表面等离子体激元
表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用李智豪1.表面等离子体共振的物理学原理人们对金属介质中等离子体激元的研究, 已经有50多年的历史。
1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。
后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。
由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。
1.1 基本原理[1]光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。
等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。
当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。
对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。
金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。
这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场的增强效应等。
表面等离极化激元(SPP)基本原理

c.双波模型[H.T.Liu and lanne,”Microscopic theory of the extraordinary optical transmission”Nature(London)452,728,2008]
现在讨论w>wp的情况。 当w很大时, wτ>>1,金属的介电函数可以忽略虚 部只考虑实部,可以近似为:
(
)
1
2 p
2
2 p2 K 2c2
当w>wp,则允许电磁波以群速度 vg=dw/dK<c在金属中传播。当w=wp时, epsilon(w)=0,它所对应的激发必然是电子的 集体纵振动。因为D=0,可以知道电场在wp 是一个纯粹的退极化场E=-P/epsilon0.其运 动状态可以想象为:离子是一块固定的正电
T (64 2 )( a )4 27
可以看出,一个明显的特征是,透射谱中出现了一系 列的峰、谷结构。除了 位于紫外(λ = 326nm,对应于体plasmon 频率)的 透射峰以外,在长波长的范 围内还有两组突出的透射极大(1000nm、1370nm) 和透射极小(900nm、1270nm)。尤其让人感到惊 奇的是,后一个透射峰位于1370nm;此波长约为小 孔直径的10倍。而且,其透射效率为4.4%;如果对 小孔的占空比(2.2%)进行归一化,则相对透射率 将达到2。这意味着,将有两倍于直接入射到小孔上 的光能够被透射;或者说,有一部分光即使没有入射 到小孔上也能被透射。而根据Bethe 的理论,这样大 的小孔,其透射效率充其量也不过3.4e−3。据此可知, 小孔阵列能够产生近600 倍的透射增强。
此外,他们还测试了透射谱对一些参数(如周期、孔径、膜厚及金属材料等) 的依赖关系,并发现了一些共同的特征。如:透射峰的位置决定于周期,而 与孔径、膜厚及金属的种类无关;透射峰的宽度决定于孔径与膜厚的比,孔径 越大、膜厚越小,则峰越宽;而且,透射峰的高度依赖于膜厚,膜越厚,则峰 越低。另外,至关重要的一点是,薄膜必须为金属膜;如果是非金属材料,则 无透射增强效应。
LSPR

Resonance (LSPR) 表面等离子体共振
等离子体(plasma)
• 正、负带电粒子数目 相等 ,是物质存在的与固态、液态和气态 并列的一种状态,称为物质的第四态。宇宙中大部分物质处于等 离子状态。
等离子体激元(Plasmon)
• 电子易运动,电子间存在长 程的库伦力相互作用。单个 电子的局域振动会引起体系 内电子运动的关联,造成电 子密度相对于正电背景集体 振荡,传播,但其能量是不 连续的,是量子化的。这个 量子化的能量便为等离子体 震荡量子,也就是等离激元 plasmon。
photon is called a surface plasmon polariton。
② 局限于金属颗粒或粗糙表面的局域表面等离激元LSPs (Localized surface plasmons) surface plasma excitations in bounded geometries are called
localized sur着表面方向传播
波矢匹配的 入射光产生 的消逝波会 与SPP产生
共振
LSPS
入射光与 LSP频率匹 配产生共
振
SPP LSPs
发生 界面
共振产生条件 (波矢匹配)
连续界面, L» λ
介质与表面材料介电常 数实部相反,且虚部绝
粗糙表面,或者颗粒,对值较小 L<λ
频率和波数一致 频率一致
LSPR
Resonance
Selective resonance absorption
UV-Vis-NIR absorption
E
Field
enhancement
谢谢
表面等离子激元在太阳能电池中的应用及优化探讨

