晶体X射线衍射学衍射原理
x射线晶体衍射实验报告

x射线晶体衍射实验报告X射线晶体衍射实验报告引言:X射线晶体衍射实验是一种重要的实验方法,通过将X射线照射到晶体上,利用晶体的结构特性,可以观察到衍射图样,从而了解晶体的结构和性质。
本文将介绍X射线晶体衍射实验的原理、实验装置和实验结果,并分析实验中的一些问题和改进方法。
一、实验原理X射线晶体衍射是基于布拉格方程的原理。
当X射线照射到晶体上时,晶体中的原子会对X射线进行散射,形成衍射波。
根据布拉格方程,衍射波的相位差与入射波的入射角、晶格常数和衍射角有关。
通过测量衍射角和入射角的关系,可以计算出晶格常数和晶体结构的一些信息。
二、实验装置实验中使用的装置主要包括X射线发生器、单晶样品、衍射仪和探测器。
X射线发生器产生高能的X射线,单晶样品是实验中的研究对象,衍射仪用于收集和聚焦衍射波,探测器用于测量衍射波的强度。
三、实验步骤1. 准备工作:调整X射线发生器的参数,使其产生适合实验的X射线能量。
选择合适的单晶样品,并将其固定在衍射仪上。
2. 调整衍射仪:通过调整衍射仪的入射角和出射角,使得衍射波能够被探测器收集到。
3. 开始实验:打开X射线发生器,照射X射线到单晶样品上。
同时,探测器开始测量衍射波的强度。
4. 数据处理:根据探测器测得的衍射波强度,计算出衍射角,并绘制衍射图样。
5. 结果分析:根据衍射图样,计算出晶格常数和晶体结构的一些信息,并与已知数据进行对比。
四、实验结果在实验中,我们选择了某晶体样品进行研究。
通过测量和计算,得到了该晶体的衍射图样和晶格常数。
通过与已知数据对比,我们确认了该晶体的结构和性质。
五、问题与改进在实验过程中,我们遇到了一些问题,并提出了一些改进方法。
首先,由于X射线的能量和强度有限,可能会导致衍射图样的强度较弱,影响数据的准确性。
为了解决这个问题,可以尝试增加X射线的能量和强度,或者使用更灵敏的探测器。
其次,实验中的样品制备和固定也需要一定的技巧和经验,可以通过改进样品制备方法和优化固定装置来提高实验效果。
x射线衍射的工作原理

x射线衍射的工作原理x射线衍射是一种用于研究晶体结构的技术。
它利用x射线穿过物质时的散射特性来确定晶体的结构。
这种技术在物理、化学和材料科学等领域得到了广泛应用。
x射线衍射的基本原理是利用x射线在经过晶体时的衍射现象。
当x射线通过晶体时,它会与晶体中的原子发生作用。
这些原子会对射线产生干涉作用,使射线在晶体中形成一些特殊的相位关系,从而使射线在出射时发生衍射。
晶体中的各个原子之间具有特定的空间排列方式,形成了一个有规律的晶体结构。
每个晶体结构都有一个特定的晶胞,其中包含若干个原子。
当入射的x射线穿过晶胞时,它会与其中的原子相互作用,引起干涉和散射,从而在出射方向上形成一系列特定的衍射点。
这些衍射点的位置和强度与晶体结构以及入射x射线的波长有关。
由此可以通过对衍射图样的分析来确定晶体的结构。
因此可以使用x射线衍射来确定几乎所有晶体的结构。
在实际应用中,使用的x射线波长通常为0.1纳米至1纳米范围内的水平。
使用薄晶片制备样品,这可以使x射线穿过晶体的路程尽可能短,从而增加衍射的强度。
此外,通常要使用高分辨率的探测器来捕捉衍射图样中的弱信号。
由于x射线衍射技术具有许多优点,如非破坏性、精度高、可靠性强等,因此在多个领域得到了广泛应用。
在材料科学中,它可以用于研究纳米晶、薄膜等材料的结构。
在药物研究中,它可以用于确定药物的晶体结构,从而为药物设计提供重要信息。
在工业中,它可以用于研究金属、合金等材料的结构和相变行为,从而为材料的开发和制造提供帮助。
总之,x射线衍射是一种非常重要的材料研究技术,在多个领域得到了广泛应用。
简述x射线衍射法的基本原理和主要应用

简述X射线衍射法的基本原理和主要应用1. 基本原理X射线衍射法是一种研究晶体结构的重要方法,它利用X射线的特性进行衍射分析。
