BGAN卫星数据传输业务简介

BGAN卫星数据传输业务简介
BGAN卫星数据传输业务简介

BGAN卫星数据传输业务简介

BGAN卫星数据传输业务简介

前言

我国地域广阔,地形复杂,地理环境多样。虽然地面通信网发展迅速,覆盖面积不断扩大,但是,受到地形和人口分布等客观因素的限制,地面固定通信网和移动通信网不可能实现在全国各地全覆盖,在中国有60%左右的地区是地面通信网盲区,通信的困难甚至成为人们生存的障碍。这一问题现在不可能解决,而且在将来的几年甚至几十年也很难得以解决,主要是由于这些地区地形地势复杂,建立通信网络耗资大、效益低,建设周期长,维护难等因素制约。相比较而言,卫星移动通信可以快捷、经济的解决这些地方的通信问题,满足人们对通信的需求。这就为卫星移动通信提供了广阔的市场。卫星移动通信网将为这些地区生活工作的人们提供服务,也为那些国际、国内旅游者,商业、企业要员以及特殊行业,如勘探、抢险、救灾及环保等工作的人们提供极大的方便。在应急事件的通信处理上,移动卫星通信系统已经发挥出相当的优势。

海事卫星BGAN系统简介

BGAN是国际海事卫星组织所主导的宽频全球区域网络系统( broadband global area network system )的第四代的卫星通信系统。新卫星不仅支持BGAN宽带业务,还将继续支持目前工作在第三代卫星上的全部数字业务和Inmarsat区域性中等带宽的RBGAN 业务,以保持业务的连续性和平滑过渡。

第四代“国际海事卫星”综合了高低端多种业务模式,采用高效的频率复用技术,在有限L 波段的带宽资源情况下,实现了容量和多样化的选择,它可支持全新的全球宽带局域网业务,提供至少10倍于“国际海事卫星”现有网络的通信容量。该卫星BGAN业务可为全球几乎任何地方的用户提供速度达到 492kbit/s 的网络数据传输、移动视频、视频会议、传真、电子邮件、局域网接入,并为用户提供短信、语音信箱、来电显示、呼叫转移、呼叫等待、呼叫保持、电话会议、限制用户组、呼叫限制、预付费等多种附加功能。BGAN是一个3GPP 包交换和电路交换的网络,兼容第3代(3G)手机系统,其所有提供

的服务都基于UMTS技术。

覆盖范围

第四代“国际海事卫星”系统共有3颗卫星,可覆盖全球,由欧洲阿斯特留姆公司研制。2005年3月12日发射的第1颗定位在64°E印度洋上空,覆盖区域包括欧洲、非洲、中东、亚洲和印度洋; 2005年11月入轨的第二颗位于54°W 大西洋上空;第三颗计划在2006年第二季度升空,网络覆盖也将扩展到南北美洲。网络几乎覆盖了整个地球,其中包括全球85%以上的陆地(除极区),使世界上98%人口可以应用到这项卫星数据服务,从而可为全球所有地区提供通信连接能力。

BGAN提供的基本业务

1、IP数据业务

共享型数据业务,数据速率最高达492Kbit/s,通过轻便的终端实现类似ADSL式的全球 Internet接入,永远在线连接并按流量计费。 Streaming Class (流媒体)IP,可确保带宽(带QoS),类似ISDN业务,提供的不同速率SCIP为:32、64、128、256 Kbit/s,按连接时间计费。可以实现以下服务:

●Email Access(电子邮件发送与接

收)

●LAN Access(通过互连网在卫星终端

与公司网络建立局域网)

●File transfer (文件传输)

●Internet Access(互联网访问)

●Intranet , Extranet Access (企业

内部网络访问)

●Audio and Video broadcast(音频和

视频的广播)

●Video Store and Forward

2、电路交换业务

直拨话音:使用压缩技术实现与GSM同质量的语音 (4 Kbit/s);内置蓝牙技术,主机可以和话机分离(在室内使用);具有紧急呼叫功能;支持模拟话音和IP数据会议。

短信:BGAN终端间的短信互通,与GSM/小灵通等移动电话网络间的短信互通与WEB间的短信互通。

预付费业务:所有手机包括呼叫转移、呼叫等待、呼叫保持;呼叫限制、限制用户组;来电显示;语音信箱;电话会议

网络应用架构

应用领域

可以提供视频会议、数据图像传输、信息浏览、办公网络接入等应用,来满足用户对新一代卫星高速数据通信的需求。正是BGAN这种全球覆盖、高速率传输的特性,使得用户可以在任何时间、任何地点快速的建立移动办公室、应急指挥部、新闻采集直播、科考大本营等等。

