应力路径1
应力路径及初始固结条件对强度的影响

A 6 1  ̄ 如 o=
6 o 如
B
△o1 =
△
= o
壹化
’ 嘶
收藕 日期 :l 0 一崛 一
第一作者简 介 : 方军, 1 年 出生 , 豉 男,%B 工程 师 ,91 毕业 19 年
于石油大学地球 物理 系。
吨. 2
q d q _ i 哺d y l s e 日 d m - 嘲 l 血 l b d tm  ̄ d
0
仅与土性 有关 , 而且与试 验条件有关 。下面就针对不 同应 力 路径下的 . 以理论 分析 。 . 加 3 1 常规三轴 固结不排水试嚏条件( =l且 C=0 . J
=
圈 1 基坑 中备点应力曹柽变化情况
Fg 1 a iap l i t Bhd删略ig 协 r 丑 。 f
I 4K +R 1 ) 】- o ( +k =d
A作为土性 指标一旦确定下来 , 么总应力抗剪 强度包线就 郭 确定 了, 再就常规三轴 圃鳍不捧 水剪 试验而言 , 压不会 小 轴 于围压 . 在囤压确定后 . 裴坏时的轴压也 因此而被 固定死 了 , 并来涉及到应力路径 以及初始 固鳍条 件 , 其实是 : 于常规 对 三轴固结不捧水剪试验 . 圃结条件是 ・1 初始 。另外 , 强度 指标同时还蔓受到应力路径以及初始 固鳍条件的镧约 。
3 应 力路径的 改变 引起 了强度 变化 的理 论论 、
证
下面进一 步从理论 上加 以说 明: 力路径 以及初始 固结 应
高等土力学学习总结

高等土力学学习总结姓名学号在*老师悉心教导下,通过一个学期对高等土力学的学习,我们对高等土力学有了初步的了解。
在这个学期的十一次课中,我们主要学习了第一、二、三章的内容。
在第一章中,我们学习了土的有效应力原理和应力路径,土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因;应力路径是指土体在外荷载作用下,各点应力在应力坐标图中的移动轨迹,应力路径可以分为总应力路径和有效应力路径两种。
第二章中,我们学习了土的压缩固结理论,在这一章中,我们研究了影响压缩实验成果的因素,并讨论了地基沉降计算、单向渗透固结理论中的一些问题及二向三向固结课题、次固结问题等。
第三章中,我们学习了土的抗剪强度问题,分别分析了砂土和粘性土的抗剪强度的组成和影响因素。
下面就各章所学知识点做一个简单的总结:1 有效应力原理及应力路径在第一章有效应力原理及应力路径中,我们学习了有效应力原理的概念,有关面积系数的问题,水下土体和毛细升高带土体中有效应力问题、渗流引起的有效应力问题、外荷载引起的土中超静水压力及其向有效应力的转化,有关术语的概念区别,孔隙压力系数,三相土的空隙气压力和空隙水压力,应力路径及应力路径对土应力—应变关系的影响等问题。
1.1 有效应力土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因。
1.2 面积系数问题面积系数主要包括有效应力传递面积系数a和孔隙水面积系数X两种,其中有效应力传递面积系数a也就是土颗粒接触面的面积系数,一般没有可靠的试验手段来测定它,而且它的绝对值对土性无多大意义,所以我们只需着重研究孔隙水面积系数X,并用X反推土断面上的有效应力。
通过饱和水状态下对孔隙水面积系数X的测定,普遍得出X接近并略小于1的结论,这说明土颗粒接触面积相比孔隙水面积非常小,但由于土颗粒的刚度比孔隙水大得多,所以土颗粒接触点上的有效应力也是非常大的。
土力学有效应力路径_概述及解释说明

