平面与平面垂直的判定
证明两个平面垂直的方法

证明两个平面垂直的方法
线面垂直到面面垂直,直线a垂直于平面1,直线a平行于或包含于平面2,所以平面1垂直于平面2。
平面1垂直于平面2,平面1平行于平面3,所以平面3垂直于平面2。
通过2面角的夹角,如果2面角的夹角是90度,那么两个平面也是垂直的。
面面垂直判定定理
定理
如果一个平面与另一个平面的垂线相交,则这两个平面相互垂直。
推论1
如果一个平面的垂线平行于另一个平面,那么这两个平面相互垂直。
推论2
如果两个平面的垂线互相垂直,那么这两个平面互相垂直。
(可以理解为法向量垂直的平面互相垂直)
面面垂直性质定理
定理1
如果两个平面互相垂直,那么在一个平面上垂直于它们的交点的直线就垂直于另一个平面。
定理2
如果两个平面互相垂直,那么垂直于第二个平面并通过第一个平面中的一点的直线在第一个平面中。
定理3
如果两个相交的平面垂直于第三个平面,那么它们的交线垂直于第三个平面。
推论:三个成对垂直平面的相交是成对垂直的。
定理4
如果两个平面互相垂直,那么一个平面的垂线平行于另一个平面。
(判定定理的推论1的逆定理)
推论:如果两个平面互相垂直,那么垂直于这两个平面的两条垂线互相垂直。
(判定定理的推论2的逆定理)。
平面与平面垂直的判定和性质

课堂导入
建筑工人砌墙时,常用一端系有铅锤的线来检 查所砌的墙面是否和地面垂直,如果系有铅锤的线 和墙面紧贴,那么所砌的墙于地面垂直.这是为什 么呢?
W
1
平面与平面垂直的判定定理:
如果一个平面经过另一个平面的一条垂 线,那么这两个平面相互垂直。
已知: ,AB, α
求 证:
W
5
该命题是假命题。
由,平面 内的直线AB与不平一 垂 面定 直能
α
A
α A
D
β
D
B
B
C
C
那么还需添加什么条件,才能使命题为真?
W
β
6
若增加条件ABCD,则命题为真,即
α
AB
CD
AB
。
A
D
β
AB CD
B
C
平面与平面垂直的性质定理是:
如果两个平面相互垂直,那么在一个平面 内垂直于它们交线的直线垂直于另一个平面。
W
7
(1)面面垂直线面垂直; (线是一个平面内垂直于两平面交线的一条直线)
(2)平面 ⊥平面β,要过平面 内一点引平面β
的垂线,只需过这一点在平面内作交线的垂线。
α
D
C
β
W
α A
D
β
B
C
8
例2、已知直线PA垂直于O所在的平面,A为垂足,AB为O的直径,C是圆周 上异于A、B的一点。
1)求证:平面PAC平面PBC;
α A
D
β
B
C
W
12
2)若PA=AB=a,
A C
6a 3
,
求
二面 P B角 C 的 A
§2.3.2平面与平面垂直的判定

§2.3.2 平面与平面垂直的判定 【学习目标】 1. 理解和掌握二面角和二面角的平面角的相关概念; 2. 掌握平面与平面垂直的判定定理. 【重点难点】 1.二面角的平面角; 2.面面垂直的判定定理. [自主感知] 1. 二面角及其相关定义? 2. 两个平面互相垂直的判定定理: 文字语言:若一个平面过另一个平面的 ,则这两个 平面 .简称:若线面垂直,则面面垂直 符号语言:若_______________________________,则 . [深入探究] 探究一:二面角大小的表示往往利用二面角的平面角例 2 如图所示,已知三棱锥D ABC -中,满足A B A C D B ==DC == 2,BC DA ==,求二面角A B C D --的大小. 探究二:面面垂直判定定理的考察 例1 如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于,A B 的任意一点,求证:平面PAC PBC ⊥平面.……………………………………装…………………………………订…….…………………………………线……….………………………………...................................…[拓展运用]例3 如图,在正方体''''ABCD A B C D-中,求证:平面''ACC A⊥平面'A BD.【课堂小结】1.二面角的平面角;2.面面垂直的判定定理.【当堂检测】1.已知直线l⊥平面α,则经过l且和平面α垂直的平面有()A.1个B.2个C.有无数个D.不存在2.正方体A1B1C1D1-ABCD中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值等于()A.33B.22C. 2D. 33.直线l是平面α的斜线,则经过l且和平面α垂直的平面有个.4.四边形ABCD是矩形,P为平面ABCD外一点,P A⊥平面ABCD,且P A=AB,则二面角P—BC—D的大小为.【课下作业】复习导学案,并完成相应学科练.【预习指导】请同学们提前预习下一节课课本内容和导学案.。
平面和平面垂直的判定与性质

例1、已知直线PA垂直于O所在的平面,A为垂足, AB为O的直径,C是圆周上异于A、B的一点。 求证:平面PAC平面PBC;
P
判定定理: 要证两个平面垂直,
C
A
只要在其中一个平面内找到
O
B
另一个平面的一条垂线。
ห้องสมุดไป่ตู้
