空间插值算法汇总
空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)
空间插值

图15.10 距离倒数平方 法生成的年平均降水量 曲面。
21
图15.11 距离倒数平方法 生成的等雨量线图。
22
薄板样条函数( Thin-Plate Splines)
薄板样条函数生成一个通过控制点的表面,并使所有点连接形成的所 有坡面的斜度变化最小(Franke 1982)。也就是说,薄板样条函数基于生 成最小曲率的面来拟合控制点。
图15.3 0号站点的未知值由其周围具有已知值的5个站点插值。
10
图15.4 由三阶趋势面模型生成的等值线 图(图中点符号表示位于爱达荷州内的 已知点)。
11
局部拟合法
局部拟合法用一组已知点的样本来估算未知值,确定用于 估算的已知点个数和已知点选择是很重要的。
12
图15.5 搜索样本点的三种方法:(a)找到与估算点最邻近的点; (b)以半径搜索点;(c)用象限搜索点。
4
图15.1 爱达荷州及其周边的 175个气象站地图。
5
空间插值的类型
1. 空间插值方法可分成全局和局部拟合法。 2. 空间插值方法可分成精确的和不精确的。 3. 空间插值方法可分成确定的和随机的。
6
表15.1 空间插值方法的分类
整体拟合法
局部拟合法
确定性 随机性
确定性
随机性
趋势面*
回归
泰森 密度估算 距离倒数权重 薄板样条
假设不存在漂移,普通克里金法重点考虑空间相关的因 素,并用拟合的半变异直接进行插值。
37
图15.20 基于指数模型的普通克里 金插值法生成的等雨量线图。
38
图15.21 图15.20中的年降水 量曲面的标准误差。
39
泛克里金法(Universal )
空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。
即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。
(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。
即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。
从而空间统计学应用而生。
➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。
常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。
严格来说趋势面分析并不是在一种空间数据插值法。
它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。
⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。
精度以最小二乘法进行验证。
地理信息系统课程GIS空间插值

• 对每种插值方法重复下面的步骤,实现对不 同插值方法的比较: • 从数据集中除去一个已知点的测量值; • 用剩余的点估计除去点的值; • 比较原始值和估计值,计算出估计值的预测 误差。 • 针对每个已知点,进行上述步骤,然后评价 不同插值方法的精确度。常用的评价指标是 均方根(RMS):
1 n 2 RMS ( Z Z ) i , act i ,est n i 1
公式
其数学表达式为:
v e vi vi 表示 i 点的变量值。 其中ve 表示待估点变量值,
i 点必须满足如下条件:
d ei min( d e1 , d e 2 , d en )
d ij xi x j y i y j
2
其中
2
表示点 i(xi, yi)与点 j(xj, yj)间的欧几里德距离。
2、确定性方法和地统计方法 确定性方法
– 确定性插值法是使用数学函数进行插值,以研究 区域内部的相似性(如反距离加权插值法),或 者以平滑度为基础(如径向基函数插值法)由已 知样点来创建预测表面的插值方法。 – 全局多项式插值、反距离权插值、局部多项式插 值
地统计学插值
• 基于自相关性 (测量点的统计关系),根据 测量数据的统计特征产生曲面;
RSS=
ˆt ) ( yt y
t 1 T 2
=
ˆ x )2 ˆ ( y t t
t 1
T
• 根据最小化的一阶条件,将式分别对x,y求 偏导,并令其为零,即可求得α, β
• 一阶线性平面可模拟具有单一坡度的斜 坡地形表面; • 二次曲面方程可表达山头、洼地区域; • 三次曲面则能描述较为复杂的地形曲面。
