式的是()A .B .C .D .4. (2分)下列说法正确的是()A . 4的平方根是2B . 27的立方根是±3C . –8没有立方根D . 表示4的算术平方根5. (2分)“我们可以在同一条数轴上表示两个不等式的解集,观察数轴,找出它们解集的公共部分,从而得到不等式组的解集”在这种解不等式组的方法中所体现出来的数学思想是()A . 消元B . 换元C . 数形结合D . 分类讨论6. (2分)有意义,则x的取值为()A . x>3B . x>3或x<﹣3C . x≧3D . x≧﹣37. (2分)下列命题中,假命题是()A . 邻角相等的平行四边形是矩形B . 对角线垂直的平行四边形是矩形C . 四个角相等的四边形是矩形D . 对角线相等的平行四边形是矩形8. (2分)化简分式的结果为()A .B . +C .D .9. (2分) (2019八上·南浔月考) 如图,是一个6×6的正方形网格,每个小正方形的顶点都是格点,等腰△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有()A . 11个B . 10个C . 9个D . 8个10. (2分) (2020八上·射洪期中) 如图,用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件为()A . ∠B=∠DB . ∠C=∠EC . ∠1=∠2D . ∠3=∠411. (2分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A . 89B . 90C . 92D . 9312. (2分) (2019八上·重庆月考) 在平面直角坐标系中,一只蚂蚁从原点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.则的坐标是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2019·广州模拟) 据报载,有关数据计算精确度越来越高,飞船发射偏差仅为0.0000104,这个数用科学记数法应表示为________.14. (1分) (2016八上·桂林期末) “如果一个数是整数,那么它是有理数”这个命题的条件是________.15. (1分)不等式2x﹣4≥0的解集是________ .16. (1分)(2017·济宁模拟) 如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.17. (1分) (2017八下·云梦期中) 化简: =________.18. (1分)图中阴影部分是一个正方形,如果正方形的面积为64,则x的长为________ cm.三、解答题 (共8题;共70分)19. (10分)(2017·呼和浩特模拟) 计算与解方程组(1)()﹣2+|2 ﹣6|﹣;(2)解方程组:.20. (5分) (2018八上·泰州期中) 两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)21. (5分)先化简(),然后从﹣3≤x≤3的范围内选取一个合适的整数作为x 的值代入求值.22. (5分)解下列分式方程:23. (10分)(2020·枣阳模拟) 甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?24. (10分)(2014·百色) 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.25. (10分) (2019七下·东莞期末) 快递公司准备购买机器人来代替人工分拣已知购买一台甲型机器人比购买一台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?26. (15分)如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共70分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。

云南省曲靖市罗平县钟山一中2015_2016学年八年级数学上学期期末模拟试题(含解析)新人教版

云南省曲靖市罗平县钟山一中2015_2016学年八年级数学上学期期末模拟试题(含解析)新人教版

云南省曲靖市罗平县钟山一中2015-2016学年八年级数学上学期期末模拟试题一、选择题(共10小题,每小题3分,满分30分)1.如图所示的图形中为轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,83.下列分式是最简分式的是()A.B.C.D.4.若将分式中的字母x与y的值分别扩大为原来的10倍,则这个分式的值()A.扩大为原来的10倍B.扩大为原来的20倍C.不改变D.缩小为原来的5.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7.如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠18.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等9.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.410.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x米,则根据题意所列方程正确的是()A.﹣=2 B. =2+C.﹣=2 D. =2+二、填空题(24分)11.分解因式:3x2﹣6xy+3y2= .12.已知x+y=10,xy=20,则x2+y2= .13.化简: = .14.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.15.等腰三角形的两边长分别为4和9,则第三边长为.16.如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C1⊥AC1,垂足分别是B1、C1,那么B1C1= cm.17.若点M(a,3)和点N(2,a+b)关于x轴对称,则b的值为.18.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).三、解答题(每题66分)19.因式分解:(1)m2﹣4n2;(2)2a2﹣4a+2.20.解方程:(1)=﹣3(2)+=1.21.先化简,再求值:(1)(m+2﹣),其中m=.(2)(﹣4),其中x=﹣1.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)23.已知:,求:的值.24.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?25.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.2015-2016学年云南省曲靖市罗平县钟山一中八年级(上)期末数学模拟试卷(1)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图所示的图形中为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A,C,D都不是轴对称图形,只有B是轴对称图形.