应急救援:应急人员可随身携带BGAN设备进入灾区,重构与外界通信的网络,将灾区的现场情况的视频图像或图片第一时间发给国家指挥中心及地方指挥中心,进行多方电话、电视会议,收发灾情预报及现场信息。

新闻报导:作为新闻人员,往往需要对突发事件、灾情现场甚至战争情况进行抢先报导,使用BGAN系统能不受外界情况影响、随时向公司发送图像图片、新闻稿件。

科考探险:科探人员总是身在无人区、荒野、雪山等生命极限地区,BGAN作为“生命线”可以担负与外界联系的重任,具有抗雨衰的能力,

同时终端设备具有耐高低温、耐粉尘、耐湿、抗腐蚀等性能,能最大限度保障通信,确保活动“有惊无险”,同时,可以利用先进的数据通信手段做到前方取样、后方分析并行,提高工作的针对性和有效性。

终端设备

BGAN终端轻便易携、功能齐全,便于操作。设备重量在1—2.2公斤间,最大的如A4纸大小,适合各种专业和商务用户,最小的只有PDA大小,特别适合商务旅行者。各种BGAN终端适用的场合不同,以满足不同行业用户需求和不同的业务系统需求。

产品

展图

R-BGA

N

IP-ba

sed

entry

-leve

Wideye?

Sabre? I

Voice

and data

entry-l

evel

device

Nera

Worl

dPro

1000

Smal

lest

Explo

rer?

500

High

bandw

idth

HNS

9201

High

perform

ance

multi-u

ser

l devic

e ligh

test

devi

ce in

the

rang

e

highl

y

porta

ble

devic

e

device

size 300 x

240mm

(1.6k

gs)

384 x

180mm

(1.2kgs

)

200 x

140m

m

(<1k

g)

217 x

217mm

(<1.5

kgs)

345 x

275mm

(2.8kgs

)

Stand ard IP: Up to

144kb

ps

(send

&

recei

ve)

Up to

384 /

240kbps

(send &

receive

)

Up to

384 /

240k

bps

(sen

d&

rece

ive)

Up to

464 /

448kb

ps

(send

&

recei

ve)

Up to

492kbps

(send &

receive

)

Strea ming N/A

32,

64kbps

32,

64kb

32,

64,12

32,

64,128,

IP: (send &

receive

)ps

(sen

d &

rece

ive)

8kbps

(send

&

recei

ve)

256kbps

(send &

receive

)

ISDN: N/A N/A N/A Via

USB

1 x

64kbps

Voice : Via

VoIP

Via RJ11

or

Bluetoo

th

handset

/headse

t

Via

Nera

Worl

dSet

,

ISDN

phon

es,

Blue

toot

h

hand

set

Via

RJ11

or

Bluet

ooth

hands

et;

3.1kH

z

audio

Via

ISDN

handset

Data inter USB,

Bluet

USB,

Bluetoo

USB,

Blue

USB,

Bluet

USB,

Etherne

faces : ooth,

Ether

net

th,

Etherne

t

toot

h

Ethe

rnet

from

Q2

2006

ooth,

Ether

net

t, WLAN

802.11b

Ingre

ss

prote

ction

:

IP 54 IP 44 IP 44 IP 54 IP 55

关于中宇公司

中宇通信公司是经国家批准负责在中国区域内经营卫星移动通信系统的唯一运营商,经营有全球星等卫星移动通信系统。为用户提供在任何时间、任何地点与任何人的通信服务。

卫星移动通信是人类通信科技发展的顶峰成果之一,它以全球覆盖这一无与伦比的优越性称雄世界,浩瀚的海洋、荒芜的沙漠、险峻的高

山均不能阻止她奇妙的电波。我国地域辽阔、地形复杂,利用卫星移动的优势在解决长期通信困难地区方面大有作为!

