有限元第三章 单元类型及单元刚度矩阵

合集下载

单元刚度矩阵精选ppt

单元刚度矩阵精选ppt

材料参数行对应微分方程弱形式 中的变量
单元刚度矩阵:
DIST = +[u/x;u/x]*ea +[v/x,x;v/x,x]*eiz +[w/x,x;w/x,x]*eiy +[anx/x;anx/x]*gjx
0 l[ E A d d u xd d u x E I zd d x 2 v 2d d x 2 v 2 E I y d d x 2 w 2d d x 2 w 2 G I x d d x xd d x x ] d x
z q
x y
1/3
1/3
1/3
几何模型
➢有限元分析
微分方程描述:
板单元:
采用adini板单元,adini矩形板单元是基于经典薄板理论的板单元,其广义内力和广义应变的定义是
ห้องสมุดไป่ตู้
M
x
M M y
M
xy
其广义应力应变关系是:
κ
x y xy
y x x y
x
y
l f(x)udx 0 j
Fjuj 0lqy(x)vdx j
Nyjvj 0lmz(x)d dxvdxj
Mzjddvxj
0lqz(x)wdx j
Nzjwj 0lmy(x)ddw xdxj
Myjddw xj 0lmx(x)xdxj
Mxjxj
其中,右端项中的非积分项可以看作是集中载荷的情况,所以可以不单独列出,所以上式可以继续写为:
第四讲
结构力学有限元分析
元计算技术部
本讲通过结构力学问题中的两个案例,梁结构和梁板组合结构的力学分析,从ELAB1.0有限元分析、 ELAB1.0操作、ELAB1.0有限元文件描述三个方面进行介绍,旨在让大家可以用ELAB1.0软件公式库对自己 的问题进行分析计算,而通过对有限元描述文件的介绍,可以解决大家遇到的特殊问题。

第3章 有限元方法的一般步骤

第3章 有限元方法的一般步骤

3 F1 + lAγ 2 −3 0 0 u1 3 3 2 0 u2 ( 2 + 2 )lAγ EA − 3 3 + 2 − 2 = − 2 2 + 1 − 1 u3 ( 2 + 1 )lAγ l 0 −1 0 0 1 u4 2 2 1 lAγ 2
2 n 一维单元: u = a1 + a2 x + a3 x + ..... + an x 2 2 n 二维单元: u = a1 + a2 x + a3 y + a4 x + a5 xy + a6 y ..... + an x 2 2 2 三维单元: u = a1 + a2 x + a3 y + a4 z + a5 x + a6 y + a7 z
2、单元的尺寸:单元尺寸影响解的收敛性,越细越精确。 、单元的尺寸:单元尺寸影响解的收敛性,越细越精确。 原则:1、在应力集中区域网格要细化; 2、网格边界尺寸比越近越好,即纵横比尽可能接近1;
3、结点的设置:通常结点均匀分布,另外根据结构尺寸, 、结点的设置:通常结点均匀分布,另外根据结构尺寸, 材料,及外部条件发生突变处设置结点。 材料,及外部条件发生突变处设置结点。
单元全部结点力: 单元全部结点力: 单元e中的虚位移: 单元 中的虚位移: 中的虚位移 单元e中的虚应变: 单元 中的虚应变: 中的虚应变 结点力虚功: 结点力虚功: 虚应变能: 虚应变能:
{ε } = [ B]{δ } e ∗ e T δV = ({δ } ) {F } δU = ∫∫∫ { } {σ }dxdydz ε