例如:在一个没有数据记录的地点,其降 水量可通过对附近气象站已知降水量记 录的插值来估算出来。
插值算法总结

一:距离加权反比法插值算法1:原理:设空间待插点为P(Xp,Yp,Zp),P点邻域内有已知散乱点Q i(x i,y i,z i),i=1,2,3….n;利用距离加权反比法对P点的属性值Zp进行插值。
其插值原理是待插点的属性值是待插点邻域内已知散乱点属性值的加权平均, 权的大小与待插点与邻域内散乱点之间的距离有关, 是距离的k(0<=k<=2)(k一般取2)次方的倒数。
其中:d i为待插点与其邻域内第i个点之间的距离。
2:克里金算法设研究区域为A, 区域化变量即欲研究的物理属性变量为{Z(x)∈A},x 表示空间位置(一维、二维或三维坐标), 在采样点x i(i=1,2,…n)处的属性值(或称为区域化变量的一次实现)为Z(x i)(i=1,2,…n),则根据普通克里金插值原理, 未采样点x0处的属性值Z(x0)估计值是n个已知采样点属性值的加权和, 即;λi为待求权系数。
假设区域化变量Z(x)在整个研究区域内满足二阶平稳假设:(1):Z(x)的数学期望存在且等于常数:E[Z(x)]=m(常数)(2):Z(x)的协方差Cov(x i,x j)存在,且只与两点之间的相对位置有关。
或满足本征假设(3)E[Z(x i)-Z(x j)]=0.(4)增量的方差存在且平稳:Var[Z(x i)-Z(x j)]= E[Z(x i)-Z(x j)]2经过无偏性要求:经推到可得:。
在无偏条件下使得估计方差达到最小,即其中:u 是拉格朗日算子。
可以得到求解权系数λi (i=1,2…n )的方程组:求出诸权系数λi (i=1,2…n )后,就可求出位采样点x 0处的属性值Z *( x 0).上述求解λi (i=1,2…n )的方程中的Cov (x i ,x j )若用变异函数表示时,其形式为:变异函数的定义为:由克里金插值所得的方差为:或。
空间插值方法
数据拟合问题就是根据若干参考点上的已知值求出待定点 上(未知点)的研究值。数据拟合问题通常可分为插值问 题和光顺逼近问题。 插值问题的解要求严格经过已知量测点,而光顺逼近问题 的解虽不要求严格经过已知点,但它要求在某种约束条件 下(比如最上 乘意义下 最小曲面能或最小粗糙度意义 下(比如最上二乘意义下、最小曲面能或最小粗糙度意义 下)达到整体逼近效果。
6/21/2010
空间插值方法
第6讲 空间插值方法及 TIN/TEN构建算法
6.1 问题的提出 6.2 空间数据插值方法概述 6.3 几种空间数据插值方法原理
6.1 空间插值问题的提出
6.2 空间数据插值方法概述
GIS在实际应用过程中,很多情况下,比如采样密度不够、 曲线与曲面光滑处理、空间趋势预测、采样结果的可视化 等,必须对空间数据进行插值和拟合,因此空间数据插值 是GIS数据处理的一项重要任务。其主要目的是根据一组 已知的离散数据,按照某种数学关系推求其他未知点和未 知区域的数据的过程。
Delauny三角化方法自提出后并未引起足够多 的重视,到了20世纪80年代才开始研究这个算 法,目前比较有效的算法有:
分治算法 逐点加入法 生长算法 凸壳法
分治算法
分治算法的基本思想是一个递归思想,把点集划分到足够小, 使其易于生成三角网,然后把子集中的三角网合并生成最终 的三角网。 逐点加入法有两个基本步:1.定位,找到包含新加点的三角 形;2.更新,形成新的三角形。 生长法从第一个DT开始,而后由三角形边逐步形成新的DT。 如果二维上的任意一点对应到三维点,可以计算出提升点的 凸壳,除去朝上的凸壳面,剩下的朝下的面就是原始点的DT (这个关系适合于任意n维)。
空间插值——精选推荐
γ(t) =
τ2
+
σ2t2 1+ϕt2
if t > 0
0
otherwise
21/51
空间插值
对应的协方差函数如下:
C(t) =
σ2(1
−
t2 1+ϕt2
)
if t > 0
τ2 + σ2 otherwise
22/51
空间插值
7)小波(Wave)
γ(t) =
τ2
+
σ2(1
−
sin(ϕt) )
ϕt
if t > 0
7/51
空间插值
变异函数满足负定条件。对任意位置集合s1, · · · , sn,任意
的满足
n =1
=
0的常数1,
·
·
·
,
n,则
1
jγ(s − sj) = E
j(Y(s) − Y(sj))2
j
2 j
= −E
j Y (s )Y (sj )
j
= −E[ Y(s)]2 ≤ 0.