例2、空间四边形ABCD中,已知AB=3,AC=AD=2,∠DAC= ∠BAC= ∠BAD=600 求证:平面BCD⊥平面ADC 证明:设DC中点为O,连结AO、BO, ∵AC=AD=2 ∠DAC=600 ∴AO⊥DC AO=√3 DC=2 又∠BAC= ∠BAD=600 AB=3 ∴⊿ABD≌⊿ABC DB=CB=√7 ∴BO⊥CD BO=√6 ∠AOB是二面角ADCB的平面角 ∴AB2=AO2+BO2 ∠AOB=900 ∴平面BCD⊥平面ADC 定义法: 找二面角的平面角 D A
3、已知直线PA垂直正方形ABCD所在的平面,A为垂足。 求证:平面PAC平面PBD。
P
A
D
O
B C
[总结提炼]
☆ 定义面面垂直是在建立在二面角的平面角的基础上的 ☆ 理解面面垂直的判定要依赖面面垂直的定义 ☆ 证明面面垂直要从寻找面的垂线入手
面面垂直的判定方法: 1、定义法:
2、判定定理法: 3、线面平行法: 如果一个平面与另一个平面的一条垂线平行,那么这 两个平面互相垂直
4、法向量垂直法
/ 博王时彩计划软件
敢咯 那 那时候别早咯 奴婢那就服侍您歇息吧 ”菊香の前半句话王爷还没什么在意 壹听到她那那后半句话 气得差点儿上去给她壹巴掌!自从他决定回怡然居之后 壹直在 搜肠刮肚地选择用啥啊样の委婉词语来与淑清告别 既别能太伤她の心 又能够安然脱身 结果还别等他想出法子来呢 那各可恶の菊香 竟然是哪壶别开提哪壶 直接就要来服侍 他歇息!真是要将他活生生气死!第壹卷 第899章 清白既然菊香已经红口白牙地提出来服侍他安歇就寝事宜 被逼到绝境之中没处躲没处藏の王爷只好硬着头皮开口道: “爷那壹遭被吵醒 也睡别着咯 打算回去看看书 您家主子还病着 爷看书会影响她养病 那 爷那就走咯 服侍您家主子好好休息 ”菊香唱咯壹晚上の独角戏 最终还是没能将 他留下 淑清本就是在病中 再见他竟是那般绝情 别禁悲从心来 壹晚上都没什么开口の她终于忍别住喊咯壹声:“爷!”然后她就再也说别出来壹句话 只是用壹双眼睛泪汪 汪地望向他 见病中の淑清如此楚楚可怜の样子 就那么走开实在是太过残忍 于是 狠别下心来の他只好又坐回床侧 替她掖咯掖被角 好言相劝道:“别哭咯 那还病着呢 又得 哭坏咯身子!就是有些风寒 没什么啥啊大碍 好好养着 按时喝药 另外 现在天凉咯 别总去院子里 有啥啊事情让菊香去做 爷要是过来 自会让秦顺儿传话 您那么去等 能等 来啥啊?还别是把身体弄坏咯?”“爷 妾身就是忍别住想去看看 都快壹各月没什么见到您咯 那心里实在是别踏实 ”“您の心思 爷自然晓得 只是……”只是啥啊呢?他别 想让淑清更伤心 没什么说出口 于是他就那么靠在床边 陪着淑清 而淑清因为本身就在病中 又喝咯药 经过壹晚上の折腾 终于体力渐渐别支 耗咯将近壹各时辰 也就渐渐地 睡咯下去 见淑清终于睡安稳咯 他才如释重负般地悄悄起身 出咯烟雨园 他犹豫咯壹下 回朗吟阁还是怡然居?回怡然居肯定是要搅咯水清の睡眠 她の睡眠壹直很差 睡眠别 好就导致精神差 所以身子才会那么赢弱 形成咯壹各恶性循环の老大难问题 可是回朗吟阁の话 他是跳进黄河也洗别清咯 他可以指天发誓 秦顺儿可以亲口作证 但是水清完 全可以别相信!她又没什么亲眼见到他在朗吟阁 她凭啥啊相信?他跟她打咯九年の交道 她有の时候极明事理 以壹各知书达礼大家闺秀の形象卓而别群 可是有些时候 她竟 然也会蛮别讲理 与壹般妇人别无两样 特别是对待他の那些诸人们の时候 在他用“燕子诗”向她真情告白时候 她竟然用“小檐日日燕飞来”嘲讽奚落他 让他陷入百口莫辩 の被动局面 虽然事后他别停地向她解释 啥啊“秋来只为壹人长” 啥啊“壹汀烟雨杏花寒” 水清统统壹概别予理会 最后将她逼急咯 竟然给他来咯壹各“息燕归檐静 飞花 落院闲” 彻底逃跑咯!任他再教上悠思上百句燕子诗 终是没什么挽回她の心 那各时候她还只是凭空想象他那些莫须有の“朝憎莺百啭、夜妒燕双栖”の罪名 就敢蛮别讲理 胡搅蛮缠 而现在 已经有咯菊香那各确凿の人证物证 他还怎么可能抵赖得掉?第壹卷 第900章 温暖 在打扰水清睡眠和证明自己清白那壹对矛盾问题の反复权衡之下 他终 于选择咯回怡然居 他怕她又从他の掌心逃跑咯 以前她の每壹次逃跑 都是他姑息纵容の结果 也是担心将她逼得太紧咯 原本他在水清心目中の形象就别佳 若是追她追得太紧 再在她印象中留下壹各无耻好色之徒の恶名 更是要弄巧成拙 导致两各人关系更加恶化 无可奈何之下 每壹次他都眼睁睁地看着她从他の掌心中溜走 任由她绝决地离去 却是 壹丁点儿都别敢对她用强 当然 除咯在香山 那壹次 他是真真地被她气着咯 第壹次对她动用咯武力 而现在 当他品尝到如此甜美の爱情之后 再也别想将风筝の线放得太长 他怕自己手中の那根线 禁别住狂风暴雨の袭击而折断 徒留追悔莫及 虽然只是短短の十三天 却让他有壹种前二十多年都白活咯の感觉 从前 诸人对他而言只是诸人 而现在 他既将水清当作自己の诸人 更将
平面与平面垂直的判定

2 求点C到平面EDB的距离。
E
D
42
A
5M
3
C 4
O
B
例5:直二面角 -l- , A, AC l于C,B , BD l于D,若AB与所成角为450,AB与所成角
为300,且CD=1,求AB的长。
A
α
X 45º 3x2 1
l
1
D
C
3x 30º 3x2 1
β
B
直.
3.过平面α的一条斜线,可作__一__个平
面与平面α垂直.
4.过平面α的一条平行线可作__一__个平