有限元分析 第三讲

有限元分析 第三讲
Q1l 2 θ = 2 EJ
m1 l 2 2 EJ
θ =+
1
l
1 2
m1 l EJ
m1
2
l
1节点桡度 节点桡度 1节点转角 节点转角
Q1l 3 m1l 2 f1 = 1 = 3EJ 2 EJ m1l Q1l 2 θ1 = 0 = EJ 2 EJ
解得
Q1 =
12 EJ = k11 3 l 6 EJ m 1 = 2 = k 21 l
局部坐标下梁 单元刚度矩阵
[ ]
12 EJ k e = 3 6l l 12 6l
6l 4l 2 6l 2l 2
12 6l 12 6l
6l 2l 2 6l 4l 2
对称矩阵
上述由几何关系, 物理方程, 上述由几何关系 物理方程 受力和位移的关系求出单元刚度矩阵 的方法——直接刚度法 的方法 直接刚度法
整体座标下的单元刚度矩阵换算通式
[ K e ] = [T ]T [ K e ][T ]
思考: 整体刚度矩阵如何迭加? 思考 整体刚度矩阵如何迭加
§3.3 位移函数—虚功原理推导单元有限元格式 位移函数—
基本原理 将单元内任一点的位移表示成节点位移的某种函数——位 将单元内任一点的位移表示成节点位移的某种函数 位 移函数, 利用虚功原理, 推导单元的刚度矩阵. 移函数 利用虚功原理 推导单元的刚度矩阵.
对方程加" 项 扩展为: 对方程加"0"项,扩展为:
N1 EA 1 11 N = 2 l 1 1 2
N1 1 0 0 0 EA 0 N = 1 1 l 0 0 0 0
6l f1 2l 2 θ1 6l f 2 4l 2 θ 2
0 0 0 0 0 0

有限元 第3讲补充_平面问题-整体刚度矩阵

有限元 第3讲补充_平面问题-整体刚度矩阵
12
整体刚度矩阵
通过以上组装过程可以得到组装整体刚度矩阵的一般规则: 1 )结构中的等效节点力是相关单元结点力的叠加,整体 刚度矩阵的子矩阵是相关单元的单元刚度矩阵子矩阵的集成; 2)当整体刚度矩阵中的子矩阵K rs 中r=s时,该节点(节点r 或s)被哪几个单元所共有,则K rs 就是这几个单元的刚度矩阵 e 中的子矩阵 K rs 的相加。如 K 33 应该是单元①-④中对应子矩阵 (1) (2) (3) (4) 的集成,即 K33 K33 K33 K33 K33
0
0
0
0 1 0 2 (2) 0 3 K 0 4 0 5
式中: Fi (2) ——②号单元中第i(i=1,3,4)节点所受力;
K (2) ——②号单元的扩大刚度矩阵。
y
4 ④ ② ① 1 2 3③ 5
(1)
0 0
0 0
0 0 1 0 0 2 (1) 0 0 3 K 0 0 4 0 0 5
4 ④ ② ① 1 2 3③
5
x
o
K (1) ——①号单元的扩大刚度矩阵或称为单元贡献矩阵。
5
整体刚度矩阵
y
4 ④ ② ① 14 ④ ② ① 1 2 3③ 5
x
o
(1) (2) (1) (1) (2) (2) K11 K11 K12 K13 K13 K14 0 (1) (1) (3) (1) (3) (3) K 22 K 22 K 23 K 23 0 K 25 K 21 (1) (2) (1) (3) (1) (2) (3) (4) (2) (4) (3) (4) K 31 K 31 K 32 K 32 K 33 K 33 K 33 K 33 K 34 K 34 K 35 K 35 (2) (2) (4) (2) (4) (4) 0 K 43 K 43 K 44 K 44 K 45 K 41 (3) (3) (4) (4) (3) (4) 0 K K K K K K 52 53 53 54 55 55

有限元法与ANSYS技术-刚度矩阵

有限元法与ANSYS技术-刚度矩阵

k
N
Re
e1
(r)
上式左边就是弹性体所有单元刚度矩阵的总和,
称为弹性体的整体刚度矩阵(或简称为总刚),记为
[K]。注意到(3-28)式,有
N
N
K k BT DBtdxdy (3-38)
e1
e1
若写成分块矩阵的形式,则
K11 K1i K1 j K1m K1n
Ki1
Kii
T tdxdy
(g)
这里我们假定单元的厚度t为常量。把(d )式及(3-16)式 代入上式,并将提到积分号的前面,则有
({ }e )T BT DBetdxdy
根据虚位移原理,由(f)和(h)式可得到单元的虚功方程, 即
({ }e )T Re ({ }e )T BT DBe tdxdy
注意到虚位移是任意的,所以等式两边与相乘的项应该相等, 即得
图中有两种编码:一是节点总码:1、2、3、4;二是节 点局部码,是每个单元的三个节点按逆时针方向的顺序各自 编码为1,2,3。
图中两个单元的局部码与总码的对应关系为:
单元 1 : 1,2,3
1,2,3
单元 2 : 1,2,3
3,4,1
或:
单元 1 : 1,2,3
1,2,3
单元 2 : 1,2,3
1,3,4
e
ui
vi
u j
v j
um
T
vm
且假设单元内各点的虚位移为{f *},并具有与真实位移 相同的位移模式。
故有
ቤተ መጻሕፍቲ ባይዱ
f N e
(c)
参照(3-13)式,单元内的虚应变{ *}为
B e
(d)
于是,作用在单元体上的外力在虚位移上所做的功可写