故选B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,8【考点】三角形三边关系.【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【解答】解:A、1+2=3,不符合三角形三边关系定理,故本选项错误;B、4+5=9,不符合三角形三边关系定理,故本选项错误;C、6+8>10,6+10>8,8+10>6,符合三角形三边关系定理,故本选项正确;D、5+8<15,不符合三角形三边关系定理,故本选项错误;故选C.【点评】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.3.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A.不能约分,是最简分式,B. =,C. =,D. =﹣1,故选:A.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.4.若将分式中的字母x与y的值分别扩大为原来的10倍,则这个分式的值()A.扩大为原来的10倍B.扩大为原来的20倍C.不改变D.缩小为原来的【考点】分式的基本性质.【分析】根据分式的性质:分子分母都乘以10,分式的值不变.【解答】解:由子分母都乘以10,分式的值不变,得分式中的字母x与y的值分别扩大为原来的10倍,则这个分式的值不变,故选:C.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.5.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠AD C,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC【考点】全等三角形的判定.【分析】根据全等三角形的判定方法SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:A、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;D、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.7.如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2B.∠2>∠1>∠A C.∠A>∠2>∠1D.∠2>∠A>∠1【考点】三角形的外角性质.【分析】先根据∠1是△ACD的外角,故∠1>∠A,再根据∠2是△CDE的外角,故∠2>∠1,进而可得出结论.【解答】解:∵∠1是△ACD的外角,∴∠1>∠A;∵∠2是△CDE的外角,∴∠2>∠1,∴∠2>∠1>∠A.故选:B.【点评】本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.8.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=A C,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.【点评】本题考查了全等三角形的判定定理和性质定理,等边三角形的性质的应用,主要考查学生对判定定理的理解能力,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.10.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x米,则根据题意所列方程正确的是()A.﹣=2 B. =2+C.﹣=2 D. =2+【考点】由实际问题抽象出分式方程.【分析】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,根据题意可知,实际比计划提前2天完成任务,列方程即可.【解答】解:设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,由题意得, =2+.故选D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题(24分)11.分解因式:3x2﹣6xy+3y2= 3(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6xy+3y2,=3(x2﹣2xy+y2),=3(x﹣y)2.故答案为:3(x ﹣y )2. 【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.已知x+y=10,xy=20,则x 2+y 2= 60 . 【考点】完全平方公式.【分析】将x 2+y 2化简为完全平方的形式,再将x+y ,以及xy 的值代入即可求得代数式的值.【解答】解:∵x+y=10,xy=20, ∴x 2+y 2=(x+y )2﹣2xy , =100﹣40, =60;故答案是:60.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.13.化简: = . 【考点】分式的加减法. 【专题】计算题.【分析】原式通分并利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.若直角三角形的一个锐角为50°,则另一个锐角的度数是 40 度. 【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余解答. 【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°. 故答案为:40°.【点评】本题利用直角三角形两锐角互余的性质.15.等腰三角形的两边长分别为4和9,则第三边长为 9 . 【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形. 【解答】解:当4是腰时,因4+4<9,不能组成三角形,应舍去; 当9是腰时,4、9、9能够组成三角形. 则第三边应是9. 故答案为:9.【点评】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.16.如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C1⊥AC1,垂足分别是B1、C1,那么B1C1= 3.75 cm.【考点】含30度角的直角三角形.【分析】根据直角三角形的性质:30°角所对的直角边等于斜边的一半解答.【解答】解:在Rt△ABC中,∠CAB=30°,AB=10cm,∴BC=AB=5cm,∵CB1⊥AB,∴∠B+∠BCB1=90°,又∵∠A+∠B=90°,∴∠BCB1=∠A=30°,在Rt△ACB1中,BB1=BC=2.5cm,∴AB1=AB﹣BB1=10﹣2.5=7.5cm,∴在Rt△AB1C1中,∠A=30°,∴B1C1=AB1=×7.5=3.75c m.故答案为:3.75.【点评】本题考查三角形的性质和直角三角形的性质,本题是一道综合性较强的题目,需要同学们用30°角所对的直角边等于斜边的一半解答.17.若点M(a,3)和点N(2,a+b)关于x轴对称,则b的值为﹣5 .