表面等离子激元在太阳能电池中的应用及优化探讨第一章:引言表面等离子激元(Surface Plasmon Resonance,SPR)是一种在金属与介质交接面上激发的光学激元,具有极高的光学增强效应和波导性质。
近年来,SPR在太阳能电池领域得到了广泛的应用和研究,主要是通过SPR的光电转换作用提高光电转换效率,从而提升太阳能电池的性能。
本文将就表面等离子激元在太阳能电池中的应用及优化探讨,进行详细的介绍和分析。
第二章:表面等离子激元的基本原理及研究现状2.1 表面等离子激元的基本原理表面等离子激元是一种固体表面上电磁波与金属表面自由电子的相互作用,当波长和介质折射率与金属表面的等离子体密度、金属种类和形状相匹配时,将会激发出强烈的表面等离子激元共振。
在表面等离子激元共振时,光被紧密包裹在金属表面上,形成高密度的电磁场,对于溶液中的吸附分子和氧化还原反应具有极强的增强效应。
此外,可通过适当的金属形状和粒径调控表面等离子激元的性质,构建具有波导效应的光电材料。
2.2 研究现状SPR技术已被广泛应用于传感器、生物芯片、吸附分离、光催化等领域。
在太阳能电池方面,通过SPR的光电转换效应提高了太阳能电池的性能。
目前,学者们主要探讨了基于纳米颗粒、纳米管、纳米片等具有扩大SPR范围和增强SPR效应的光电材料,并在此基础上进行了太阳能电池的制备和性能测试。
第三章:表面等离子激元在太阳能电池中的应用3.1 提高太阳能电池器件的光电转换效率太阳能电池掺杂有纳米金属颗粒/纳米纹理的电极,可实现SPR 的光电转换效应,在太阳辐射下提高光电池的光吸收率和光电转换效率。
在理论和实验上都证明了此技术的有效性。
3.2 调控太阳能电池器件的能带结构通过SPR的局域电场效应和光催化效应,可调控太阳能电池器件的电子结构和能带结构,提高电荷分离效率、电荷传输效率和光电转换效率,达到优化太阳能电池性能的目的。
3.3 提高太阳能电池器件的稳定性通过SPR技术,可对太阳能电池器件表面进行金属染色,增加氧化还原反应(ORR)活性中心,提高ORR反应速率,从而提高器件的稳定性和使用寿命。
第10讲_表面等离子体激元

SPP at Ag/SiO2
光频“X-ray 波长”!
Re(β)
• •
SPP波长可以在光频达到纳米级!得到亚波长约束 光不能直接在平板金属表面激发SPP。
19
怎样激发的? – 下一讲介绍
表面等离子体的基本性质:亚波长约束、局域场增强和反常色散
SPP的传播距离和损耗 三个特征尺度(重要!):
振荡强度减小到1/e的传播长度
如果 > 0 且 < 0 会是哪种偏振?
<0 且 < 0 又是怎样?
13
画出SPP色散曲线
两个合理的前提条件: 1. 非色散介质: εd = 常数
md c m d
m
p2 2. 无衰减的Drude金属: m() 1 2
• 在低频ω: εm→−∞
(趋向电介质的light line)
10
两套独立的解:
用 Ey, Hx, Hz表示TE 解
Hz Hx Ey Ez
用 Hy, Ex, Ez表示TM 解
Hy
Ex
5
2014/2/24
对TM 的解:
kzEx i Ez i0Hy kzH y i0Ex iHy i0Ez
边界条件: Hy1 Hy2, Ex1 Ex2
('m> 0)
real β real ikz
c
禁带
介质中的色散曲线Light line
(d< 'm < 0)
imaginary β real ikz
sp
k1z k2z
z
2 E
c
kx kx
m d m d
('m < d)
表面等离子体激元增强薄膜太阳能电池技术

增强光吸收机理
金属纳米颗粒的散射截面C 与吸收截面C 金属纳米颗粒的散射截面Csca与吸收截面Cabs[5]
Байду номын сангаас
公式中a代表颗粒尺寸, 公式中a代表颗粒尺寸,当a远小于λ时,Cabs∝a3, 远小于λ a3, Csca∝a6。随着颗粒尺寸增加到100nm左右时,消光 a6。随着颗粒尺寸增加到100nm左右时, 左右时 主要由散射支配,我们可以利用这种性质把金属纳 主要由散射支配, 米颗粒集成在薄膜太阳能电池上以增强光吸收。 米颗粒集成在薄膜太阳能电池上以增强光吸收。
[6]Derkas D, et al. Appl.Phys.Lett.,2006,89 [7]Pillai S, et al. J.Appl.Phys.,2007,101 [8]Moulin E, et al. J.Non-Cryst.Solids,2008,354 [9]Westphalen W, et al.Sol.Energy Mater.Sol.Cells,2000,61 [10]Catchpole K R, et al. Appl.Phys.Lett.,2008,93
金属微纳结构激发表面等离子增强光吸收主要分三种机 理[1,2],如图1所示。 [1,2],如图1所示。
图1 薄膜太阳能表面等离子体陷光示意图
太赫兹辐射技术在材料研究中的应用