汽车结构有限元分析03单元类型及单元分析

汽车结构有限元分析03单元类型及单元分析
1.一维单元分析 ; 2.二维单元分析; 3.三维单元分析 ; 4.板壳单元 ; 5.其它各种单元介绍; 6.单元选用;
1.一维单元分析
主要有:杆单元、梁单元、管单元等 。
1.1杆单元---最简单的两节点一维单元, 用于杆件承受轴向力分析。
设杆单元横截面积为A,长度为l,轴 向分布载荷q为(x) 。单元2个节点的位移 向量为: e ui u j T
由空间弹性力学几何方程,得应变表达式:
{} [B]{ }e [[B1 ][B2 ][B20 ]]{ }e
由空间弹性力学物理方程,单元内的应力可 以表示成:
[ ] [D][ ] [D][B]{ }e [S]{ }e
单元刚度矩阵为 :
[k]e
[B]T [D][B]dV
[k1e1
[k
e 21
这其中设定单元位移模式,利用虚功 原理建立单元节点力与节点位移关系并组建 单元刚度矩阵的过程,我们将其称为单元分 析。
为了使有限元法的解在单元尺寸逐步趋 小时能够收敛于精确解,所构造的单元位移 函数必须满足以下三方面的条件:
1)位移模式中必须包括反映刚体位移的项;
2)位移模式中必须包括反映常应变的线性位 移项;
这样空间梁单元就由3个节点组成i,,j,k 点必
须在一个平面内,但不能共线。i节点到j节
点为单元坐标系的x轴,y轴(或z轴)在节点i、
j和k构成的平面上且与x轴垂直,应用右手定
则可以确定另一坐标iz, 轴j, k(或y轴)。
三点
确定后,单元坐标系即确定,梁单元的截面
方位也就完全确定下来。所增加的一个用于
] ]
[k1e2 ]
[k
e 22
]
[k1e20
[k

计算固体力学第三章_1

计算固体力学第三章_1
TSINGHUA UNIVERSITY
8. 可处理大变形和非线形材料带来的非线形问题.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
3 协调模型分析
1. 建立协调模型的一般方法
大部分有限单元,都是根据虚功原理, 或由它导出的能量 原理建立的, 这类单元统称为“协调模型”或“相容模 型”(Conforming model)。
每个节点有三个转动 分量和三个位移分量.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
如图1.4, 用120个节点和297个平面应变三角形单 元模拟. 将对称性应用于整个杆端的一半. 此分析 的目的是找出杆端应力集中最高的位置.
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
有限元法无论对什么样的结构(杆系,平面,三维, 板壳)分析过程是一样的,一般为:
有限元法基本步骤:
TSINGHUA UNIVERSITY
有限元法基本步骤
将物体划分为具体有相关节点的等价系统,选择最适当 的单元类型来最接近的模拟实际的物理性能. 所用的单元总 数和给顶物体内单元大小和类型的变化是需要工程判断的 主要问题. 单元必须小到可以给出有用的结果,又必须足够大以节省 计算费用.
一点的位移列阵: 一点的应变列阵:
一点的应力列阵:
一点的体积力列阵: 一点的表面力列阵:
边界外法线方向余弦矩阵:
其中:
平衡方程:(内力与体积力的关系方程)
写成矩阵形式:
其中
A - 微分算子矩阵
几何方程:(应变与位移的关系方程)
写成矩阵形式:
物理方程(应力与应变的关系方程)