土力学有效应力路径概述及解释说明1. 引言1.1 概述土力学有效应力路径是指土体在外部作用下,内部各个点的应力状态随时间变化的轨迹。
在地质工程领域中,了解土力学有效应力路径对于土体行为和稳定性的评估和预测具有重要意义。
随着土力学研究的深入和应用需求的增加,对有效应力路径的研究也日趋重要。
本文将对土力学有效应力路径进行概述及解释说明。
1.2 文章结构本文共分为五个部分,即引言、土力学有效应力路径、解释说明有效应力路径的变化规律与机制、应力路径测试方法和实验研究进展以及结论。
引言部分对本文的主要内容进行概括,并介绍了本文的结构安排。
1.3 目的本文旨在全面介绍土力学有效应力路径及其相关内容,并探讨其变化规律与机制。
同时,将会总结常用的应力路径测试方法和相关实验研究进展,并提出未来发展方向建议。
通过这些内容,可以帮助读者更好地理解土壤行为与稳定性问题,并促进该领域研究工作的进展。
2. 土力学有效应力路径2.1 定义与背景土力学有效应力路径是指材料中在外部加载作用下的应力变动过程所遵循的路径。
在土工工程领域中,研究土壤中应力变化规律对于预测土壤变形和强度具有重要意义。
2.2 有效应力路径的重要性有效应力路径是土壤中发生变形、破坏和剪切行为的关键参数之一。
通过了解土壤在加载过程中应力状态的变化,可以更好地理解其变形和强度特性。
有效应力路径可以帮助工程师设计合适的基础结构和地下工程,并评估它们的安全性。
2.3 影响因素及其解释说明多种因素会影响土壤中的有效应力路径。
首先是荷载施加速率,快速施加荷载会导致不同的应力传递机制,从而改变有效应力路径。
其次是孔隙水压,水分状态对土壤内部颗粒之间接触及摩擦特性产生影响。
此外,颗粒骨架结构也直接决定了应力传递机制以及有效应力路径。
需要进一步解释的是,荷载历史和路径也是影响有效应力路径的重要因素。
如果土壤在先前的加载过程中受到多次加载和卸载循环的作用,其强度和变形特性将会发生不同。
应力路径课件ppt

研究复合材料在复杂应力状态下的力学行为,为复合材料的优化设 计提供依据。
生物材料的应力路径模拟
研究生物材料在不同应力路径下的力学行为,为生物材料的优化设 计提供依据。
04
应力路径在工程中的应用
Chapter
岩土工程
岩土工程是研究岩体和土体工程的科学,应力路径在岩 土工程中有着广泛的应用。
在结构工程中,应力路径用于描述结构在各种载荷作用下的响应,包括静载、动载 、温度载荷等。
通过应力路径分析,可以评估结构的强度、刚度和稳定性,优化结构设计,提高结 构的可靠性和安全性。
环境工程
环境工程是研究环境保护和治理的科 学,应力路径在环境工程中也有着一 定的应用。
例如,在土壤污染治理中,通过应力 路径分析可以评估土壤的渗透性和流 动性,优化土壤修复方案,提高治理 效果。
应力路径的表示方法
应力路径通常用应力-应变曲线来表示,横坐标为 应变,纵坐标为应力。根据不同的受力条件和材料 特性,应力-应变曲线会有不同的形状和特征。
应力路径的重要性
指导材料加工和产品设计
促进新材料和技术的研发
通过了解材料的应力路径,可以更好 地指导材料加工和产品设计,优化材 料的性能和使用寿命。
在环境工程中,应力路径可以用于描 述土壤和地下水在应力作用下的流动 和变形规律,对于土壤污染治理和地 下水保护具有重要的意义。
05
应力路径的未来发展
Chapter
应力路径理论的发展
应力路径理论在岩石力学、土壤 力学和结构工程等领域的应用将 进一步深化,为解决复杂工程问
题提供更有效的理论支持。
随着数值模拟技术的发展,应力 路径理论将与数值模拟技术结合 ,实现更精确、更高效的数值模
2.4土的应力路径

q
1 2
1
3
0
p
1 2
1
3
1
3
3
1 3 3
K1线斜率为:0
q
K1线截距为:0
K1线
O
1 3
p
21/32
q
ca
O 3
极限状态平面
f线
Kf线
K0线
最大剪应力平面
1 3 1 K1线
p
22/32
室内常规试验的应力路径分析 1
+uf
Kf 线
-uf K'f 线 B'
D'
总应力路径
有效应力路径
45 0 45
'
p ',p
(b)超固结土
在同一应力座标图 中存在着两种不同 的应力路径,即总 应 力 路 径 (TSP) 和 有效应力路径 (ESP)。
15/32
5.强度包线与破坏主应力线
以固结排水三轴试验为例
强度包线 f : 在 ~ 坐标系中所有破坏状态莫尔圆的公切线
再加载排水固结后, 新的不排水强度qc
初始应力条件下, 不排水强度qa
排水固结应力路径
30/32
考虑应力路径的试验设计
1.基坑围护不同位置的试验设计
侧壁A点(主动状态):
采用三轴压缩膨胀试验 (1不变,3减小)
1 3
0 0
坑底以下挡墙附近B点(被动状态):
采用三轴伸长试验 (1减小,3增大)
和剪应力变化的应力路径, 如图a所示。 常用(2以)表p~示q最直大角剪坐应标力系面统上:的其应中力p变=(化+情况),/2如,图q=b(所-示。)/2;
应力路径及其表示+破坏主应力线与破坏包线