面与α垂直.
已知BSC 900,BSA CSA 600,
又SA SB SC求证:平面ABC 平面SBC
A条件不变求SA与平来自面ABC所成的角B
D
S
C
P107---例5
例1:如图,PA PC a,APC ACB=900, BAC 600,平面PAC 平面ABC, 求PB与平面ABC所成角的正切值。
P
a
a
A 600 M
C
B
例2:如图,正方体ABCD的边长为4 2,O是它的中心,
CE垂直于平面AC,又知CE=3.
1 证明平面EDB 平面OCE。
平面与平面垂直的判定
如何判断平面与平面垂直呢?
平面与平面垂直的判定定理
文字语言: 一个平面经过另一个平面的垂线则两个平面 垂直。
α
图像语言:
A
B β
符号语言: 若AB , AB ,则 .
简记为:“线面垂直,则面面垂直”
P106---例1 例2: O的直径是AB,PA O所在平面, C为圆上不同于AB的任意一点,面PBC与
《平面与平面垂直》课件

02
平面与面垂直的性质
平面与平面垂直的性质定理
总结词
描述平面与平面垂直的性质定理的内容。
详细描述
平面与平面垂直的性质定理是平面几何中的基本定理之一,它描述了两个平面垂直时所具有的性质特点。具体来 说,如果两个平面互相垂直,那么一个平面内的任意直线与另一个平面内的任意直线所成的角都为直角。这个定 理是证明其他相关性质和定理的基础。
详细描述
首先确定一条直线,然后过这条 直线作一个平面,最后在这个平 面上作该直线的垂线,即为所求 的平面与平面垂直。
通过点作平面的垂线
总结词
通过点作平面的垂线是平面与平面垂 直作图的常用方法。
详细描述
首先确定一个点,然后过这个点作一 个平面,最后在这个平面上作该点的 垂线,即为所求的平面与平面垂直。
风口的位置。这需要运用平面与平面垂直的知识,以确保窗户和通风口
与地面和立面之间的垂直关系。
工程制图中的应用
制图基础
在工程制图中,平面与平面垂直的概念是绘图的基础。工 程师需要准确地绘制各种平面图,并确保它们之间的垂直 关系,以便准确地表达设计意图。
施工指导
工程图纸中的平面与平面垂直关系对于指导施工过程至关 重要。施工人员需要根据图纸中的垂直关系,准确地构建 建筑物或机械部件。
要点一
总结词
要点二
详细描述
列举平面与平面垂直的性质定理在实际问题中的应用。
平面与平面垂直的性质定理在现实生活中有着广泛的应用 。例如,在建筑学中,这个定理被用来确定建筑物的垂直 度,以保证建筑物的稳定性和安全性;在机械工程中,这 个定理被用来设计和制造各种机械零件,以保证其精确度 和稳定性。此外,这个定理在物理学、化学、计算机图形 学等领域也有着广泛的应用。
平面与平面的垂直判定

平面与平面垂直的判定[新知初探]1.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角(如图).直线AB叫做二面角的棱,半平面α和β叫做二面角的面.记法:α-AB-β,在α,β内,分别取点P,Q时,可记作P-AB-Q;当棱记为l时,可记作α-l-β或P-l-Q.(2)二面角的平面角:①定义:在二面角α-l-β的棱l上任取一点O,如图所示,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.②直二面角:平面角是直角的二面角.[点睛]二面角的平面角的定义是两条“射线”的夹角,不是两条直线的夹角,因此,二面角θ的取值范围是0°≤θ≤180°.2.平面与平面垂直(1)面面垂直的定义①定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:记作:α⊥β.(2)两平面垂直的判定定理:①文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.②图形语言:如图.③符号语言:AB⊥β,AB∩β=B,AB⊂α⇒α⊥β.[点睛]定理的关键词是“过另一面的垂线”,所以应用的关键是在平面内寻找另一个面的垂线.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若l⊥α,则过l有无数个平面与α垂直()(2)两垂直的平面的二面角的平面角大小为90°()答案:(1)√(2)√2.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β答案:D3.对于直线m,n和平面α,β,能得出α⊥β的一组条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂βC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β解析:选C A与D中α也可与β平行,B中不一定α⊥β,故选C.面面垂直的判定[典例]如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.证明:平面AEC⊥平面AFC.[证明]如图,连接BD,设BD∩AC于点G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=2 2.在Rt△FDG中,可得FG=6 2.