【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点M(a,3)和点N(2,a+b)关于x轴对称,∴a=2,a+b=﹣3,解得:b=﹣5,故答案为为:﹣5.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.18.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).【考点】分式的加减法.【专题】压轴题;规律型.【分析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.【解答】解:原式=2(1﹣)+2(﹣)+2(﹣)…+2(﹣)=2(1﹣)=.故答案为.【点评】本题主要是利用规律求值,能够理解本题中给出的规律是解答本题的关键.三、解答题(每题66分)19.因式分解:(1)m2﹣4n2;(2)2a2﹣4a+2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接利用平方差公式进行分解即可;(2)先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a ﹣b)2.【解答】解:(1)m2﹣4n2=m2﹣(2n)2=(m+2n)(m﹣2n);(2)2a2﹣4a+2=2(a2﹣2a+1)=2(a﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.解方程:(1)=﹣3(2)+=1.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1=x﹣1﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.先化简,再求值:(1)(m+2﹣),其中m=.(2)(﹣4),其中x=﹣1.【考点】分式的化简求值.【专题】计算题;分式.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式==﹣=﹣2(m+3)=﹣2m﹣6,当m=时,原式=﹣﹣6=﹣7;(2)原式==x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)【考点】作图-旋转变换;弧长的计算;作图-轴对称变换.【专题】作图题;压轴题.【分析】(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B绕点C顺时针旋转90°后的A2、B2的位置,然后顺次连接即可;(3)利用勾股定理列式求出BC的长,再根据弧长公式列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C如图所示;(3)根据勾股定理,BC==,所以,点B旋转到B2所经过的路径的长==π.【点评】本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.已知:,求:的值.【考点】分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先把括号内通分,再进行分式的乘法运算,接着把除法运算化为乘法运算,约分后得到原式=,然后根据非负数的性质得2a﹣b+1=0,3a+b=0,解得a=﹣,b=,再把a和b的值代入原式=中计算即可.【解答】解:原式=÷()=÷()==,∵,∴2a﹣b+1=0,3a+b=0,∴a=﹣,b=,∴原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了非负数的性质.24.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙单独完成建校工程需x天,则甲单独完成建校工程需1.5x天,根据甲、乙两队合作完成该项目共需72天建立方程求出其解即可;(2)设乙工程队平均每天的施工费用为a万元,由施工的总费用不能超过甲工程队的费用建立方程求出其解即可.【解答】解:(1)设乙单独完成建校工程需x天,则甲单独完成建校工程需1.5x天,由题意,得解得:x=120经检验,x=120是原方程的解∴甲单独完成建校工程需时间为:1.5×120=180天.答:甲单独完成建校工程需180天,乙单独完成建校工程需120天;(2)设乙工程队平均每天的施工费用为a万元,由题意,得120a≤0.8×180a≤1.2∵a取最大值∴a=1.2答:乙工程队平均每天的施工费用最多1.2万元.【点评】本题考查了工程问题的数量关系工作效率×工作时间=工作总量的运用,列一元一次不等式进而实际问题的运用,分式方程的解法的运用,解答时根据甲、乙两队合作完成该项目共需72天建立方程求出甲、乙单独完成需要的时间是关键.25.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,从而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF,(2)由△CDF≌△EBF,得到CF=EF.【解答】(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.证法二:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠C AB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB,∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.证法三:连接AF,∵Rt△ABC≌Rt△ADE,∴AB=AD.又∵AF=AF,∴Rt△ABF≌Rt△ADF(HL).∴BF=DF.又∵BC=DE,∴BC﹣BF=DE﹣DF.即CF=EF.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

罗平县2016-2017学年八年级上期末数学模拟试卷含答案解析

罗平县2016-2017学年八年级上期末数学模拟试卷含答案解析
) A.a2+a2=a4 B.a2•a3=a6 C.(﹣a2 2=a4 D.(a+1) 23=.a如2+图1 ,为估计池塘岸边 A、B 的距离,小方在池塘的一侧选取一点 O,测得 OA=15 米,OB=10 米,A、B 间的距离不可能是( )
A.20 米 B.1ห้องสมุดไป่ตู้ 米 C.10 米 D.5 米 4.如图,∠A=50°,P 是等腰△ABC 内一点,且∠PBC=∠PCA,则∠BPC 为 ()
2016-2017 学年云南省曲靖市罗平县八年级(上)期末数学模 拟试卷
一、选择题(本大题共 8 个小题,每小题只有一个正确选项,每小题 4 分,满 分 32 分) 1.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的 ()
A.轴对称性 B.用字母表示数 C.随机性 D.数形结合 2.下列计算正确的是( )
A.100°B.140°C.130° D.115° 5.若 3x=4,9y
=7,则 3x﹣2y 的值为( ) A. B. C.﹣3 D.
(2)若点 D 在线段 AM 上时,求证:△ADC≌△BEC; (3)当动点 D 在直线 AM 上时,设直线 BE 与直线 AM 的交点为 O,试判断∠ AOB 是否为定值?并说明理由.