卫星通信中高速数据传输发射机的设计与实现_罗勇

卫星通信中高速数据传输发射机的设计与实现 罗 勇,周资伟,李 宏 (国防科技大学电子科学与技术学院 湖南长沙 410073) 摘 要:提出了一种卫星通信中高速数据传输发射机的设计方案,并给出了此方案具体的硬件实现。在硬件上选用一种新型的高速D/A 芯片T S86101G 2B,在系统设计中充分利用该芯片高线性度、宽动态范围以及高速的特点,实现了卫星通信中数字信号高速率、高质量的稳定传输,为包括卫星通信在内的高速数据传输发射机的设计与实现提供了一个新的参考。 关键词:T S86101G2B;高速数据传输;发射机;卫星通信 中图分类号:T N41,T P33 文献标识码:B 文章编号:1004373X(2006)0104003 Design and Realization about Transmitter of High Speed Digital Transmissions in S atellite Communications L U O Yong ,ZH OU Ziw ei,L I H ong (Sc ho ol o f Electroni c Sc ience and Engineering ,N ational U niv ersity o f Defense T echnolo gy ,Chang sha,410073,China) Abstract :T his art icle intr oduces a kind of design o ptions about the tr ansmitter of hig h speed dig ital transmissions in satellite co m -munications,and giv es the ma in hardwar e r ealization o f the o pt ion.A new kind o f hig h speed D/A chips T S86101G 2B is used in the har dw are r ealization.T he chip's characters of high linear ity,w ide dynamic range and hig h speed are fully used in the system desig n.T he dig ita l sig nals'steady transmission of hig h speed and g oo d quality is realized in satellite co mmunications.A new reference is pr ovided to the design and r ealization abo ut the tr ansmit ter of hig h speed dig ita l tr ansmissio ns including satellite communicatio ns. Keywords :T S86101G 2B;hig h speed dig ital transmission;t ransmitters;satellite co mmunication 收稿日期:2005 0914 随着社会的发展,在移动通信领域中对包括卫星通信在内的无线通信的需求越来越大,业务量越来越高。在卫星通信中,如何实现高速率、低误码率的高效数据传输已成为当今世界各国都在研究的一个课题。对于卫星通信的发射机部分,怎样将高速的数字信息更有效地转换为射频信号发射出去则是设计时需要考虑的一个重要问题。针对这一问题,本文给出了一种在某试验中用于实现卫星通信数据高速传输的发射机的设计方案以及具体的硬件实现。 1 系统整体结构设计及原理说明 作为卫星通信的高速数据传输系统,我们总希望在有限带宽的信道中能够更快更好地进行有用信息的传输。也就是在尽量窄的频带内,使信息的传输速率最大,同时尽可能地减小能量的损耗,提高传输信噪比。卫星通信系统中的星地链路信道是一个加性高斯白噪声(AWGN )信道,在此信道中进行的是远距离高速数据传输,并且一般典型的航天器下行信道末级放大器多采用工作在非线性范围的行波管,因此要求发射机的调制方式必须为恒包络调制方式,否则,接收的信号将会出现失真。发射机结构 设计的整体框图如图1 所示。 图1 发射机结构框图 一般对于通信系统发射机的设计,通常采用对基带信号编码和改进调制技术来提高系统的性能。本发射机系统在基带编码上采用某种最新的编码方式,在保证信息传输误码率和纠错能力达到设计指标的同时可以尽可能地降低信息冗余度、提高信息的传输速率。在调制方式上,恒包络调制方式通常有频移键控(F SK)、相移键控(PSK )和差分相移键控(DPSK)等方式。经分析比较,在AWGN 信道中在相同的信噪比条件下,相干PSK 具有最低的误码率和抗干扰性。为了达到更好的频带利用率,在本发射机中高速数据传输调制方式选用的是8PSK 方式。目前,典型的高速数据传输速率是以300M b/s 为标准的,本试验系统传输速率指标的确立也是以此为基础,希望在后续研发过程中能在此基础上有所突破。 在发射机的设计中,考虑到基带数字信号经过编码后 40 军事通信罗 勇等:卫星通信中高速数据传输发射机的设计与实现