其基本原理包括以下几个方面:•布儒斯特定律:X射线在晶体中发生衍射时,入射角、出射角和入射光波长之间满足布儒斯特定律,即$n\\lambda = 2d\\sin\\theta$,其中n为整数,$\\lambda$为X射线的波长,d为晶面间的间距,$\\theta$为入射角或出射角。
•薛定谔方程:晶体中的原子排列形成周期性结构,电子在晶格中运动的波动性质可以用薛定谔方程描述。
X射线被晶体衍射时,其波长与晶体中电子的波动性相互作用,形成了衍射波。
•动态散射理论:根据动态散射理论,晶体中的原子或离子吸收入射的X射线能量,并以球面波的形式发出,与其他原子或离子产生相互干涉,从而形成衍射图样。
2. 主要应用X射线衍射法广泛应用于材料科学、化学、地质学等领域,具有以下主要应用:•晶体结构分析:X射线衍射法可以确定晶体的晶格常数、晶胞角度和晶体中原子的位置,通过分析衍射图样的强度和位置,获得晶体结构的信息。
•材料表征:X射线衍射法可用于分析材料的相变、晶体有序度、晶格缺陷和晶体生长方向等特征。
例如,在合金研究中,可以通过X射线衍射技术鉴定合金中出现的新相和晶格畸变。
•晶体品质评估:通过分析衍射峰的尺寸和宽度,可以评估晶体的品质,包括晶格结构的完整性、晶体中的位错和晶格缺陷等。
•结晶体制备与成分分析:利用X射线衍射法可以研究物质的结晶过程,了解晶体生长的动力学和晶体取向的控制方法。
此外,还可以使用X射线衍射方法对材料中的成分进行分析。
•衍射仪器的研发与改进:X射线衍射法的应用也推动了衍射仪器的研发与改进,包括X射线源、X射线衍射仪和探测器等,提高了测量精度和分辨率。
3. 总结X射线衍射法作为一种非破坏性的分析技术,通过衍射图样的分析,可以获得晶体结构和材料特性的信息。
其基本原理包括布儒斯特定律、薛定谔方程和动态散射理论。
X射线衍射分析原理及应用

X射线衍射分析原理及应用一、X射线衍射分析的原理X射线衍射的基本原理是当X射线入射到晶体表面时,由于晶体具有定向排列的原子或离子,X射线与晶体中的电子发生相互作用并散射,形成不同方向上的干涉条纹,通过测量和分析这些干涉条纹的位置和强度可以推断出晶体的结构特征。
具体来说,X射线衍射分析的原理可以归纳为以下几个方面:1. 布拉格法则:当入射角θ和出射角θ'满足布拉格方程nλ = 2d·sinθ,即入射的X射线与晶体晶面的倾角和衍射角满足特定的关系时,会发生衍射。
2.动态散射:在晶体中,入射的X射线会与晶格中的电子发生相互作用,散射成各个方向上的次级波,波的振动方向垂直于入射方向。
3.干涉:次级波在不同晶面的散射电子之间发生干涉,产生特定的干涉条纹。
4.衍射图样:干涉条纹的位置和形状与晶体的晶胞结构、晶面间距以及晶体取向有关,通过测量和分析衍射图样可以确定这些信息。
二、X射线衍射分析的应用1.晶体结构分析:通过在不同角度下测量样品的X射线衍射图样,可以推断出材料的晶体结构,包括晶胞参数、晶面间距、原子位置等信息。
这对于理解材料的物理、化学以及电子结构等性质非常重要。
2.晶体取向分析:X射线衍射分析可以用来确定晶体中不同晶向的取向分布,即晶体中晶面的取向。
这对于材料工艺和性能的控制具有重要意义,例如金属的冷轧、挤压等过程中,晶体的取向对材料的力学性能有很大影响。
3.晶体缺陷分析:晶体中存在着各种缺陷,如位错、晶界、析出相等。
通过观察和分析X射线衍射图样中的峰形和峰宽等信息,可以确定晶体的缺陷类型和含量,进而了解材料的机械、电学以及热学性质。
4.应力分析:在材料的变形过程中,晶体中会引入应力场。
应力会引起晶格的畸变,从而导致X射线衍射图样的形状和位置发生变化。
通过分析这些变化可以得到材料中的应力分布和大小,对于材料的力学性能的评估和优化具有重要意义。
总之,X射线衍射分析是一种非常重要的材料表征方法,可以提供丰富的关于晶体结构、晶胞参数、晶体取向以及晶体缺陷等信息。
X射线衍射分析

X射线衍射分析X射线衍射分析是一种广泛应用于材料科学和固态物理领域的实验技术。