8/51
空间插值
3、 各向同性(isotropy)
26/51
空间插值
对应的协方差函数如下:
C(t) =
σ
2(2 2−1
tϕ) ()
K
(2
τ2 + σ2
tϕ)
if t > 0 otherwise
= 3/ 2时,C(t) = σ2(1 + ϕt) exp(−ϕt), t > 0。
27/51
空间插值
4、 变异函数的估计 一个通常的经验变异函数的估计是
空间插值
空间插值模型的评价与对比
空间插值模型的评价与对比空间插值是地理信息科学中重要的研究领域,它通过利用已知的空间数据点来估计未知位置的值。
空间插值模型的评价与对比对于提高空间数据的精确性和可靠性至关重要。
本文将探讨空间插值模型的评价方法,并对比常用的插值算法。
一、评价空间插值模型的指标1. 精度指标精度是评价插值模型的重要指标之一。
常用的精度指标包括均方根误差(RMSE)、平均绝对误差(MAE)和平均百分比误差(MAPE)。
RMSE衡量了观测值与插值值之间的差异,值越小表示模型精度越高;MAE计算了观测值与插值值的绝对差异的平均值,同样,值越小表示模型精度越高;MAPE则用百分比表示了观测值与插值值的误差程度,同样,值越小表示模型精度越高。
2. 空间自相关指标空间自相关指标可以反映插值结果的空间分布特征。
其中,Moran's I和Geary's C是常用的空间自相关指标。
Moran's I衡量了观测值与其邻近观测值之间的空间相关性,值介于-1和1之间,其中正值表示正相关,负值表示负相关;Geary's C则衡量了观测值与其邻近观测值之间的差异,值越接近1表示空间自相关性越强。
二、常用的插值算法对比1. 克里金插值法克里金插值法是一种基于统计学原理的插值方法,它通过对已知数据点的空间关系进行分析,建立空间变异模型,从而对未知位置进行估计。
克里金插值法具有较好的精度和稳定性,但对于大规模数据集计算较为耗时。
2. 反距离加权插值法反距离加权插值法是一种简单而常用的插值方法,它假设未知位置的值与其邻近已知点的距离成反比。
该方法简单易懂,计算速度较快,但对于稀疏数据集和局部变异性较大的情况下,插值结果可能较差。
3. 全局插值法全局插值法是一种基于全局模型的插值方法,如径向基函数插值(RBF)和普通克里金插值。
全局插值法通过对整个数据集进行拟合,建立全局模型来估计未知位置的值。
这种方法适用于数据集较为均匀的情况,但对于大规模数据集计算较为耗时。
地理空间数据分析中的空间插值技术的使用教程
地理空间数据分析中的空间插值技术的使用教程在地理空间数据分析中,空间插值技术被广泛应用于填充缺失值、补齐网格数据、生成等高线图等任务中。
本文将介绍空间插值技术的基本原理、常用方法以及使用教程,以帮助读者更好地理解和运用这一技术。
一、空间插值技术的基本原理空间插值是通过已知的观测点得出未知位置的属性值的一种方法。
它基于空间相关性的假设,即临近点的属性值相似性较高。
根据这个假设,空间插值方法可以通过在观测点之间进行合理的插值推断来得出未知点的属性值。
二、常用的空间插值方法1. 反距离加权插值(IDW)反距离加权插值是一种简单且常用的插值方法。
它根据观测点和插值点的距离,对观测点进行加权计算,距离越近的点权重越大。
该方法适用于局部空间变异性较大且存在离散数据的情况。
2. 克里金插值(Kriging)克里金插值是一种基于泛函高斯随机场理论的空间插值方法。
它考虑了空间数据的自相关性和空间变异性,能够更好地描述空间数据的复杂性。
克里金插值方法通过构建半变异函数和克里金方程,对观测点进行插值推断。
3. 三角网插值(TIN)三角网插值将空间数据进行三角化处理,在每个三角形内进行插值。
它适用于不规则分布的观测点和空间数据边界不规则的情况。
通过分割空间为连续的三角形,可生成连续的等高线图等。
4. 其他插值方法除了上述常用的插值方法外,还有较多的其他插值方法可供选择。
例如径向基函数插值(RBF)、样条插值(Spline)等。
选择合适的插值方法需要根据具体的数据特征和分析目标进行。
三、空间插值技术的使用教程以下是空间插值技术的使用教程,以反距离加权插值和克里金插值为例。
1. 反距离加权插值(IDW)的使用教程(1)使用ArcGIS等地理信息系统软件打开需要进行插值的地理空间数据。
(2)选择反距离加权插值工具。
(3)根据自己的需求设置插值参数,如距离权重指数、邻近点数量等。
(4)开始插值计算,待计算完成后得到插值结果。
2. 克里金插值的使用教程(1)使用克里金插值软件,如Surfer、GS+等,打开需要进行插值的地理空间数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间插值算法:
1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。
你可以用几个选项来确定你需要的趋势面类型。
多元回
归实际上不是插值器,因为它并不试图预测未知的Z 值。