单元类型及单元刚度矩阵课件

单元类型及单元刚度矩阵课件

面积单元的刚度矩阵可以通过解析方 法或数值方法计算得到。
它具有四个节点,每个节点具有三个 自由度:x、y和z方向的位移。
体积单元
体积单元是一种几何 形状,通常用于模拟 结构中的三维实体或 区域。
体积单元的刚度矩阵 可以通过解析方法或 数值方法计算得到。
它具有八个节点,每 个节点具有三个自由 度:x、y、z方向的 位移。
移。
线性单元的刚度矩阵可以通过解 析方法或数值方法计算得到。
角点单元
角点单元是一种特殊类型的线 性单元,通常用于模拟结构中 的角点或连接两个线性单元的 节点。
它具有三个自由度:x、y和z方 向的位移。
角点单元的刚度矩阵可以通过 解析方法或数值方法计算得到。
面积单元
面积单元是一种几何形状,通常用于 模拟结构中的平面区域或曲面上的小 区域。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文, 单击此处添加正文,文字是您思想的提炼,为了最终 呈现发布的良好效果单击此4*25}
通过稳定性分析,可以评估结构的承载安全性和预防 失稳的措施。
PART 04
单元类型选择与注意事项
选择依据
计算精度
根据模型精度要求选择合适的单 元类型,例如,对于复杂形状或 精细结构,应选择高阶单元以提
2023 WORK SUMMARY
单元类型及单元刚度 矩阵课件
REPORTING
CATALOGUE
• 单元类型介绍 • 单元刚度矩阵
PART 01
单元类型介绍
线性单元
线性单元是一种简单的几何形状, 通常用于模拟结构中的直线段或 平面区域。
它具有两个节点,每个节点具有 三个自由度:x、y和z方向的位
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fξ j(2) x
l
0 1
x xi x xj
二、一维单元及其单元刚度阵
1.杆单元
●一次杆单元
根据形状函数的定义,我们知道,形状函数是 描述或反映单元内点位移与单元节点位移的关系。 对于上述问题,已知节点位移为ui,uj,而要求节点 间任一内点的位移,显然可以根据线性插值来计算 (二点一次拉氏插值),即
一、形状函数类型及其特征
在第二章中,曾经讨论过单元内点位移函数假设 适应满足的4项原则。
●包含单元的刚体位移 ●包含单元的常应变状态 ●保证不偏惠各坐标轴 ●保证单元内位移连续
体现位移函数完备性 体现位移函数几何不变性 体现位移函数协调性
一、形状函数类型及其特征
要保证位移函数的几何不变性,位移函数多项 式的各项应根据帕斯卡三角形来选择。
二、一维单元及其单元刚度阵
1.杆单元 杆单元受轴向力,在单元端点处无弯矩和扭矩作用,
将此单元独立出来进行受力分析时为二力杆。根据单元 形状函数的阶次,又可分为一次杆单元和二次杆单元。
●一次杆单元 单元有两个节点,如图所示,编号为i、j,采用局部
坐标 ,记 x l,并取i为x坐标的原点,则有
F i(1)
二、一维单元及其单元刚度阵
1.杆单元 元素的计算
●二次杆单元
k22 E l2 A 0 l(421 )2d xE 3 l A 7 k33 E l2 A 0 l(4142)2d xE 3 l A 16
k 12 E l2 0 lA (42 1 )4 (2 1 )d x E 3 l A 1
一、形状函数类型及其特征
ngrange型形状函数,这时节点广义位移为节 点位移,不含节点位移导数,它与单元的几何形状、 单元节点分布和节点数有关。所以,该类形状函数 在单元几何形状、节点分布和节点数一定时也随之 确定。
2.Hermite型形状函数,其节点广义位移包含节点 位移和节点位移导数。
二、一维单元及其单元刚度阵
1.杆单元
●二次杆单元
所以单元内点位移为 u(x) N1
N2
N3uu12
单元应变
u3
1lddN 1
dN 2
d
ddN 1 u u u1 3 2 Be
几何矩阵为