应力路径及其表示应力路径及其表示一、应力状态及应力路径•应力状态土体中一点(微小单元)上作用的应力的大小与方向;•应力路径土体中一点应力状态连续变化在应力空间(平面)中的轨迹。
土体的应力状态及其变化对土的变形和强度特性有重要影响,常用应力路径来表示应力状态的变化。
•应力路径—在应力莫尔圆上取某一特定面上应力点的移动轨迹(特定面一般取为与主应力面成45º角平面)•为反映二维应力状态的变化,常用p-q空间,p=(σ1+ σ3)/2, q=(σ1- σ3)/2σO σ3σ1τO σ3pq 应力路径及其表示二、应力路径的表示应力路径及其表示二、应力路径的表示莫尔圆-一个圆代表一个应力状态p,q 平面-一个点代表一个应力状态一个点代表一个摩尔圆;一条线代表一系列摩尔圆—应力路径σ3τ (q)σ (p)σ1τfα=45º应力路径及其表示二、应力路径的表示莫尔圆与应力路径的比较用摩尔圆用应力平面土中一点的应力状态一个摩尔圆一点应力的变化过程一系列摩尔圆一条线(应力路径)极限应力状态与强度包线相切的莫尔圆破坏主应力线上的一点应力路径及其表示二、应力路径的表示根据有效应力原理总应力路径(TSP):总应力圆顶点的连线;有效应力路径(ESP):有效应力圆顶点的连线;TSP线和ESP线之间的距离等于孔隙水压力。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)破坏主应力线K f与强度包线 f破坏主应力线K f 与强度包线τf p 强度(破坏)包线 τfn在σ~ τ坐标系中所有破坏状态莫尔圆的公切线p 破坏主应力线 K fn 在p ~q 坐标系中所有处于极限平衡应力状态点的集合,即为一系列极限应力莫尔圆的顶点的连线。
p q στOτf 线K f 线两条直线与横坐标交点都是 o ’o ’一、破坏主应力线与强度包线'tg R O A α=pq στO φc αa τf 线K f 线O’AR p 强度(破坏)包线 τfn在σ~ τ坐标系中所有破坏状态莫尔圆的公切线p 破坏主应力线 K f n 在p ~q 坐标系中所有处于极限平衡应力状态点的集合破坏主应力线K f 与强度包线τf 一、破坏主应力线与强度包线p q στO φc αa τf 线K f 线O’AR 'sin R O A φ=tg sin αφ='tg R O A α=p 强度(破坏)包线 τfn在σ~ τ坐标系中所有破坏状态莫尔圆的公切线p 破坏主应力线 K f n 在p ~q 坐标系中所有处于极限平衡应力状态点的集合破坏主应力线K f 与强度包线τf 一、破坏主应力线与强度包线有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)破坏主应力线K f 与强度包线τf p q στO φc αa τf 线K f 线O’AR tg sin αφ='tg c OO φ='tg a OO α=cos a c φ=⋅p 强度(破坏)包线 τfn 在σ~ τ坐标系中所有破坏状态莫尔圆的公切线p 破坏主应力线 K fn 在p ~q 坐标系中所有处于极限平衡应力状态点的集合一、破坏主应力线与强度包线0q p •用若干点的最小二乘法确定a 和α •然后计算强度指标c 和φαa 确定强度指标破坏主应力线K f 与强度包线τf一、破坏主应力线与强度包线二、三轴试验中的应力路径p(p’)q αu f α'K f K f '正常固结粘土(CU)A B 45ºB’图中AB为总应力路径,AB’为有效应力路径,二者同时出发于A点(p=σ3,q=0),受剪时AB为向右上方延伸的直线, AB’为向左上方弯曲的曲线, B与B’两点间横坐标差值为剪破时的孔隙水压力u f ,纵坐标差(强度值)是相同的。
三轴 应力路径 平均主应力 广义剪应力