通过照射物质样品,利用X射线在晶体中的衍射现象,可以获得有关物质结构和晶体学信息的重要数据。
本文将介绍X射线衍射分析的原理、应用和发展。
一、X射线衍射分析原理X射线衍射分析的基本原理是X射线的衍射现象。
当X射线照射到晶体上时,晶体中的原子会对X射线产生散射,形成一种有规律的衍射图样。
这个衍射图样会显示出晶体的结构信息,包括晶体的晶格常数、晶胞形状和晶体的定向等。
X射线衍射实验一般使用Laue方法或布拉格方法。
Laue方法是在一束平行的X射线照射下,观察其经过晶体后的衍射图样,通过分析该图样可以得到晶体的结构信息。
布拉格方法则是通过将一束X射线通过晶体,利用布拉格方程进行衍射角度的计算,从而确定晶体的晶格常数和定向。
二、X射线衍射分析应用X射线衍射分析被广泛应用于材料科学和固态物理领域。
它可以用来研究晶体的结构和晶体学性质,例如晶格参数、晶胞参数和晶体定向。
此外,X射线衍射还可以用于材料的质量控制和表征、相变研究、晶体缺陷分析等。
在材料科学领域,X射线衍射分析常用于矿物学、金属学和半导体学的研究。
例如,在矿物学中,通过X射线衍射分析可以确定矿石中的不同晶型矿物的比例和结构信息。
在半导体学中,X射线衍射分析可以帮助研究晶体管的晶格结构和界面形态。
三、X射线衍射分析的发展X射线衍射分析作为一种实验技术,随着科学研究的深入不断发展。
在仪器设备方面,X射线源的进步使得可以获得更高分辨率的衍射图样;探测器的改进使得观测和数据分析更加准确和高效。
同时,随着计算机技术的发展,数据处理和分析的速度大大提高,使得研究人员可以更直观、更准确地分析X射线衍射图样。
此外,X射线衍射分析的理论研究也在不断深入,衍射峰的定性和定量分析方法得到了大量改进,使得X射线衍射分析在材料科学研究中的应用更加广泛。
总结:X射线衍射分析是一种重要的实验技术,在材料科学和固态物理领域具有广泛的应用价值。
x射线晶体衍射原理和步骤

x射线晶体衍射原理和步骤
X射线晶体衍射是一种用来研究晶体结构的技术。
它基于X射线通过晶体时发生的衍射现象。
以下是X射线晶体衍射的原理和步骤:原理:
1. X射线具有波粒二象性,可以被视为具有波动性的电磁辐射。
2. 当X射线通过晶体的晶格时,会与晶格中的原子相互作用,发生散射现象。
3. 根据布拉格定律,当入射X射线的波长、晶体的晶格常数以及入射角满足一定条件时,会出现衍射峰。
4. 衍射的强度和位置可用来推断晶格结构和原子间距。
步骤:
1. 准备晶体样品:选择一个单晶样品,确保其质量和纯度,通常使用化学方法制备。
2. 准备X射线源:使用X射线发射器产生高能量的X射线。
3. 调整实验仪器:将晶体样品固定在旋转台上,并调整X射线源和探测器的位置和角度。
4. 进行测量:开始旋转晶体样品,同时记录探测器接收到的衍射信号。
5. 分析数据:根据衍射图谱中的衍射峰的位置和强度,使用布拉格定律计算晶格常数和晶体结构参数。
6. 解释结果:根据衍射数据分析晶体的排列方式、晶胞、原子间距等信息,推断出晶体的结构。
通过X射线晶体衍射技术,可以研究各种晶体的结构,帮助科学家了解物质的组成和性质,以及开发新材料。
12X射线衍射原理

ua
2a1
ua3a1
va1a2
va
2a
2
va3a2
wa1a3 wa2a3 wa3a3
(14) (15)
写成矩阵形式为
H K L
aaa132aaa111
a1a2
a2
a
2
a3a2
a1a3 a2 a3 a3a3
u
v
w
u
[G]v
w
(16)
例如: (1)立方晶系
H
u a2
aa12aa11 a3 a1
a1a a2 a2 a3a2
a1a3 a2 a3
a3a3
G
aaa132***
a1 a1 a1
aaa132***
a2 a2 a2
aaa123***aaa333
由
ai
a
* j
0i 1i
j j
可得
式中
A11
G
A21
A31
Aij ai a j
n
(n = 1,2,3,…….n) (2-2)