车载卫星通信设备及操作简介

车载卫星通信设备及操作简介 3.1 卫星通信系统开通前应该注意的事项: 3.1.1 环境勘察 1)选择停放场所 ★选择较为平坦、坚实的空地作为停车场地。确保对卫星信号收发、微波信号收发不形成遮挡。 ★车辆上方应无遮挡物,以免阻碍天线桅杆正常升起。 ★应尽量避开高大的障碍物(陡坡、高大建筑、高大树木等),确保对卫星通信、微波通信、无线网桥通信的信号收发不形成遮挡。 ★如果采用市电则车辆停放地距最近的有效市电电源应在60M以内,且能打地桩以接地或能接入其他的接地系统。 ★车辆停放地还要考虑整车噪声对居民或环境的影响。 2)选择市电电源 ★车载系统原则上应尽量考虑采用目的现场的有效市电电源。 ★在车载系统到达现场前,应与提供电源的单位或供电部门做好协商。 3)确定传输方式 ★同相关单位协商拟采用的传输方式,传输方式应遵循方便接入的原则结合停放场所条件综合考虑。若距机房较近,可采用光纤直接连接的方式;否则可采用微波或者无线网桥传输方式;特殊情况可采用卫星传输方式。 ★采用微波或者无线网桥传输方式时,要预先选定好对端微波架设的位置,以最近的机房和视距传输来综合考虑。原则上在车载系统达到目的现场 前,应架设好对端微波天线,以尽量缩短系统开通的时间。 ★采用卫星传输方式时,应根据使用的卫星经度考虑对应方位无遮挡,且 避免使车头朝向卫星方位停放,以方便卫星天线接收。 ★车载卫星系统通过自动对星需要获取的信息:(1)GPS、(2)电子罗盘、(3)AGC(信标机电压)。

3.1.2 数据准备 确定BTS的相关数据 ★根据网络规划,确定车载BTS相关数据,如频点、邻区切换等,必要时,到目的现场测试移动网络的数据,了解频率干扰情况、话务量分配、切换等情况。同时与传输室确认应急车传输的接入基站,并在基站端对通传输电路,同BSC 核对每套应急传输电路所对应小区的关系、核对小区定义的设备数量、设备类型和软件版本等信息,确保BSC的数据定义与应急车安装的硬件完全对应; ★根据现场的网络状况,确定基站天线的覆盖范围和方向。 ★根据网络规划,确定车载BTS系统接入PLMN网的BTS的相关数据。 3.1.3 带卫星的小C车规范开通流程 1、停车、拉手刹 2、打地桩、接工作地、保护地 3、放支撑脚、启动联合供电 4、挂CDMA天线、升天线桅杆、接馈线 5、对星、核对工作频率、极化、标定功率、载波上星 6、开基站、数据下载 7、开通测试、网络优化 3.2 卫星系统概述 3.2.1卫星系统业务需求简介 卫星传输作为小型应急通信车三种传输方式(微波传输、光纤传输、卫星传输)之一的传输手段解决从车载BTS到各省BSC的Abis接口的传输,实现1x 语音数据及EVDO数据业务的传输。 3.2.2卫星系统组成 根据系统设备配置和改装要求,小型应急通信车包括移动通信系统(不同厂商BTS和BSC设备)、传输系统(SDH、PDH、50M无线以太网桥、车载卫星)及天馈线系统(卫星天线、微波天线基站天线、桅杆等),其中卫星子系统主要由以下几种设备组成: 车载卫星天线、GPS天线、天线控制系统、信标接收机、MODEM、LNB、固态高功放。