太赫兹辐射技术在材料研究中的应用太赫兹辐射技术可以用来探测物质的特定结构和动态过程,因此被广泛用于材料科学中。
在材料研究领域,太赫兹辐射技术的应用十分广泛,譬如:表面等离子体激元(surface plasmon polaritons, SPPs)研究、非平衡态动力学研究、新型材料探测及特性分析、生物医学感知等等。
本文将就太赫兹辐射技术在材料科学领域具体的应用进行详细讲解。
1. 表面等离子体激元研究表面等离子体激元,是指当电磁波射入金属表面时,比较特殊的光与金属表面的电荷波动相互作用所产生的一种共振现象。
这种共振现象产生的电场和电荷密度会导致光场局限在表面附近,使得光在表面上的传输受到约束。
太赫兹波与物质相互作用的区域比较浅,与表面等离子体激元的空间范围匹配,因此太赫兹辐射适用于 SPPs 的研究。
太赫兹辐射能够在监测 SPPs 的介电函数等物性基本参数的同时,探测到SPPs的角频率、生命时间和衰减长度等参数。
因此太赫兹辐射技术可以用于制备新型表面等离子体光学元件,现代微型光子学与传感器领域将是太赫兹光学技术的新兴市场。
2. 非平衡态动力学研究非平衡态动力学是物理学中一门复杂的研究系统的学科,在材料科学中十分重要。
这个领域的典型应用包括光电转换性能、光电器件性能研究以及光驱动快速相变等。
由于太赫兹光可以在光学瞬间敏感的时域尺度下观察这些动态过程,它是非平衡态动力学的理想光谱区域。
与传统的光学谱技术相比,太赫兹光谱可以使用相同的光源产生多种脉冲宽度的光,也可以很便利地引入外界磁场,并且光源的光子能量与样品的能级结构相当一致,因此可以有效地研究样品的特定量子现象以及非平衡态动力学特定过程。
3. 新型材料探测及特性分析太赫兹辐射技术被广泛应用于全新材料的探索和开发。
在新型材料分子的结构和动态过程研究中,太赫兹辐射技术往往被作为工具进行开发。
利用太赫兹光学技术可以在时间域内可视化瞬态变化,以及探测短时态光强敏感过程,从而探究物质的特殊性质。
表面等离子激元

表面等离子激元
什么是表面等离子激元?
1. 表面等离子激元(SPs)是一种表面等离子体,即各向同性电荷云(ECCs),
它们生长在多个具有吸引力的表面上。
2. 表面等离子激元通常在加热表面时形成,激元的表面结构有细胞结构、纳米结构和微米结构。
它们由费米子、原子核和电子形成。
3. 表面等离子激元可以吸收和反射入射的辐射,且对表面温度的变化
也有较大的影响,对黑体辐射的数量有着较大的影响。
4. 除此之外,表面等离子激元还可以在太阳能电池中用作发光元件,
能够把辐射能量转换为电能。
5. 同时,表面等离子激元还可以用于药物传递和纳米医学研究,可以
作为作为用于诊断和治疗疾病的指标物质。
体内的激元可以将激发态
发射到细胞表面,起到治疗疾病效果,使疾病状况得到改善。
6. 由于表面等离子激元的独特性,它们在抗菌和抗致病方面被越来越
多的应用于现代的医学。
7. 在材料科学领域,表面等离子激元可以应用于多种材料,如金属、
陶瓷、塑料等,可以改变它们的物理和化学性质,使它们的性能变得
更好。
8. 此外,表面等离子激元还可以用于降解有害物质,如污染物、毒素、药物废弃物等,是实现水污染控制、改变制造业里污染物含量的重要
途径。
9. 综上所述,表面等离子激元是一种非常有用的物质,可用于多种应
用和场景,如太阳能电池、药物传递、抗菌和抗致病、材料科学、降解有害物质等,将为人类丰富的生活提供更多的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面等离子体激元
表面等离子体激元(surface plasmon polariton,SPP)是研究与复
杂光学、电磁和物理行为相关的材料和结构的有效载体,具有重要应
用价值。
它可以将光信号传输到固体的内部,并使光子显得更短,这
为传递信息提供了新的可能性。
表面等离子体激元描述了物理表面上发生的电磁激励现象。
它们类似
于传统的电磁波,但具有新的特性,包括在固体物质表面反射回来的
大量能量和短波长。
SPP由一个电磁波和一个等离子体波强相互作用而产生,这两种波抵消并形成一种新的组合波。
表面等离子体激元的特性给它带来了几个关键优势。
它们可以用来实
现高密度的电磁能量传输,并能够以最少的时间传输信号。
它们还可
以用来控制传输的方向,因此可以实现高度有效的光学传输。
此外,
它们还将光子的波长缩短,从而可以实现高信噪比的传输,在存储和
运输光信息中发挥重要作用。
表面等离子体激元在多个领域都发挥着关键作用,如通信、电子系统
设计和光学系统设计。
它们在激光打印、光学散射和拉曼分析(Raman scattering)等技术中也被广泛应用。
此外,它们还为光子学中的调
制器、衍射元件和其他器件发挥着重要作用。
表面等离子体激元现在已经成为光子学中不可或缺的研究对象,它们
可以实现更快、更精准的处理和传输信号,并在全球各个行业发挥巨
大的作用。
它们已经从研究阶段走向实践应用,且未来前景一片光明。