曲靖市八年级上学期数学期末考试试卷

曲靖市八年级上学期数学期末考试试卷

曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)据报道:今年四月初,在北方检测出的“核辐射”菠菜上,碘-131的值不超过0.066微西弗,可以安全食用.数字0.066用科学记数法表示为()A . 0.66×10-1B . -6.6×10C . -6.6×102D . 6.6×10-22. (2分) (2016八上·大悟期中) 下列图形中不是轴对称图形的是()A .B .C .D .3. (2分)下列运算正确的是()A . x2•x3=x6B . 3﹣2=﹣6C . (x3)2=x5D . 40=14. (2分)具备下列条件的△ABC中,不是直角三角形的是()A . ∠A+∠B=∠CB . ∠A= ∠B= ∠CC . ∠A:∠B:∠C=1:2:3D . ∠A=∠B=3∠C5. (2分)将中的都变为原来的4倍,则分式的值()A . 不变B . 是原来的4倍C . 是原来的16倍D . 是原来的8倍6. (2分)如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH'L、四边形EKE'A、△BGF的周长分别为C1、C2、C3 ,且G1=2G2=4G3 ,已知FG=LK,EF=6,则AB的长是()A . 9.5B . 10C . 10.5D . 117. (2分) (2015八上·海淀期末) 下列各式中,计算正确的是()A . x(2x﹣1)=2x2﹣1B . =C . (a+2)2=a2+4D . (x+2)(x﹣3)=x2+x﹣68. (2分)等腰三角形的三边长分别为3x﹣2,4x﹣3,6﹣2x,则该三角形的周长为()A . 6B . 6或9或8.5C . 9或8.5D . 与x的取值有关9. (2分) (2018八上·银海期末) 已知x+ =7,则x2 + 的值是()A . 49B . 48C . 47D . 5110. (2分)(2017·重庆模拟) 两个相似三角形的最短边分别是5cm和3cm,它们的周长之差为12cm,那么小三角形的周长为()A . 14cmB . 16cmC . 18cmD . 30cm二、填空题 (共4题;共4分)11. (1分)(2017·临高模拟) 分解因式:a3﹣25a=________.12. (1分)(2011·泰州) 点P(﹣3,2)关于x轴对称的点P′的坐标是________.13. (1分)(2019·湘潭) 函数中,自变量的取值范围是________.14. (1分) (2020九上·信阳期末) 如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是________.三、解答题 (共9题;共68分)15. (5分)先化简,再求值:,其中x=2013.16. (10分) (2020九下·长春月考) 图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A、B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.(1)在图①中的格线MN上确定一点P,使PA与PB的长度之和最小(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.17. (10分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?18. (5分) (2020七下·高新期中) 如图,在△ABC中,∠ACB=90°,AE平分∠BAC,CD是AB边上的高,CD 和AE交于点F。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分)若|a|=4,=3,且a+b<0,则a﹣b的值是()A . 1,7B . -1,7C . 1,-7D . -1,-72. (1分) (2016七下·泗阳期中) 下列等式由左边至右边的变形中,属于因式分解的是()A . x2+3x﹣1=x(x+3)﹣1B . x2﹣9+2x=(x+3)(x﹣3)+2xC . a2﹣16=(a+4)(a﹣4)D . (x+2)(x﹣2)=x2﹣43. (1分)已知x+y=2,xy=﹣2,则(1﹣x)(1﹣y)的值为()A . -1B . 1C . 5D . -34. (1分) (2019八上·绥化月考) 三角形的三边a,b,c满足(a+b)2-c2=2ab,则此三角形是().A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等边三角形5. (1分) (2016八下·大石桥期中) 已知|a|=5, =7,且|a+b|=a+b,则a﹣b的值为()A . 2或12B . 2或﹣12C . ﹣2或12D . ﹣2或﹣126. (1分)近年来,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.组观点人数A大气气压低,空气不流动80B地面灰尘大,空气湿度低MC汽车尾部排放ND工厂造成污染120E其他60若该市人口约有800万人,请根据图表中提供的信息,请你估计其中持C组和D组“观点”的市民人数大约有()万人.A . 200B . 240C . 440D . 4807. (1分) (2017八下·濮阳期中) 已知x、y为正数,且|x﹣4|+(y﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为直径的圆的面积为()A . 5πB . 25πC . 7πD . 6.25π8. (1分)(2017·肥城模拟) 如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A . 4B .C .D .二、填空题 (共4题;共4分)9. (1分) (2016七上·瑞安期中) 已知如下实数:, 0,,,,(每两个“1”之间多一个“0”).其中无理数有________个.10. (1分) (2017八下·常熟期中) 一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为________,频率为________.11. (1分)直角三角形是特殊的三角形,所以不仅可以应用一般三角形判定全等的方法,还有直角三角形特殊的判定方法,即________公理.12. (1分) (2017八上·江海月考) 如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为________°.三、解答题 (共6题;共13分)13. (2分)(2020·荆门) 先化简,再求值:,其中 .14. (1分) (2017八下·桂林期中) 如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(Ⅰ)请写出AF与BE的数量关系与位置关系分别是什么,并证明.(Ⅱ)如图2,若将条件“两个等边三角形ADE和DCF”变为两个等腰三角形ADE和DCF,且EA=ED=FD=FC,第(1)问中的结论是否仍然成立?请作出判断并给予证明;15. (2分)(2017·陕西模拟) 如图,已知△ABC,用尺规作出△ABC外心.(保留作图痕迹,不写作法)16. (3分) (2018九上·雅安期中) 某校为了解九年级男同学的体育考试准备情况.随机抽取部分男同学进行了1000米跑测试按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图,根据图中信息解答下列问题:(1)扇形统计图中“良好”所对应的圆心角度数是多少;请补全条形统计图;(2)该校九年级有600名男生,请估计成绩未达到良好的有多少名?(3)某班甲、乙两位成绩获“优秀”的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A , B ,C , D四组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?(用树状图或列表法解答)17. (2分)(2018·遵义模拟) 已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN 交矩形对角线 AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.(1)如图1,当EP⊥BC时,求CN的长;(2)如图2,当EP⊥AC时,求AM的长;(3)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.18. (3分)(2017·荆门) 已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.参考答案一、单选题 (共8题;共8分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共4题;共4分)9-1、10-1、11-1、12-1、三、解答题 (共6题;共13分)13-1、14-1、15-1、16-1、16-2、16-3、17-1、17-2、17-3、18-1、18-2、。

八年级上期末数学模拟试卷含答案解析

八年级上期末数学模拟试卷含答案解析