在直角梯形BDFE中,由BD=2,BE=2,DF=2 2,可得EF=32 2.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,所以EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(1)证明平面与平面垂直的方法:①利用定义:证明二面角的平面角为直角;②利用面面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(2)根据面面垂直的定义判定两平面垂直,实质上是把问题转化成了求二面角的平面角,通常情况下利用判定定理要比定义简单些,这也是证明面面垂直的常用方法,即要证面面垂直,只要转证线面垂直,其关键与难点是在其中一个平面内寻找一直线与另一平面垂直.[活学活用]1.如图,已知PA⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.1对B.2对C.3对D.5对解析:选D∵DA⊥AB,DA⊥PA,∴DA⊥平面PAB.同理BC⊥平面PAB,又AB⊥平面PAD,∴DC⊥平面PAD,∴平面PAD⊥平面AC,平面PAB⊥平面AC,平面PBC⊥平面PAB,平面PAB⊥平面PAD,平面PDC⊥平面PAD,共5对.2.如图,四边形ABCD是边长为a的菱形,PC⊥平面ABCD,E是PA的中点,求证:平面BDE⊥平面ABCD.证明:连接AC,设AC∩BD=O,连接OE.因为O为AC中点,E为PA的中点,所以EO是△PAC的中位线,所以EO∥PC.因为PC⊥平面ABCD,所以EO⊥平面ABCD.又因为EO⊂平面BDE,所以平面BDE⊥平面ABCD.二面角的求法[典例](1)如图,在正方体ABCD-A′B′C′D′中:①二面角D′-AB-D的大小为________.②二面角A′-AB-D的大小为________.(2)如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.[解析] (1)①在正方体ABCD-A′B′C′D′中,AB⊥平面AD′,所以AB⊥AD′,AB⊥AD,因此∠D′AD为二面角D′AB-D的平面角.在Rt△D′DA中,∠D′AD=45°,所以二面角D′AB-D的大小为45°.②因为AB⊥平面AD′,所以AB⊥AD,AB⊥AA′,因此∠A′AD为二面角A′AB-D的平面角,又∠A′AD=90°,所以二面角A′AB-D的大小为90°.[答案]①45°②90°(2)解:如图,在平面α内,过O作OD⊥BC,垂足为点D,连接AD,设CO=a.∵AO⊥α,BC⊂α,∴AO⊥BC.又AO∩OD=O,∴BC⊥平面AOD.而AD⊂平面AOD,∴AD⊥BC,∴∠ADO是二面角A-BC-O的平面角.由AO⊥α,OB⊂α,OC⊂α,知AO⊥OB,AO⊥OC.∵∠ABO=30°,∠ACO=45°,CO=a,∴AO=a,AC=2a,AB=2a.在Rt△ABC中,∠BAC=90°,∴BC=AC2+AB2=6a,∴AD=AB·ACBC=2a·2a6a=233a.在Rt△AOD中,sin∠ADO=AOAD=a233a=32.∴∠ADO=60°,即二面角A-BC-O的大小是60°.(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.[活学活用]如图,把等腰直角三角形ABC沿斜边AB旋转至△ABD的位置,使CD=AC.(1)求证:平面ABD⊥平面ABC.(2)求二面角C-BD-A的余弦值.解:(1)证明:取AB的中点O,连接OD,∵△ABD是等腰直角三角形,∴DO⊥AB,且DO=22AD.连接OC,同理得CO⊥AB,且CO=22AC,∵AD=AC,∴DO=CO=22AC.∵CD=AC,∴DO2+CO2=CD2,∴△CDO为等腰直角三角形,DO⊥CO,又AB∩CO=O,∴DO⊥平面ABC.又∵DO⊂平面ABD,∴平面ABD⊥平面ABC.(2)取BD的中点E,连接CE,OE.∵△BCD为等边三角形,∴CE⊥BD.又∵△BOD为等腰直角三角形,∴OE⊥BD.∴∠OEC为二面角C-BD-A的平面角.由(1)可证得OC⊥平面ABD,∴OC⊥OE.∴△COE为直角三角形.设BC=1,则CE=32,OE=12,∴cos∠OEC=OECE=33,即二面角C-BD-A的余弦值为3 3.折叠问题[典例]如图,在矩形ABCD中,AB=2,BC=2,E为BC的中点,把△ABE和△CDE分别沿AE,DE折起,使点B与点C重合于点P.(1)求证:平面PDE⊥平面PAD;(2)求二面角P-AD-E的大小.[解](1)证明:由AB⊥BE,得AP⊥PE,同理,DP⊥PE.又∵AP∩DP=P,∴PE⊥平面PAD.又PE⊂平面PDE,∴平面PDE⊥平面PAD.(2)如图所示,取AD 的中点F ,连接PF ,EF ,则PF ⊥AD ,EF ⊥AD , ∴∠PFE 就是二面角P -AD -E 的平面角. 又PE ⊥平面PAD ,∴PE ⊥PF . ∵EF =AB =2,PF =(2)2-1=1, ∴cos ∠PFE =PF EF =22.∴二面角P -AD -E 的大小为45°.折叠问题,即由平面图形经过折叠成为立体图形,在立体图形中解决有关问题.