遥感卫星的发展现状

遥感卫星的发展现状 摘要:卫星遥感技术并不被普通人所熟知,本文阐述了现今遥感卫星在我国的应用情况,同时展望未来遥感卫星应用前景,由此引出遥感卫星商业化发展的问题,于是重点分析讨论了当前遥感卫星在商业化发展过程中所遇到的主要困难,并且针对这些困难,提出促进遥感卫星商业化尽快实现的指导理念和主要措施以及预测遥感卫星商业化的可能发展趋势。 前言 面对新的世纪、新的形势,世界各国政府都在认真思考和积极部署新的经济与社会发展战略。尽管各国在历史文化、现实国情和发展水平方面存在着种种差异,但在关注和重视科技进步上却是完全一致的。这是因为,我们面对的是一个以科技创新为主导的世纪,是以科技实力和创新能力决定兴衰的国际格局。一个在科学技术上无所作为的国家,将不可避免地在经济、社会和文化发展上受到极大制约。 卫星遥感技术集中了空间、电子、光学、计算机通信和地学等学科的最新成就,是当代高新技术的一个重要组成部分。我国卫星遥感技术的发展和应用已经走过了多年艰苦探索与攀登的道路。如今,我们欣喜的看到卫星遥感应用技术已经起步并正在走向成熟和辉煌。 近十年来全球空间对地观测技术的发展和应用已经表明,卫星遥感技术是一项应用广泛的高科技,是衡量一个国家科技发展水平的重要尺度。现在不论是西方发达国家还是亚太地区的发展中国家,都十分重视发展这项技术,寄希望于卫星遥感技术能够给国家经济建设的飞跃提供强大的推动力和可靠的战略决策依据。这种希望给卫星遥感技术的发展带来新的机遇。面对这种形势,我国卫星遥感技术如何发展,如何使卫星遥感技术真正成为实用化、产业化的技术,直接为国民经济建设当好先行,是当前业界人士关注的热门焦点。 卫星遥感技术应用 (一)、卫星遥感技术应用现状 首先,到目前为止,我国已经成功发射了十六颗返回式卫星,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的六颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为使用,实现了业务化运行。一九九九年十月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。其次,除了上述发射的遥感卫星外,我国还先后建立了国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等国家级遥感应用机构。同时,国务院各部委及省市地方纷纷建立了一百六十多个省市级遥感应用机构。这些遥感应用机构广泛的开展气象预报、国土普查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供多方面的信息服务。这也为迎接21世纪空间时代和信息社会的挑战,打下了坚实的基础。 最后,非常关键,必须要重点指出的是两大系统的建立完成。一是国家级基本资源与环境遥感动态信息服务体系的完成,标志着我国第一个资源环境领域的大型空间信息系统,也是全球最大规模的一个空间信息系统的成功建立;二是国家级遥感、地理信息系统及全球定位系统的建立,使我国成为世界上少数具有国家级遥感信息服务体系的国家之一。 我国遥感监测的主要内容为如下三方面: 1、对全国土地资源进行概查和详查; 2、对全国农作物的长势及其产量监测和估产; 3、对全国森林覆盖率的统计调查。 (二)、卫星遥感技术应用前景 国际上卫星遥感技术的迅猛发展,将在未来十五年把人类带入一个多层、立体、多角度、全方位和全天候对地观测的新时代。由各种高、中、低轨道相结合,大、中、小卫星相协同,高、中、低分辨率相弥补

Landsat-8卫星遥感影像解译数据的购置

广西善图科技有限责任公司 Landsat-8卫星遥感影像解译数据购置购买订购流程是什么? Landsat-8卫星遥感影像解译数据购置购买订购流程是先查询卫星数据是否有需要订购的数据,然后再签订合作协议,付费以后提供原始数据或者成果数据。 Landsat8卫星简介 2013年2月11号,NASA成功发射了Landsat 8卫星,为走过了四十年辉煌岁月的Landsat计划重新注入新鲜血液,设计使用寿命为至少5年。Landsat 8上携带有两个主 要载荷:OLI 和 TIRS,其中OLI(全称:Operational Land Imager,陆地成像仪)由卡 罗拉多州的鲍尔航天技术公司研制;TIRS(全称:Thermal Infrared Sensor,热红外传 感器)由NASA的戈达德太空飞行中心研制。 OLI陆地成像仪包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅185x185km。 OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重 新调整。比较大的调整是OLI Band5(0.845–0.885μm),排除了0.825μm处水汽吸收 特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和 无植被特征。此外,还有两个新增的波段:蓝色波段(Band1: 0.433–0.453μm)主要应 用海岸带观测;短波红外波段(Band9: 1.360–1.390μm)包括水汽强吸收特征可用于云 检测,并且近红外Band5和短波红外Band9与MODIS对应的波段接近。 Landsat8传感器参数 卫星遥感数据分类: 一、卫星分辨率 1.0.3米:worldview3、worldview4 2.0.4米:worldview3、worldview2、geoeye、kompsat-3A 3.0.5米:worldview3、worldview2、geoeye、worldview1、pleiades、高景一号 4.0.6米:quickbird、锁眼卫星 5.1米:ikonos、高分二号、kompsat、deimos、北京二号 6.1.5米:spot6、spot7、锁眼卫星 7.2.5米:spot5、alos、资源三号、高分一号(4颗)、高分六号、锁眼卫星 8.5米:spot5、rapideye、锁眼卫星、planet卫星4米