B 1 l (41 1 ) (42 1 ) (41 42 )
二、一维单元及其单元刚度阵
11 l
1 uu1 2 Be
二、一维单元及其单元刚度阵
1.杆单元
●一次杆单元
所以,几何矩阵为 B 1l 1l
单元应力为 E
DE 弹性矩阵
单元刚度矩阵通式为
k e A l B T D B dx
Al B T D B
keBTDBdV
V
代入,得
EA l
1
1
1
1
这是一次杆单元的单刚阵,它对 称、对角线元素大于零且奇异!
N 1 (l x )l;N 2 xl
u0 x llu1x l 0 0u2 uN 1 N 2 u u1 2
二、一维单元及其单元刚度阵
1.杆单元
●一次杆单元
代入 ,有 令 11;2
所以单元内点位移为
单元应变
N 11;N 2
得 N 11;N 22
u(x) 1 2uu12
d d u xd d d d u x1 ld d u1 l d d 1 Nd d 2 N u u 1 2
m
2. Ni Xi 1
i1
3.保证所定义位移函数在相邻单元之间的连续
工程4实.保际证中所有定一义种位结移构函,数特反征映为常:应存变在状一态个长维,但 相对而言又不像平面应变那样,长短比略小,且载荷可 以为任意。比较典型的是井架、塔架等框架结构,这类 结构可用有限元中的一维单元来离散,根据问题的不同, 一维单元又可分为杆单元和梁单元。
二、一维单元及其单元刚度阵
1.杆单元
●一次杆单元
当上述单元用于描述仅受扭转变形的杆件时, 其单刚阵类似于一次杆单元的单刚阵,为:
ke
GJ l
1 1
1 1
Mn
Mn
ξ
i(1)
j(2) x
l
二、一维单元及其单元刚度阵
1.杆单元
●二次杆单元 单元有三个节点,如图所示,端点编号为i、j,
三个节点依次为1、3、2。单元位移可以根据抛物 线插值(亦称三点两次拉氏插值)获得,即
第三章 单元类型及单元刚度矩阵
一、形状函数类型及其特征
ngrange型形状函数
2.Hermite型形状函数
二、一维单元及其单元刚度阵
1.杆单元
2.三次梁单元
三、二维单元及其单元刚度阵
1.三角形单元
2.矩形单元
四、三维单元及其单元刚度阵
1.六面体单元
2.四面体单元
3.曲线等参元
第三章 单元类型及单元刚度矩阵
有限元法的基本原理是将结构划分成单元,在单 元内用较简单的函数描述单元位移,即
u~(x) m Ni(x)qi i1
这是对单元位移u(x)的近似。在前面两章的介绍 中,我们讲过,是用单元的节点位移来描述单元内 点位移,这里所用的变量qi,是节点位移的一种推 广,即一组广义坐标,或称广义节点位移,包括节 点位移和节点位移导数。Ni为形状函数。根据单元 广义节点位移的不同,形状函数分两类:Langrange 和Hermite型。
1.杆单元
●二次杆单元
单元应力为 E DE
单 1 7 8
元素的计算
8 8 16
k11 E l2 A 0 l(41 1 )2d xE 3 l A 7
可以直接应用
x2
x1
1 mn 2dx (x2x1)(m (m !)nn ( !1 ))!
二维单元的帕斯卡三角形
1
x
y
x2
xy
y2
x3
x2y
x y2
y3
一、形状函数类型及其特征
1
x
y

z
维 的
x2
xy
y2

zx
yz

z2

x3
x2y
xy 2
y3

zx 2
xyz
y2z

z2x
yz 2

z3
一、形状函数类型及其特征
形状函数应该满足以下条件
1.
N iX l0 1
li li
N iX i1
N iX j0
同样令
0
1
x xi x xj
11;2
F

i(1)
(3)
j(2) x
l
二、一维单元及其单元刚度阵
1.杆单元
●二次杆单元
u(x)(x( 2 ll))x ((l)l)u1(x0 l()lx()2 l)u2(x(l0 )) (x(l)l)u3
2
2
22
令 N1 (2 1)( 1) 212 1 N2 22 222 2 N3 4(1) 412
相关文档
最新文档