2016-2017学年云南省曲靖市罗平县八年级(上)期末数学模拟试卷一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合2.下列计算正确的是()A.a2+a2=a4 B.a2•a3=a6 C.(﹣a2)2=a4D.(a+1)2=a2+13.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米4.如图,∠A=50°,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130° D.115°5.若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.6.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10 B.11 C.12 D.137.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°8.如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD中正确个数为()A.3个 B.2个 C.1个 D.0个二、填空题(本大题共6个小题,每小题3分,满分18分)9.若有意义,则x的取值范围是.10.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=.11.若|a﹣2|+(b﹣5)2=0,则点P (a,b)关于x轴对称的点的坐标为.12.如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件.13.若x2﹣kxy+9y2是一个完全平方式,则k=.14.仔细观察杨辉三角系数表,按规律写出(a+b)4展开式所缺的系数:(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+ a2b2+4ab3+b4.三、解答题(本大题共8个小题,满分70分)15.(6分)计算:(1)﹣12014﹣×(﹣)﹣2+(π﹣)0﹣|﹣4|+(2)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b).16.(8分)分解因式(1)﹣x3﹣2x2﹣x(2)1﹣a2﹣4b2+4ab.17.作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.18.(10分)已知A=﹣.(1)化简A;(2)当x满足方程=时,求A的值.19.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P 的坐标.20.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.21.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.(12分)如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB 是否为定值?并说明理由.2016-2017学年云南省曲靖市罗平县八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合【考点】生活中的轴对称现象.【分析】根据轴对称的定义可以得出,数学美体现在蝴蝶图案的对称性.【解答】解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选:A.【点评】此题主要考查了轴对称的应用,根据图形得出一种数学美,有利于同学们的生活的喜爱以及数学与生活之间的联系.2.下列计算正确的是()A.a2+a2=a4 B.a2•a3=a6 C.(﹣a2)2=a4D.(a+1)2=a2+1【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法、幂的乘方和完全平方公式计算即可.【解答】解:A、a2+a2=2a2,错误;B、a2•a3=a5,错误;C、(﹣a2)2=a4,正确;D、(a+1)2=a2+2a+1,错误;故选C.【点评】此题考查同类项、同底数幂的乘法、幂的乘方和完全平方公式,关键是根据法则进行计算.3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【考点】三角形三边关系.【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.4.如图,∠A=50°,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130° D.115°【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠ACB,然后求出∠PCB+∠PBC=∠ACB,再根据三角形的内角和定理列式计算即可得解.【解答】解:∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=(180°﹣∠A )=(180°﹣50)=65°,∵∠PBC=∠PCA ,∴∠PCB +∠PBC=∠PCB +∠PCA=∠ACB=65°,∴∠BPC=180°﹣(∠PCB +∠PBC )=180°﹣65°=115°.故选D .【点评】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB +∠PBC 是解题的关键.5.若3x =4,9y =7,则3x ﹣2y 的值为( )A .B .C .﹣3D .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x =4,9y =7与3x ﹣2y =3x ÷32y =3x ÷(32)y ,代入即可求得答案.【解答】解:∵3x =4,9y =7,∴3x ﹣2y =3x ÷32y =3x ÷(32)y =4÷7=.故选A .【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x ﹣2y 变形为3x ÷(32)y 是解此题的关键.6.若一个多边形的每个内角都等于150°,则这个多边形的边数是( ) A .10 B .11 C .12 D .13【考点】多边形内角与外角.【分析】根据多边形的内角和定理:180°•(n ﹣2)求解即可.【解答】解:由题意可得:180°•(n ﹣2)=150°•n ,解得n=12.故多边形是12边形.故选C .【点评】主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.7.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°【考点】三角形内角和定理.【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选:B.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.8.如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD中正确个数为()A.3个 B.2个 C.1个 D.0个【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等腰三角形三线合一,即可一一判断.【解答】解:∵△ABC是等边三角形,△AED是等边三角形,∴AB=AC=BC,∠BAC=60°,AE=AD=ED,∠EAD=60°,∵∠DAB=∠DAC=30°,∴AD⊥BC,故①正确,∠EAB=∠BAD=30°,∴AB⊥ED,EF=DF,故②正确∴BE=BD,故③正确,故选A.【点评】本题考查等边三角形的性质,解题的关键是灵活应用等腰三角形的三线合一的性质解决问题,属于中考基础题.二、填空题(本大题共6个小题,每小题3分,满分18分)9.若有意义,则x的取值范围是x≠2.【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.【点评】本题考查了分式的定义,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=40°.【考点】作图—基本作图;线段垂直平分线的性质;等腰三角形的性质.【分析】首先根据作图过程得到MN垂直平分AB,然后利用中垂线的性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C 的度数.【解答】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故答案为:40°.【点评】本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.11.若|a﹣2|+(b﹣5)2=0,则点P (a,b)关于x轴对称的点的坐标为(2,﹣5).【考点】关于x轴、y轴对称的点的坐标;非负数的性质:偶次方.【分析】根据非负数的性质求出a、b的值,从而得到点P的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:由题意得,a﹣2=0,b﹣5=0,解得a=2,b=5,所以,点P的坐标为(2,5),所以,点P (a,b)关于x轴对称的点的坐标为(2,﹣5).故答案为:(2,﹣5).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.12.如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件∠ABC=∠DAB.【考点】全等三角形的判定.【分析】条件是∠ABC=∠DAB,根据AAS推出即可.【解答】解:条件是∠ABC=∠DAB,理由是:∵在△ACB和△BDA中∴△ACB≌△BDA(AAS),故答案为:∠ABC=∠DAB.