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

卫星TCPIP数据传输技术

卫星TCP/IP数据传输技术 https://www.360docs.net/doc/7c13677078.html, ( 2001/4/20 00:00 ) 卫星TCP/IP数据传输技术 简要:进一步发展I nternet业务需要增大带定并且要有移动性,因而卫星网与I P网结合成了 热门话题。针对卫星网的信遣差错率高、传播延迟长和信遣不对称性对TCP传播性能有不良影响, 简单介绍了前向纠错和自动重传两种链路差错控制方案;着重介绍了对TCP协议(包括基本TCP、 选择性确认、非对称性和 AC K控制等几个方面)的改进。最后,讨论了I P over卫星和IP over卫 星ATM两种卫星I P网络技术。 关键词:卫星通信网 I nternet数据传输 TCP/IP 利用TCP/IP协议进行数据传输逐渐成为网络应用的主流。I nternet在全球的急剧膨胀导致传 输带宽资源紧缺,这成为限制其发展的主要因素,业务应用一方面要求增大接入带宽,另一方面对 移动I nternet的需求越来越大。卫星通信的宽覆盖范围,良好的广播能力和不受各种地域条件限 制的优点使卫星通信在未来仍将发挥重要作用,卫星通信将是无线I nternet的重要手段。目前, 利用卫星进行T CP/IP数据传输(卫星I P网络)已经引起人们的重视。 一、卫星lP网络与TCP/IP 其中基于地面的网络通过互联单元(I WU)与卫星调制解调器相连。互联单元可以是协议网 关,也可以是AT M卫星互联单元(A SIU),这些互联单元(也很可能配置在卫星调制解调器中)完 成WA N协议(如IP,ATM)和卫星链路层协议间的转换。 1.卫星IP网络面临的主要问题 卫星I P网络面临的各种问题源于卫星信道和卫星网络的各种固有特性,主要有3个方面。 (1)信道差错率 卫星信道的比特差错率(BE R)大约为10-6数量级,这远远高于高速有线媒质(如光纤)。 另外空间信道的各种随机因素(如雨衰等)使得信道出现突发错误。噪声相对高的卫星链路大大地 降低了T CP的性能,因为TCP是一个使用分组丢失来控制传输行为的丢失敏感协议,它无法区分拥 塞丢失和链路恶化丢失。较大的BE R过早地触发了窗口减小机制,虽然这时网络并没有拥塞。此 外,ACK分组的丢失使吞吐量进一步恶化。 (2)传播延迟 影响卫星网络延迟的因素有一些,主要的一个是轨道类型。多数情况下低轨系统单向传播延 迟是20一25ms,中轨系统是110-130 ms,静止轨道系统为250-280ms。系统延迟还受星间路由选择、星上处理以及缓存等因素的影响。一般而言,延迟对TCP的影响体现在:它降低了T CP对分 组丢失的响应,特别对于仅想临界发送超过缺省启动窗口大小(仅超过一个T CP数据段)的连接更 是如此。此时用户必须在慢启动状态下,在第 一个AC K分组收到前,等待一个完全的往返延迟;卫星延迟和不断增加的信道速度(10Mbit/S或更高)还要求有效的缓存;增加的延迟偏差(varianc e)反过来也会通过在估算中加入噪声影响T CP 定时器机制,这一偏差会过早产生超时或重传,出现不正常的窗口大小,降低了总的带宽效率。简 单地增加TCP定时器粒度(tranularity)在此没有多大帮助,因为尽管较大的值可以降低错误超 时,但带宽利用不足也将因较长的延迟而增加。 (3)信道不对称

landsat8波段介绍

landsat8: Landsat 8 是美国陆地卫星计划(Landsat)的第八颗卫星,于2013年2月11号在加利福尼亚范登堡空军基地由Atlas-V火箭搭载发射成功,最初称为“陆地卫星数据连续性任务”(Landsat Data Continuity Mission,LDCM)。Landsat 8上携带陆地成像仪(Operational Land Imager ,OLI)和热红外传感器(Thermal Infrared Sensor,TIRS)。 简介: Landsat 8是NASA与美国地质调查局(USGS)合作开发并由轨道科学公司(Orbital Science Corporation)建造的。NASA负责了设计、建造、发射和在轨校准阶段,在此期间卫星被称为Landsat 数据连续性任务(Landsat Data Continuity Mission ,LDCM)。2013年5月30日,USGS接管了常规操作,卫星改名为Landsat 8。USGS在地球资源观测与科学(EROS)中心负责发射后的校准活动、卫星操作、数据产品生成和数据存档。 介绍: OLI陆地成像仪包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km。OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了 0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两