将面间距为dhkl的晶面(hkl)的n级反射转化为面间距为dHKL = dhkl/n的一级反射, 即用干涉指数—一种对晶面空间方位与晶面间 距的标识。即
2dHKLsin =
(2-3)
6) 产生衍射的必要条件
反射定律 + 布拉格方程 反过来,满足上述条件不一定产生衍射。
aaa132***
a a a
* 2
* 2
* 2
aaa132*** aaa333***
A1*1 A2*1
A3*1
A1*2 A2*2 A3*2
(9)
论述x射线衍射的原理及应用

论述x射线衍射的原理及应用
X射线衍射是一种利用X射线与晶体相互作用而产生的衍射现象来研究晶体结构的方法。
其原理可以归纳为以下几点:
1. X射线的波长与晶格常数的数量级相近,因此X射线与晶体的原子相互作用较强。
当X射线入射到晶体上时,会被晶体中的原子散射,并且由于晶体的周期性排列,散射光的干涉效应会形成衍射图样。
2. 晶体中的各个晶面对X射线的散射光具有相干性,且满足布拉格衍射条件。
根据布拉格方程,当入射角、散射角和晶面间距之间满足一定关系时,会出现衍射峰,即特定方向的散射光强度增强。
3. 通过测量衍射峰的位置和强度,可以推断出晶体中的原子排列方式、晶胞尺寸和晶格常数等结构信息。
X射线衍射在材料科学、物理学和化学等领域有广泛应用:
1. 确定晶体结构:X射线衍射是确定晶体结构的重要方法,可以用于研究晶体的晶胞参数、晶格对称性和原子排列方式等信息。
2. 相变研究:X射线衍射可以用于研究材料的相变行为,例如晶体的相变温度、相变机制和相变过程等。
3. 晶体缺陷分析:通过分析衍射峰的形状和位置变化,可以研究晶体中的缺陷、畸变和应力等信息。
4. 晶体取向分析:通过测量衍射图样的方向和强度,可以确定晶体的取向信息,用于材料的定向生长和晶体学研究等。
5. 薄膜和多层结构研究:X射线衍射可以用于研究薄膜和多层结构的晶体学性质,包括晶格常数、晶面取向和晶体品质等。
总之,X射线衍射是一种重要的研究晶体结构和材料性质的方法,具有广泛的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
The Nobel Prize in Physics 1914
1914年获物理奖
M. (Max von Laue,1879-1960)
•德国物理学家,X射线晶体分析的 先驱。 •1904年,博士论文,导师:普朗 克 ( 量 子 力 学 , 1918 , 诺 奖 ) , 助教; • 1907年,他从光学角度支持爱 因斯坦狭义相对论; •1912年最重要贡献是发现了“X 射线通过晶体的衍射”。爱因斯 坦曾称此实验为"物理学最美的 实验"。 •1914年获得诺奖。
但是,衍射是本质,反射仅是为了使用方便。X射线的 原子面反射和可见光的镜面反射不同。一束可见光以任 意角度投射到镜面上都可以产生反射,而原子面对X射 线的反射并不是任意的,只有当θ 、λ、d三者之间 满足布拉格方程时才能发生反射,所以把X射线这种反 射称为选择反射。即衍射方向的选择性。
----------劳厄法 (2)另一种办法是采用单色X射线(λ固定),但改变 α 0 ,β 0 ,γ 0 的一个或两个以达到产生衍射的
目的。λ 不变, α 0 ,β 0 ,γ 0 中一个或两改 变 --------回转晶体法和粉末法。
19
3.3布拉格定律
• The Nobel Prize in Physics 1915
20
布拉格方程的导出
任意两个结点a与b上的散射波, 在镜面反射方向上散射波的光 程差:
am-nb= 0
于是,同相位而得到干涉。同 理,不论X射线从什么方向入射, 在对应的‘镜面反射’方向上, 原子面上所有个结点的散射波 能产生干涉。
如果晶体只有一个晶面,任何角度上的镜面反射都能产生干涉,但晶体由多个 晶面组成,而且X射线由于极强的穿透力,不仅表面原子,内层原子也将参与 镜面反射。 问题:X射线在一组晶面上的反射线,出现干涉、产生衍射需要哪些条件?