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.若x2﹣kxy+9y2是一个完全平方式,则k=±6.【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可.【解答】解:∵x2﹣kxy+9y2是一个完全平方式,∴k=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.仔细观察杨辉三角系数表,按规律写出(a+b)4展开式所缺的系数:(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+ 6a2b2+4ab3+b4.【考点】完全平方公式.【分析】根据杨辉三角,下一行的系数是上一行相邻两系数的和,然后写出各项的系数即可.【解答】解:∵(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3∴(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:6.【点评】本题考查了完全平方公式,能发现(a+b)n展开后,各项是按a的降幂排列的,系数依次是从左到右(a+b)n﹣1系数之和.它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本大题共8个小题,满分70分)15.计算:(1)﹣12014﹣×(﹣)﹣2+(π﹣)0﹣|﹣4|+(2)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b).【考点】整式的除法;实数的运算;平方差公式;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,平方根、立方根定义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用多项式除以单项式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=﹣1﹣12+1﹣2+4=﹣10;(2)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab.【点评】此题考查了整式的除法,以及实数的运算,熟练掌握运算法则是解本题的关键.16.分解因式(1)﹣x3﹣2x2﹣x(2)1﹣a2﹣4b2+4ab.【考点】提公因式法与公式法的综合运用;因式分解-分组分解法.【分析】(1)先提取公因式﹣x,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2;(2)先后面三项根据完全平方公式因式分解,再根据平方差公式即可求解;【解答】解:(1)﹣x3﹣2x2﹣x=﹣x(x2+2x+1)=﹣x(x+1)2;(2)1﹣a2﹣4b2+4ab=1﹣(a2﹣4ab+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用公式法进行二次分解,注意分解要彻底.17.作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题关键.18.(10分)(2016秋•罗平县期末)已知A=﹣.(1)化简A;(2)当x满足方程=时,求A的值.【考点】分式的化简求值.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)求出分式方程的解得到x的值,代入计算即可求出A的值.【解答】解:(1)A=﹣===;(2)分式方程去分母得:100x+700=30x,移项合并得:70x=﹣700,解得:x=﹣10,经检验x=﹣10是分式方程的解,则A=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(10分)(2016秋•罗平县期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C 的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P 的坐标.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据点A,C的坐标建立平面直角坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)作点B关于x轴的对称点B1,连接A′B1交x轴于点P,利用待定系数法求出直线A′B1的解析式,进而可得出P点坐标.【解答】解:(1)如图所示;(2)由图可知,B′(2,1);(3)如图所示,点P即为所求点,设直线A′B1的解析式为y=kx+b(k≠0),∵A′(4,5),B1(﹣2,﹣1),∴,解得,∴直线A′B1的解析式为y=x+1.∵当y=0时,x+1=0,解得x=﹣1,∴P(﹣1,0).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.20.(10分)(2010•泰安校级模拟)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.【考点】等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质.【分析】①可以找出△BAE≌△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.②由①可得出∠DCA=∠ABC=45°,则∠BCD=90°,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.【点评】本题主要考查全等三角形的判定与性质及等腰三角形的性质;充分利用等腰直角三角形的性质是解答本题的关键.21.(10分)(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【考点】分式方程的应用.【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.【点评】本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.22.(12分)(2015秋•乐至县期末)如图,在等边△ABC中,线段AM为BC 边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=30度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB 是否为定值?并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【解答】解:(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=∠BAC,∴∠CAM=30°.故答案为:30;(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中,∴△ACD≌△BCE(SAS);(3)∠AOB是定值,∠AOB=60°,理由如下:①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°∴∠CBE+∠ABC=60°+30°=90°,∵△ABC是等边三角形,线段AM为BC边上的中线∴AM平分∠BAC,即∴∠BOA=90°﹣30°=60°.②当点D在线段AM的延长线上时,如图2,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.③当点D在线段MA的延长线上时,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠ACE=∠BCE+∠ACE=60°∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上,当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.【点评】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.。

2016-2017年云南省曲靖市罗平县八年级上学期期末数学试卷和答案

2016-2017年云南省曲靖市罗平县八年级上学期期末数学试卷和答案