个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。

遥感卫星传感器参数

SPOT卫星 SPOT卫星是法国空间研究中心(CNES)研制的一种地球观测卫星系统。―SPOT‖系法文Systeme Probatoire d’Observation dela Tarre的缩写,意即地球观测系统。 目录 1卫星简介 2卫星参数 2.1 轨道参数 2.2 观测仪器 2.3 数据参数 2.4 谱段参数 2.5 数据应用范围 3传感器特点 4发展历程 4.1 SPOT-1 4.2 SPOT-4 4.3 SPOT-5 1卫星简介 Spot系列卫星是法国空间研究中心,(CNES)研制的一种地球观测卫星系统,至今已发射Spot卫星1-6号,1986年已来,Spot已经接受、存档超过7百万幅全球卫星数据,提供了准确、丰富、可靠、动态的地理信息源,满足了制图、农业、林业、土地利用、水利、国防、环境、地质勘探等多个应用领域不断变化的需要。[1] 2卫星参数

轨道参数 Spot卫星采用高度为830km,轨道倾角为98.7度的太阳同步准回归轨道,通过赤道时刻为地方时上午10:30,回归天数(重复周期)为26d。由于采用倾斜观测,所以实际上可以对同一地区用4~5d的时间进行观测。 观测仪器 Spot1,2,3上搭载的传感器HRV采用CCD(charge coupled device )S作为探测元件来获取地面目标物体的图像。HRV具有多光谱XS具和PA两种模式,其余全色波段具有10m的空间分辨率,多光谱具有20m的空间分辨率。Spot4上搭载的是HRVIR传感器和一台植被仪。pot5上搭载包括两个高分辨几何装置(HRG)和一个高分辨率立体成像装置(HRS)传感器。[1] 数据参数 Spot的一景数据对应地面60km×60km的范围,在倾斜观测时横向最大可达91Km,各景位置根据GRS(spot grid reference systerm)由列号K和行号J的交点(节点)来确定。各节点以两台HRV传感器同时观测的位置基础来确定,奇数的K对应于HRV1,偶数的K 对应于HRV2。倾斜观测时,由于景的中心和星下点的节点不一致,所以把实际的景中心归并到最近的节点上。[1] 谱段参数 1)绿谱段(500~590nm):该谱段位于植被叶绿素光谱反射曲线最大值的波长附近,同时位于水体最小衰减值的长波一边,这样就能探测水的混浊度和10~20m的水深。 2)红谱段(610—680nm):这一谱段与陆地卫星的MSS的第5通道相同(专题制图仪TM仍然保留了这一谱段),它可用来提供作物识别、裸露土壤和岩石表面的情况。 3)近红外谱段(790—890nm):能够很好的穿透大气层。在该谱段,植被表现的特别明亮,水体表现的非常黑。尽管硅的光谱灵敏度可以延伸到1100urn,但设计时为了避免大气中水汽的影响,并没有把近红外谱段延伸到990nm。同时,红和近红外谱段的综合应用对植被和生物的研究是相当有利的。 该系统的多谱段图像配准精度相当高,通常采用二向色棱镜进行光谱分离,粗制多谱段图像的配准精度误差小于0.3个象元。[2]

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

BGAN卫星数据传输业务简介

BGAN卫星数据传输业务简介

BGAN卫星数据传输业务简介 前言 我国地域广阔,地形复杂,地理环境多样。虽然地面通信网发展迅速,覆盖面积不断扩大,但是,受到地形和人口分布等客观因素的限制,地面固定通信网和移动通信网不可能实现在全国各地全覆盖,在中国有60%左右的地区是地面通信网盲区,通信的困难甚至成为人们生存的障碍。这一问题现在不可能解决,而且在将来的几年甚至几十年也很难得以解决,主要是由于这些地区地形地势复杂,建立通信网络耗资大、效益低,建设周期长,维护难等因素制约。相比较而言,卫星移动通信可以快捷、经济的解决这些地方的通信问题,满足人们对通信的需求。这就为卫星移动通信提供了广阔的市场。卫星移动通信网将为这些地区生活工作的人们提供服务,也为那些国际、国内旅游者,商业、企业要员以及特殊行业,如勘探、抢险、救灾及环保等工作的人们提供极大的方便。在应急事件的通信处理上,移动卫星通信系统已经发挥出相当的优势。

海事卫星BGAN系统简介 BGAN是国际海事卫星组织所主导的宽频全球区域网络系统( broadband global area network system )的第四代的卫星通信系统。新卫星不仅支持BGAN宽带业务,还将继续支持目前工作在第三代卫星上的全部数字业务和Inmarsat区域性中等带宽的RBGAN 业务,以保持业务的连续性和平滑过渡。 第四代“国际海事卫星”综合了高低端多种业务模式,采用高效的频率复用技术,在有限L 波段的带宽资源情况下,实现了容量和多样化的选择,它可支持全新的全球宽带局域网业务,提供至少10倍于“国际海事卫星”现有网络的通信容量。该卫星BGAN业务可为全球几乎任何地方的用户提供速度达到 492kbit/s 的网络数据传输、移动视频、视频会议、传真、电子邮件、局域网接入,并为用户提供短信、语音信箱、来电显示、呼叫转移、呼叫等待、呼叫保持、电话会议、限制用户组、呼叫限制、预付费等多种附加功能。BGAN是一个3GPP 包交换和电路交换的网络,兼容第3代(3G)手机系统,其所有提供