解题过程中,一定要抓住折叠前后的变量与不变量.[活学活用]如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N , 连接A ′M ,A ′N ,MN , 则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E .∴A ′N ⊥BE .∵A ′C =A ′D ,∴A ′M ⊥CD . 在四边形BCDE 中,CD ⊥MN , 又∵MN ∩A ′M =M ,∴CD ⊥平面A ′MN ,∴CD ⊥A ′N .∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又∵A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又∵A ′N ⊂平面A ′BE ,∴平面A ′BE ⊥平面BCDE .层级一 学业水平达标1.从空间一点P 向二面角α-l -β的两个面α,β分别作垂线PE ,PF ,E ,F 为垂足,若∠EPF=60°,则二面角α-l-β的平面角的大小是()A.60°B.120°C.60°或120°D.不确定解析:选C若点P在二面角内,则二面角的平面角为120°;若点P在二面角外,则二面角的平面角为60°.2.如果直线l,m与平面α,β,γ满足:β∩γ=l,l∥α,m⊂α和m⊥γ,那么必有() A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥m D.α∥β且α⊥γ解析:选A B错,有可能m与β相交;C错,有可能m与β相交;D错,有可能α与β相交.3.已知直线a,b与平面α,β,γ,下列能使α⊥β成立的条件是()A.α⊥γ,β⊥γB.α∩β=a,b⊥a,b⊂βC.a∥β,a∥αD.a∥α,a⊥β解析:选D由a∥α,知α内必有直线l与a平行.而a⊥β,∴l⊥β,∴α⊥β.4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成几何体A-BCD,则在几何体A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:选D由已知得BA⊥AD,CD⊥BD,又平面ABD⊥平面BCD,∴CD⊥平面ABD,从而CD⊥AB,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ABC⊥平面ADC.5.在正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值为()A.32 B.22C. 2D. 3解析:选C如图所示,连接AC交BD于点O,连接A1O,O为BD中点,∵A1D=A1B,∴在△A1BD中,A1O⊥BD.又∵在正方形ABCD中,AC⊥BD,∴∠A1OA为二面角A1-BD-A的平面角.设AA1=1,则AO=2 2.∴tan∠A1OA=122= 2.6.如果规定:x=y,y=z,则x=z,叫作x,y,z关于相等关系具有传递性,那么空间三个平面α,β,γ关于相交、垂直、平行这三种关系中具有传递性的是________.解析:由平面与平面的位置关系及两个平面平行、垂直的定义、判定定理,知平面平行具有传递性,相交、垂直都不具有传递性.答案:平行7.在正方体ABCD-A1B1C1D1中,E是CC1的中点,则平面EBD与平面AA1C1C的位置关系是________.(填“垂直”“不垂直”其中的一个)解:如图,在正方体中,CC1⊥平面ABCD,∴CC1⊥BD.又AC⊥BD,CC1∩AC=C,∴BD⊥平面AA1C1C.又BD⊂平面EBD,∴平面EBD⊥平面AA1C1C.答案:垂直8.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,PA =6,那么二面角P-BC-A的大小为________.解析:如图,取BC的中点O,连接OA,OP,则∠POA为二面角P-BC-A的平面角,OP=OA=3,PA=6,所以△POA为直角三角形,∠POA=90°.答案:90°9.如图,在圆锥PO中,AB是⊙O的直径,C是A B上的点,D为AC的中点.证明:平面POD⊥平面PAC.证明:如图,连接OC,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面ABC,AC⊂底面ABC,所以AC⊥PO.因为OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.又AC⊂平面PAC,所以平面POD⊥平面PAC.10.如图所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC于点D,E,又SA=AB,SB=BC,求二面角E-BD-C的大小.解:∵E为SC中点,且SB=BC,∴BE⊥SC.又DE⊥SC,BE∩DE=E,∴SC⊥平面BDE,∴BD⊥SC.又SA⊥平面ABC,可得SA⊥BD.又SC∩SA=S,∴BD⊥平面SAC,从而BD⊥AC,BD⊥DE,∴∠EDC为二面角E-BD-C的平面角.设SA=AB=1.在△ABC中,∵AB⊥BC,∴SB=BC=2,AC=3,∴SC=2.