2016-2017学年云南省曲靖市罗平县八年级(上)期末数学试卷一、选择题(本题共8个小题,每小题4分,共32分)1.(4分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(4分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b3.(4分)在,,,﹣0.7xy+y3,,中,分式有()A.2个 B.3个 C.4个 D.5个4.(4分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣25.(4分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)6.(4分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度7.(4分)在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AB的长度是()A.4 B.3 C.2 D.18.(4分)如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③二、填空题(本小题共6小题,每小题3分,共18分)9.(3分)一个多边形的内角和为900°,则这个多边形的边数为.10.(3分)若分式的值为零,则x的值等于.11.(3分)若x2+kx+4是完全平方式,则k的值是.12.(3分)已知a+b=3,ab=2,则a2b+ab2=.13.(3分)等腰三角形有两条边长为4cm和9cm,则该三角形的周长是.14.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是.三、解答题(本大题共9个小题,70分)15.(8分)(1)计算:(12a3﹣6a2+3a)÷3a﹣1(2)因式分解:﹣3x3+6x2y﹣3xy2.16.(6分)先化简再求值:4a(a+1)﹣(a+1)(2a﹣1),其中a=2.17.(7分)化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.18.(7分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)19.(8分)将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=8.求x的值.20.(8分)小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.21.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数.22.(8分)如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形.(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.23.(10分)已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,我们能得到什么结论?并证明.2016-2017学年云南省曲靖市罗平县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题4分,共32分)1.(4分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(4分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b【解答】解:A、x3•x3=x6,正确;B、3x2+2x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:A.3.(4分)在,,,﹣0.7xy+y3,,中,分式有()A.2个 B.3个 C.4个 D.5个【解答】解:在,,,﹣0.7xy+y3,,中,分式有,,,一共3个.故选:B.4.(4分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣2【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.5.(4分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.6.(4分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度【解答】解:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC是△ABD的外角,∴∠A=∠BDC﹣∠2=85°﹣37°=48°,故选:C.7.(4分)在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AB的长度是()A.4 B.3 C.2 D.1【解答】解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴AB=2BC,BC=2BD,∴AB=4BD=4.故选A.8.(4分)如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选D二、填空题(本小题共6小题,每小题3分,共18分)9.(3分)一个多边形的内角和为900°,则这个多边形的边数为7.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.10.(3分)若分式的值为零,则x的值等于2.【解答】解:根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案是:2.11.(3分)若x2+kx+4是完全平方式,则k的值是±4.【解答】解:∵x2+kx+4是一个多项式的完全平方,∴kx=±2×2•x,∴k=±4.故答案为:±4.12.(3分)已知a+b=3,ab=2,则a2b+ab2=6.【解答】解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=6.故答案为:6.13.(3分)等腰三角形有两条边长为4cm和9cm,则该三角形的周长是22cm.【解答】解:①4是腰长,∵4+4=8<9,∴4、4、9不能组成三角形,②9是腰长,能够组成三角形,9+9+4=22cm,所以,三角形的周长是22cm.故答案为:22cm.14.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共9个小题,70分)15.(8分)(1)计算:(12a3﹣6a2+3a)÷3a﹣1(2)因式分解:﹣3x3+6x2y﹣3xy2.【解答】解(1)原式=4a2﹣2a+1﹣1=4a2﹣2a;(2)原式=﹣3x(x2﹣2xy+y2)=﹣3(x﹣y)2.16.(6分)先化简再求值:4a(a+1)﹣(a+1)(2a﹣1),其中a=2.【解答】解:原式=(a+1)(4a﹣2a+1)=(a+1)(2a+1)当a=2时,∴原式=3×5=1517.(7分)化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.【解答】解:原式=•=•=,当x=2时,原式=.18.(7分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.19.(8分)将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=8.求x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.20.(8分)小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费x元根据题意:=,解得:x=0.18,经检验:x=0.18是原方程的解,答:新购买的纯电动汽车每行驶1千米所需的电费是0.18元..21.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数.【解答】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.22.(8分)如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形.(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.【解答】(1)证明:∵AD平分∠CAE,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠B,∠CAD=∠C,∴∠B=∠C,∴AB=AC.故△ABC是等腰三角形.(2)解:当∠CAE=120°时△ABC是等边三角形.∵∠CAE=120°,AD平分∠CAE,∴∠EAD=∠CAD=60°,∵AD∥BC,∴∠EAD=∠B=60°,∠CAD=∠C=60°,∴∠B=∠C=60°,∴△ABC是等边三角形.23.(10分)已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,我们能得到什么结论?并证明.【解答】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∴∠DBA+∠DAB=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE,∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,∴DE=AD+AE=CE+BD;(2)BD=DE+CE,理由是:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAD=90°,∵∠BAC=90°, ∴∠ABD +∠EAC=90°, ∴∠BAD=∠EAC , ∵AB=AC ,∴△ADB ≌△CEA , ∴BD=AE ,CE=AD , ∵AE=AD +DE , ∴BD=CE +DE .赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年云南省曲靖市罗平县大水井中学八年级(上)期末数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列汽车标志图案中,不是轴对称图形的是()A.B.C.D.2.(3分)下列式子是分式的是()A.B. C.+y D.3.(3分)已知三角形两边长分别为7、11,那么第三边的长可以是()A.2 B.3 C.4 D.54.(3分)下列计算正确的是()A.