晶体X射线衍射学衍射原理
第 1三、晶章体X衍射射两线要衍素 射原理
2、劳厄(Laue)方程 3、布拉格(Bragg)方程 4 劳厄方程与布拉格方程的一致性 5 衍射矢量方程和厄尔瓦德图解
2
3
晶体的X射线衍射: 当一束X射线照射到晶体上时,首先被电子所 散射,每个
电子都是一个新的辐射波源 ,向空间辐射出与入射波同 频率的电磁波。可以把晶体中每个原子都看作一个新的散 射波源, 同样各自向空间辐射与入射波同频率 的电磁波。 由于这些散射波之间的干涉作用, 使得空间某些方向上 波相互叠加, 在这个方向上可以观测到 衍射线,而另一 些方向上波相互抵消,没有衍射线产生。 X射线在晶体中的衍射现象, 是大量的原子散射波互相干 涉的结果。
21
根据图示,光程差:
干涉加强的条件是:
式中:d晶面间距,n为整数, 称为反射级数;θ为入射线 或反射线与反射面的夹角, 称为掠射角,由于它等于入 射线与衍射线夹角的一半, 故又称为半衍射角,把2 θ 称为衍射角。
22
因此,已经证明:当一束单色平行的X射线照射到晶体 时,
(1)同一晶面上的原子的散射线,在晶面反射方向上 可以相互加强;
4
晶体的点阵结构使晶体对X射线、中子流和电子流等产 生衍射。其中X衍射法最重要,已测定了二十多万种晶体的 结构,是物质空间结构数据的主要来源。
5
3.1衍射的两个要素
晶体所产生的衍射花样都反映出晶体内部的原子 分布规律。 晶体的X射线衍射包括两个要素: (1) 衍射方向,即衍射线在空间的分布规律,由晶胞大 小、类别和位向决定(hkl)。 (2) 衍射强度,即衍射线束的强度, 取决于原子的种 类和它们在晶胞中的相对位置。
α,β,γ共计三个变量,但要求它们满足上述的四个 方程,这在一般情况下是办不到的,因而不能得到衍射 图。
18
为了获得衍射图必须增加一个变量
可采用两种办法: (1)一种办法是晶体不动(即α 0 ,β 0 ,γ 0 固
定),只让X射线波长改变(λ改变); 即:变λ,晶体不动(即α 0 ,β 0 ,γ 0 不变)
X射线衍射理论所要解决的中心问题: 在衍射现象与晶 体结构之间建立起定性和定量的关系,这个关系的建立 依靠一个参数个方向上能产生衍射,而不是其他方向? 回答这个问题就涉及到衍射方向的问题
7
晶体衍射方向就是X射线与周期性排列的晶体中的原子、 分子相互作用时,产生散射后X射线干涉、叠加相互加 强的方向。讨论衍射方向的方程有: 劳厄Laue方程和 布拉格Bragg方程。
(2)不同晶面的反射线若要加强,必要的条件是相邻 晶面反射线的光程差为波长的整数倍。
布拉格方程是X射线对晶体产生衍射的必要条件而非充 分条件。有些情况下晶体虽然满足布拉格方程,但不一 定出现衍射线,即所谓系统消光。
23
选择反射 (重点:与可见光的镜面反射的区别)
X射线在晶体中的衍射实质上是晶体中各原子散射波之 间的干涉结果。只是由于衍射线的方向恰好相当于原子 面对入射线的反射,所以借用镜面反射规律来描述衍射 几何。将衍射看成反射,是布拉格方程的基础。
9
劳厄法
10
3.2 劳厄(Laue)方程
(1) 直线点阵的衍 射方向(衍射条件)
设有原子组成的直 线点阵,相邻两原 子间的距离为a, 如图所示,X射线 入射方向S0 与直线 点 阵 的 交 角 为 α0 。
11
12
13
14
15
16
17
劳厄方程中,对于每组HKL,可得到三个衍射圆锥,只 有同时满足劳厄方程组才能出现衍射,衍射方向是三个 圆锥面的共交线。另外,α,β,γ不是完全彼此独立, 这三个参数之间还存在着一个函数关系: F(α,β,γ)=0 例如当α,β,γ相互垂直时,则有
布拉格(Great Britain) Sr.William Henry Bragg(1862-1942) Jr.William Lawrence Bragg(1890-1971)
主要成就:可分为两个阶段,第一阶段在澳 大利亚,研究静电学、磁场能量及放射射线, 第二阶段即1912年后,与儿子一起推导出布 拉格关系式, 说明X射线波长与衍射角之间 关系,1913年建立第一台X射线摄谱仪,并将 晶体结构分析程序化。 小布拉格是最年轻的诺贝尔奖获得者,当时 25岁。