在Rt△SAC中,∠DCS=30°,∴∠EDC=60°,即二面角E-BD-C为60°.层级二应试能力达标1.(浙江高考)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.() A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析:选A∵l⊥β,l⊂α,∴α⊥β(面面垂直的判定定理),故A正确.2.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系为()A.相等B.互补C.相等或互补D.不确定解析:选D反例:如图,在正方体ABCD-A1B1C1D1中,E,F分别是CD,C1D1的中点,二面角D-AA1-E与二面角B1-AB-D的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补,故选D.3.如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折.给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折的过程中,可能成立的结论是()A.①③B.②③C.②④D.③④解析:选B对于①,因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,故①不可能成立;对于②,如图,设点D的在平面BCF上的射影为点P,当BP⊥CF时,有BD⊥FC,而AD∶BC∶AB=2∶3∶4可使条件满足,故②可能成立;对于③,当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,故③可能成立;对于④,因为点D的射影不可能在FC上,故④不可能成立.故选B.4.如图,在四面体P-ABC中,AB=AC,PB=PC,D,E,F分别是棱AB,BC,CA的中点,则下列结论中不一定成立的是()A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDF⊥平面ABC解析:选D因为D,F分别为AB,AC的中点,则DF为△ABC的中位线,则BC∥DF,依据线面平行的判定定理,可知BC∥平面PDF,A成立.又E为BC的中点,且PB =PC,AB=AC,则BC⊥PE,BC⊥AE,依据线面垂直的判定定理,可知BC⊥平面PAE.因为BC∥DF,所以DF⊥平面PAE,B成立.又DF⊂平面PDF,则平面PDF⊥平面PAE,C成立.要使平面PDF⊥平面ABC,已知AE⊥DF,则必须有AE⊥PD或AE⊥PF,由条件知此垂直关系不一定成立,故选D.5.正四棱锥的侧棱长为23,侧棱与底面所成角为60°,则该四棱锥的高为__________.解析:如图,过点S作SO⊥平面ABCD,连接OC,则∠SCO=60°,∴SO=sin 60°·SC=32×23=3.答案:36.如图,二面角α-l-β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为30°,则AB与平面β所成的角的正弦值是________.解析:如图,作AO⊥β于O,AC⊥l于C,连接OB,OC,则OC⊥l.设AB与β所成的角为θ,则∠ABO=θ,由图得sin θ=AOAB=ACAB·AOAC=sin 30°·sin 60°=3 4.答案:3 47.已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图.(1)当a=2时,求证:AO⊥平面BCD.(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.解:(1)证明:在△AOC中,AC=a=2,AO=CO= 2.∴AC2=AO2+CO2,∴AO⊥CO.∵AO⊥BD,BD∩CO=O,∴AO⊥平面BCD.(2)折叠后,BD⊥AO,BD⊥CO,∴∠AOC是二面角A-BD-C的平面角,即∠AOC=120°.在△AOC中,AO=CO=2,∴AC= 6.如图,过点A作CO的垂线交线段CO的延长线于点H.∵BD⊥CO,BD⊥AO,CO∩AO=O,∴BD⊥平面AOC.∵AH⊂平面AOC,∴BD⊥AH.又∵CO⊥AH,CO∩BD=O,∴AH⊥平面BCD.∴AH⊥BC.过点A作AK⊥BC,垂足为K,连接HK.∵AK∩AH=A,∴BC⊥平面AHK.∵HK⊂平面AHK,∴BC⊥HK.∴∠AKH为二面角A-BC-D的平面角.在△AHO中,AH=62,OH=22,∴CH=CO+OH=2+22=322.在Rt△CKH中,HK=22CH=32.在Rt△AHK中,tan∠AKH=AHHK=6 2 3 2=6 3.∴二面角A-BC-D的正切值为6 3.8.如图,在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PA⊥底面ABCD,PD与底面成45°角,点E是PD的中点.(1)求证:BE⊥PD.(2)求二面角P-CD-A的余弦值.解:(1)证明:连接AE.∵PA⊥底面ABCD,∴∠PDA是PD与底面ABCD所成的角,∴∠PDA=45°.∴PA=DA.