在地球科学和地质工程领域中,岩石和土壤的力学行为一直是研究的重点。
本文将围绕三轴试验、应力路径、平均主应力和广义剪应力展开深入探讨。
一、三轴试验1. 三轴试验的定义和意义三轴试验是岩土力学领域中常用的一种试验方法,通过对岩土样本施加不同的压力和剪切力,来模拟不同应力状态下岩土体的力学特性,从而研究岩土的变形和破坏规律,为工程实践提供依据。
2. 三轴试验的基本原理在三轴试验中,岩土样本会受到三个轴向的应力作用:径向应力、周向应力和轴向应力。
通过改变这三个应力的大小和方向,可以实现不同的应力路径,从而模拟岩土体在不同地质条件下的受力状态。
二、应力路径1. 应力路径的概念应力路径是指岩土体在受力过程中,应力状态随时间的变化轨迹。
不同的应力路径会导致岩土体不同的变形和破坏特性,因此对岩土工程而言,应力路径的选择和控制至关重要。
2. 应力路径的分类一般来说,应力路径可以分为固定应力路径和变动应力路径两种。
固定应力路径是指在试验或工程过程中,应力状态沿着固定的轨迹变化,而变动应力路径则是指应力状态随时间或其他因素而变化的轨迹。
三、平均主应力1. 平均主应力的定义在三轴试验中,平均主应力是指在三轴应力状态下,样本中心处受到的平均应力。
平均主应力的大小和方向对岩土体的变形和破坏具有重要影响,因此平均主应力的确定是岩土力学研究的重点之一。
2. 平均主应力对岩土体性质的影响平均主应力的大小和变化会直接影响岩土体的强度、变形和破坏特性。
对于不同类型的岩土体,其受到的平均主应力的承受能力和变形特性也各不相同,因此在岩土工程设计中需要充分考虑平均主应力的影响。
四、广义剪应力1. 广义剪应力的概念广义剪应力是指岩土体在三轴应力状态下受到的主应力和剪应力之间的复合应力状态。
广义剪应力的存在使得岩土体的变形和破坏行为更加复杂,因此在岩土力学研究和工程实践中备受关注。
2. 广义剪应力与变形行为的关系广义剪应力对岩土体的变形和破坏过程有着重要影响,特别是在复杂应力状态下,广义剪应力的作用更加显著。
第三章 应力-应变及其基本方程

一点的应力状态
z
xx
z
zx zy
xz yz
xy
yx
y y
ij yxx
xy y
xz yz
zx zy z
应力分量的值与坐标系的
选取有关. 3
在空间应力状态下,如适当的选择坐标轴, 使其在该坐标系内的剪应力为零而只剩正应力。 则这样三个相互垂直的坐标轴的方向就是应力 张量的主方向,与主方向垂直的面叫主平面, 该面上存在的正应力叫主应力。三个主应力的 大小与坐标轴的选择无关。
22
应力路径
➢几种加载方式的说明
单调加载和循环加载:
23
应变张量的分解
物体内部 任意一点 的变形状态可以由六 个应变分量来表示:
三个正应变: x , y , z 三个剪应变: xy , yz , zx
24
应变张量的分解
=
+
立方体变形
纯体积变形
m ( x y z ) / 3
纯畸变变形
应力张量分解及其不变量
体积变形
剪切变形
应力张量 ij 球应力张量 m 偏应力张量 Sij
ij Sij m ij
m 0 0
0
m
0
mij
0 0 m
m (1 2 3 ) / 3
Sij ij mij Syxx
xy Sy
xz yz
zx zy Sz
平面上法向应变:
3m
平面上剪应变:
2 2 2 J2
应变空间与应变平面
26
各种剪应变
➢ 八面体上正应变:
8
1 3
(1
x
ij
1 2
yx
1
2 xy
1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
Kf 线和tf 线
q ( 1 3 ) 2
tf
Kf
o
3
1
p
( 1 3 ) 2
Total stress path and effective stress path
( 1 3 ) q 2
K ’f
Kf uf
ESP TSP
p ( 1 3 ) 2 ( 1 3 ) 2
应 力 路 径 Stress Paths
1. The concept of stress paths 土体中一点的应力状态可以用应力空间中的一个应力点来描述。在荷载作用 下,土体中一点应力状态的改变过程可以用对应的应力点在应力空间的运动轨迹 来描述。应力点在应力空间的运动轨迹称为应力路径。 2. Drawing stress paths 可在莫尔圆上适当选择一个特征应力点来代表整个应力圆,常用的特征点是 应力圆的顶点(最大剪应力处),其座标为, p = (1+ 3)/2, q = (1 - 3)/2。按应 力变化过程顺序把这些点连按起来就是应力路径,并以箭头指明应力状态的发展 方向。
45°
o
Байду номын сангаас
p
Kf(Kf ’)线和τf线之间的关系
总应力表示时 sin tan c cos 有效应力表示时 sin tan c cos
Kf线和τf线之间的关系