它实际上是一个趋势面分析作图程序。
使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。
参数设置是指定多项式方程中X 和Y组元的最高方次。
5、径向基本函数法(Radial Basis Function)径向基本函数法是多个数据插值方法的组合。
根据适应你的数据和生成一个圆滑曲面的能力,其中的复二次函数被许多人认为是最好的方法。
所有径向基本函数法都是准确的插值器,它们都要为尊重你的数据而努力。
为了试图生成一个更圆滑的曲面,对所有这些方法你都可以引入一个圆滑系数。
你可以指定的函数类似于克里金中的变化图。
当对一个格网结点插值时,这些个函数给数据点规定了一套最佳权重。
6、谢别德法(Shepard's Method)谢别德法使用距离倒数加权的最小二乘方的方法。
因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。
谢别德法可以是一个准确或圆滑插值器。
在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。
圆滑参数是使谢别德法能够象一个圆滑插值器那样工作。
当你增加圆滑参数的值时,圆滑的效果越好。
7、三角网/线形插值法(Triangulation with Linear Interpolation)三角网插值器是一种严密的插值器,它的工作路线与手工绘制等值线相近。
这种方法是通过在数据点之间连线以建立起若干个三角形来工作的。
原始数据点的连结方法是这样:所有三角形的边都不能与另外的三角形相交。
其结果构成了一张覆盖格网范围的,由三角形拼接起来的网。
每一个三角形定义了一个覆盖该三角形内格网结点的面。
三角形的倾斜和标高由定义这个三角形的三个原始数据点确定。
给定三角形内的全部结点都要受到该三角形的表面的限制。
因为原始数据点被用来定义各个三角形,所以你的数据是很受到尊重的。
8.自然邻点插值法(Natural Neighbor)自然邻点插值法(NaturalNeighbor)是Surfer7.0才有的网格化新方法。
自然邻点插值法广泛应用于一些研究领域中。
其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数
据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待
插点的权重,待插点的权重和目标泰森多边形成比例[9]。
实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。
同时,自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。
9.最近邻点插值法最近邻点插值法(NearestNeighbor)又称泰森多边形方法,泰森多边形(Thiesen,又叫Dirichlet或Voronoi多边形)分析法是荷兰气象学家A.H.Thiessen提出的一种分析方法。
最初用于从离散分布气象站的降雨量数
据中计算平均降雨量,现在GIS和地理分析中经常采用泰森多边形进行快速
的赋值[2]。
实际上,最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值
作为待的节点值[3]。
当数据已经是均匀间隔分布,要先将数据转换为SURFER 的网格文件,可以应用最近邻点插值法;或者在一个文件中,数据紧密完整,只
有少数点没有取值,可用最近邻点插值法来填充无值的数据点。
有时需要排
除网格文件中的无值数据的区域,在搜索椭圆(SearchEllipse)设置一个值,对无
数据区域赋予该网格文件里的空白值。
设置的搜索半径的大小要小于该网格文件数据值之间的距离,所有的无数据网格节点都被赋予空白值。
在使用最
近邻点插值网格化法,将一个规则间隔的XYZ数据转换为一个网格文件时,可
设置网格间隔和XYZ数据的数据点之间的间距相等。
最近邻点插值网格化法没有选项,它是均质且无变化的,对均匀间隔的数据进行插值很有用,同时,它
对填充无值数据的区域很有效。
10.Moving Average(移动平均法)移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。
移动平均法适用于即期预测。
当产品需求既不快速增长也不快速下降,且不存
在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。
移动平均法根据预测时使用的各元素的权重不同移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。
因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
11.Local Polynomial(局部多项式法)
12.Modified Shepard's Method(改进谢别德法)。