(a3)2=a6B.a•a2=a2C.a3+a2=a6 D.(3a)3=9a35.(3分)不改变分式的值,把分子、分母中各项系数化成整数,那么结果是()A.B.C.D.6.(3分)如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°B.255° C.155° D.150°7.(3分)下列从左到右的运算是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy8.(3分)若等腰三角形的两边长分别为6和8,则周长为()A.20或22 B.20 C.22 D.无法确定9.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.(3分)已知,则的值为()A.B.C.D.二、填空题(本题共18分,每小题3分,共24分)11.(3分)要使分式有意义,那么x必须满足.12.(3分)科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为微米.13.(3分)计算(π﹣3.14)0+()﹣2=.14.(3分)若x2+mx+4是完全平方式,则m=.15.(3分)如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=.16.(3分)若分式的值为零,则x=.17.(3分)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.18.(3分)下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n (n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=.三、解答题(共66分)19.(12分)计算:(1)2x(x+1)+(x+1)2.(2)÷(3)分解因式:x2﹣9.20.(10分)解下列分式方程:(1)=(2)+1=.21.(7分)先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.22.(8分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)23.(8分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.(9分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?25.(12分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.2015-2016学年云南省曲靖市罗平县大水井中学八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列汽车标志图案中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.2.(3分)下列式子是分式的是()A.B. C.+y D.【解答】解:A、分母中不含有字母的式子是整式,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分母中不含有字母的式子是整式,故C错误;D、分母中不含有字母的式子是整式,故D错误;故选:B.3.(3分)已知三角形两边长分别为7、11,那么第三边的长可以是()A.2 B.3 C.4 D.5【解答】解:设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,故选:D.4.(3分)下列计算正确的是()A.(a3)2=a6B.a•a2=a2C.a3+a2=a6 D.(3a)3=9a3【解答】解:A、(a3)2=a3×2=a6,故本选项正确;B、a•a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D(3a)3=27a3,故本选项错误.故选A.5.(3分)不改变分式的值,把分子、分母中各项系数化成整数,那么结果是()A.B.C.D.【解答】解:分子分母都乘以6,得,故选:D.6.(3分)如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°B.255° C.155° D.150°【解答】解:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.7.(3分)下列从左到右的运算是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy【解答】解:没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:C.8.(3分)若等腰三角形的两边长分别为6和8,则周长为()A.20或22 B.20 C.22 D.无法确定【解答】解:若6是腰长,则三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20,若6是底边长,则三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=22,综上所述,三角形的周长为20或22.故选A.9.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.10.(3分)已知,则的值为()A.B.C.D.【解答】解;由得:3a=2b,让等式两边都加上3b,可得:3(a+b)=5b,因此=,故选C.二、填空题(本题共18分,每小题3分,共24分)11.(3分)要使分式有意义,那么x必须满足x≠2.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.12.(3分)科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为4.3×10﹣3微米.【解答】解:0.0043=4.3×10﹣3.故答案为4.3×10﹣3.13.(3分)计算(π﹣3.14)0+()﹣2=10.【解答】解:原式=1+9=10,故答案为10.14.(3分)若x2+mx+4是完全平方式,则m=±4.【解答】解:中间一项为加上或减去x和2积的2倍,故m=±4,故填±4.15.(3分)如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=3.【解答】解:如图,过点P作PE⊥OA于E,∵∠AOB=30°,OP平分∠AOB,∴∠AOP=∠BOP=15°.∵PC∥OB,∴∠BOP=∠OPC=15°,∴∠PCE=∠AOP+∠OPC=15°+15°=30°,又∵PC=6,∴PE=PC=3,∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,∴PD=PE=3,故答案为3.16.(3分)若分式的值为零,则x=2.【解答】解:依题意得x2﹣x﹣2=0,解得x=2或﹣1,∵x+1≠0,即x≠﹣1∴x=2.17.(3分)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.18.(3分)下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n (n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.【解答】解:(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5,故答案为:a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.三、解答题(共66分)19.(12分)计算:(1)2x(x+1)+(x+1)2.(2)÷(3)分解因式:x2﹣9.【解答】(1)解:原式=2x2+2x+x2+2x+1=3x2+4x+1.(2)解:原式===.(3)解:原式=(x+3)(x﹣3).20.(10分)解下列分式方程:(1)=(2)+1=.【解答】解:(1)去分母得:x﹣1=1,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3(x+1)+x2﹣1=x2,去括号得:3x+3+x2﹣1=x2,移项合并得:3x=﹣2,解得:x=﹣,经检验x=﹣是分式方程的解.21.(7分)先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.【解答】解:原式=+===﹣,当x=0时,原式=﹣.22.(8分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)【解答】解:(1)(2)所作图形如图所示:.23.(8分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.24.(9分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?【解答】解:设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.25.(12分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB , ∴∠ABC=∠ACB , ∴AB=AC ;(3)解:不一定成立,当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档