又∵点E是PD的中点,∴AE⊥PD.∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB.∵∠BAD=90°,∴BA⊥DA.又∵PA∩AD=A,∴BA⊥平面PDA.又∵PD⊂平面PDA,∴BA⊥PD.又∵BA∩AE=A,∴PD⊥平面ABE.∵BE⊂平面ABE,∴BE⊥PD.(2)连接AC.在直角梯形ABCD中,AB=BC=1,AD=2,∴AC=CD= 2.∵AC2+CD2=AD2,∴AC⊥CD.又∵PA⊥底面ABCD,CD⊂底面ABCD,∴PA⊥CD.∵AC∩PA=A,∴CD⊥平面PAC.又∵PC⊂平面PAC,∴PC⊥CD,∴∠PCA为二面角P-CD-A的平面角.在Rt△PCA中,PC=PA2+AC2=22+(2)2= 6.∴cos ∠PCA=ACPC=26=33.∴所求的二面角的余弦值为3 3.。
高二数学平面和平面垂直的判定

4、法向量垂直法
全程吸附高速碰线机 高速碰线机 / 全程吸附高速碰线机 高速 碰线机 yrh03zub
否会有人注意到这是奏折而不是一封普通的信。慕容凌娢习惯性看东西不认真,目光上下乱窜,还没看懂到底发生了什么事, 奏折就戛然而止了。这是留白吗?这是留白。这居然是留白!这种东西也用留白啊?看了五分之一后,慕容凌娢实在不知道哪 些重要哪些不重要,只好全盘招收,都决定上交,反正又不是她要批阅奏折到半夜。就应该像老师留作业那样,多多益善,全 是重点。虽然不太情愿问那个看起来凶巴巴的人问题,但慕容凌娢觉得自己不能以貌取人,还是要尝试一下。所以,她小心翼 翼规规矩矩的走到那人身边,用自以为最最最亲切诚恳的语气问道,“请问这些审核过的奏折要怎样处理?”“你能离我远点 吗。”慢慢悠悠的语调,硬是要把疑问句变为肯定句。那人瞥了一眼慕容凌娢,甚至不算是正眼看,依旧把慕容凌娢吓得低下 了头。也许这人有洁癖吧,慕容凌娢发现自己和他的距离确实突破了半米,大部分人都不会习惯。但这突如其来的紧张和心虚 是怎么回事!一定是他太吓人了!话说我现在可是蓝孩纸,他不会觉得我X取向有问题吧……“哦……抱歉。”慕容凌娢听话 的退了两步,然后问道,“你能回答我的问题了吗?”“这种事情你不知道吗?”那人头也不抬,语气依旧令人很不爽。“不 知道……”慕容凌娢很没底气的承认。“那你来这儿干嘛。”满满的嫌弃和不耐烦。“……”慕容凌娢差点就忍不住了。自己 是不太懂这些规矩,但他也不能这么爱搭不理的吧!这种人如果被搞到服务行业去,单凭那张充满氨气的脸,慕容凌娢就算搬 个梯子也要爬上去,把投诉信塞进信箱里。不过——这是在古代,一个道理可以讲不清的年代,慕容凌娢还是忍了。林子大了 什么鸟都不只一只,就当仨三带俩二扔出去得了,王炸还是留着比较好。慕容凌娢尴尬的回到自己桌子旁,木办法,只有先把 这些奏折先看完再说了。通正司的门再次被推开了,为首的是一个看起来很严肃的人,而且还留着比山羊还山羊的胡子,一看 就和长角的公山羊一样不好惹。这个应该就是通正使。至于后面两个看起来也很像新人的,绝对是参议。光是看面相,慕容凌 娢就不敢去问那位通正使。结果那位通正使却像是知道她在想什么一样,直接朝他走了过来。“刘大人。”慕容凌娢赶忙起身 作揖,希望自己木有把人家的姓氏叫错。“慕容凌寒。”“大人有何吩咐?”慕容凌娢松了一口气,看来当初跟韩哲轩打听了 点消息还是有用的。“这些是你看过的?”通正使随手拿起了一本奏折。“是的。”慕容凌娢在一旁站着,不敢有任何动作。 怎么有种被抽查作业的赶脚! “这种东西,有必要交给圣上看吗?”通正使一甩手,将奏折扔在了桌上。“这……”慕容凌 娢瞥了一眼那奏折的内容,是打小报告的。告的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB=3,求线段CD的长。
l
B
C
D
A
练习 如图,已知A、B是120的二
面角—l—棱l上的两点,线段AC, BD分别在面,内,且AC⊥l,
l
B
C
D
BD⊥l ,AC=2,BD=1,AB=3,求 线分段析C:D的长。
AO
∠OAC =120 AO=BD=1, AC=2
四边形ABDO为矩形, DO=AB=3
∵sin∠ADO= O
2 3 3 42
A
D
O
∴ ∠ADO=D60°
l
∴二面角 - l- 的大小为60 °
小结:二 面 角 从一条直线出发的两个半
平面所1组、成二的面图角形的叫平做面二角
一、二面角的定义: 二
二 二
二面面面 、角角角二C---面12AA、、l角BB-根利--直的据用作D定直表出义线来示作和出平方来面法做垂面角二:角的面。棱2角这。、的条这二必的在面直两面须大棱。线个角满小上叫半的足与的做平三位其二面个置顶面叫角条无点件关
A
D
O
l
解:过 A作 AO⊥于O,过 O作 OD⊥ l 于D,连
AO⊥ l 平面 AO⊥l, OD⊥ l
l⊥平面AOD AD 平面AOD 得 AD⊥ l
∴∠ADO就是二面角 - l- 的平面角
∵ AO为 A到的距离 , AD为 A到 l 的距离
A
∴AO=23
,AD=4
在Rt △ADO中,A
知识回顾 1.在平面几何中"角"是怎样定义的? 从一点出发的两条射线所组成的图形叫做角。 或: 一条射线绕其端点旋转而成的图形叫做角。
2.在立体几何中,"异面直线所成的角"是怎样 定义的?
直线a、b是异面直线,经过空间任意一点O, 分别引直线a' //a, b'// b,我们把相交直线a' 和 b' 所成的锐角 (或直角)叫做异面直线所成的 角。
O
A
0 180
平面角是直角的二面角叫做直二面角.
例1:在正方体ABCD-A1B1C1D1中
求:二面角D’-AB-D的大小
D’
C’
求:二面角A’-AB-D的大小 A’
B’
D
C
A
B
例2:已知锐二面角- l- ,A为面内一点, A到 的距离为 23 ,到 l 的距离为 4,求 二面角 - l- 的大小。
CO2 AC 2 AO2 2AO AC COS120 7
在Rt △COD中,
CD CO2 DO2 7 32 4
练习 如图,已知A、B是120的二
面角—l—棱l上的两点,线段AC, BD分别在面,内,且AC⊥l, BD⊥l ,AC=2,BD=1,AB=3,
E
l
B
C
D
求解线:段在C平D面的长内。,过A作AO⊥l ,使
22
观察下面两个图形,它们之间有什么关系?
一、两个平面垂直的定义
B A
O
如果两个平面相交 所成的二面角是直二 面角,那么我们称这 两个平面相互垂直.
记作:
画法:
二、两个平面垂直的判定定理
如果一个平面经过另一个平面的一条 垂线,那么这两个平面互相垂直.
A
已知:AB⊥β,AB⊂α. 求证:α⊥β。
AO
AO=BD, 连结CO、DO, 则∠OAC就是
二面角—l—的平面角,即 ∠OAC =120,
∵BD⊥l ∴ AO∥BD,∴四边形ABDO为矩形,
∴ DO∥ l , AO=BD ∵ AC⊥l , AO⊥l ,
∴ l ⊥平面CAO ∴ AO⊥l ∴ CO⊥DO
∵ BD=1 ∴ AO=1,在△OAC中,AC=2,
二面角 AB
QB
二面角P l Q
l
P
二面角P AB Q A
二面角的画法
F
E
l
A
B
D
C
二面角- l-
C
B D
A
二面角C-AB- D
角
二面角
图形
顶点 O
A 边
边B
A 棱a 面
B面
定义
从一点出发的两条射线 所组成的图形叫做角。
从一条直线出发的两个 半平面所组成的图形叫 做二面角。
Hale Waihona Puke 构成3.在立体几何中,"直线和平面所成的角"是怎 样定义的?
平面的一条斜线和它在平面上的射影所成的 锐角, 叫做这条直线和这个平面所成的角。
思考:异面直线所成的角、直线和平面所成的 角与有什么共同的特征?
它们的共同特征都是将三维空间的角转化 为二维空间的角,即平面角。
一条直线上的一个点把这条直线分成两个 部分,其中的每一部分都叫做射线。
∴ CO2 AC 2 AO2 2AO AC COS120 7
在Rt △COD中,DO=AB=3
CD CO2 DO2 7 32 4
面面垂直的判定
复习回顾:
从一条直线出发的两个半
平面1、所二组面成角的的图平形面叫角做二
一、二面角的定义: 面角。这必条须直满线足叫三做个二条面件 1、根据定义作出来——角定的2义、棱法二。面这角两的个平半面平角面叫 2、利用直线和平面垂做直二作面出角来的的大面小。与 其顶点
3、二面角的大小用
三、二面角12、、的找证平到明或面1作中角出的二角:面就角是的所平求面的它小角的来角平度面量角的大
四、二面角3、的计平算所面求角的角的作法:
五、二面角的计算:
一“作”二“证”三“计算”
练习 如图,已知A、B是120的
二面角—l—棱l上的两点,线段
AC,BD分别在面,内,且
AC⊥l,BD⊥l ,AC=2,BD=1,
[证明]:设α∩β=CD,
边—点—边 (顶点)
面—直线—面 (棱)
表示法
∠AOB
二面角—l— 或二面角—AB—
二面角的度量
以二面角的棱上任意一点 为端点,在两个面内分别作 垂直于棱的两条射线,这两 条射线所成的角叫做二面角 的平面角。
二面角的平面角的三个特征:
1.点在棱上 2.线在面内
B D
3.与棱垂直
B
O
l
A C
二面角的大小的范围:
二、二面角—的—表垂线示垂方面法法: 在棱上的位置无关
3、二面角的大小用
三、二面角12、、的找证平到明或面1作中角出的二角:面就角是的所平求面的它小角的来角平度面量角的大
二 二
四面面、角角二C-面-AA角BB3--、的计D平算所面求角的角的作法:
二 五面、角二-面角l-的 计算:
一“作”二“证”三“算”
一个平面内的一条直线把这个平面分成两
个部分,其中的每一部分都叫做半平面。
Al
l
定义:从一条直线出发的两个半平面所组成的图 形叫做二面角。
这条直线叫做二面角的棱。
这两个半平面叫做二面角的面。
B
l
α
o
A
β
二面角由半平面--线--半平面构成。
平面角由射线--点--射线构成。
二面角的表示
二面角 l