卫星遥感应用现状及商业化前景

我国卫星遥感应用现状及商业化前景 近年来,在国家政策和体制的推动下,卫星产业逐渐走向“军、民、商”的融合,商业化趋势日益明显。卫星通信、卫星导航已经在市场上逐步站稳脚跟,产业初具规模,与前两者相比,卫星遥感的商业化步伐稍微缓慢,产业化应用还有待进一步开拓。 一、我国卫星遥感应用现状 相比传统的信息获取手段,卫星遥感不仅能获得更广泛和海量的信息资源,在信息的可靠性和准确性方面更是有了质的飞跃,而且这些信息的获取是建立在效率更高、成本更低的基础之上的,为决策部门的工作带来了前所未有的高效、便利。目前,遥感技术的应用已经相当广泛,应用程度也在不断加强。卫星遥感已经在土地利用、城市化及荒漠化监测;农作物、森林等可再生资源的监测和评估、灾害监测和环境监测;对道路、建筑工程的设计、选址;城市规划、土地管理、工程评估等方面发挥着越来越重要的作用。在考古、野生动物保护、牧场管理等各个领域也得到了不同程度的应用。随着遥感技术的不断发展,其应用潜力得到了进一步挖掘,在精细农业、环境评价、数字城市等新领域,遥感技术将发挥重要作用,另外,GIS技术,虚拟现实技术、GPS技术、数据库技术等的快速发展为遥感技术的广泛应用提供了技术支持。 中国遥感技术起步于20世纪70年代末,20多年来,国家非常重视遥感技术的发展,连续四个五年计划都把遥感技术作为国民经济建设35项关键技术之一。到目前为止,我国已经成功发射了18颗返回式卫星,并成功回收17颗,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的6颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为应用,实现了业务化运行。1999年10月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。2005年10月27日,北京一号小卫星在俄罗斯普列谢斯克卫星发射场成功发射,为国内外遥感应用用户提供了充足和丰富的多广谱和全色遥感影像产品。 除了上述已发射的遥感卫星外,我国还先后成立了国家遥感中心、国家气象卫星中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等国家级遥感应用机构。同时,国务院各部委及省市地方建立了160多个省市级遥感应用机构。这些遥感应用机构广泛地开展了气象预报、国土调查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供了多方面的信息服务。时下,我国卫星遥感应用领域不断拓展,已经在农业、林业、国土、水利、城乡建设、环境、测绘、交通、气象、海洋、地球科学研究等方面得到广泛应用。遥感技术在我国国土资源大调查、西气东输、南水北调、三峡工程、三河三湖治理、退耕还林、防沙治沙、交通规划与建设、海岸带监测及海岛测绘、300万平方公里海洋权益维护及区域经

美国Landsat卫星遥感数据下载说明

1、Landsat 影像简要介绍 2、影像下载步骤 1)打开下载页面 https://www.360docs.net/doc/7c13677078.html,/EarthExplorer/ (USGS 主页为:https://www.360docs.net/doc/7c13677078.html, ) 2)注册一个用户以后即可登陆 3)在“Select your dataset(s)”中选择所需要的数据类型,本例选取L7 SLC-on(1999-2003),即L7从发射(1999年4月)到传感器出现故障前(2003年5月)之间的数据,2003年L7出现故障后(影像数据两边有较明显的锯齿,难以使用,有人提到可用插值法校正影像,但与真实数据仍有较大误差)。

4)选定所需影像经纬度范围,在“Enter your search criteria”栏中输入参数,在输入地名之前,“Area Selected”栏中可能只有一个点的输入空档,可随意输入一个地名或在“Area Selected”中随意输入一个经纬度,这样“Area Selected”栏中就有两个点的输入空档,这两 个点即为影像的左上角和右下角。 5)输入时间范围(L7数据的有效范围是1999-2003年) 6)选取数据的最大显示数量,在“Number of Results”栏中输入 7)单击“Search”后,进入下载界面,以下界面显示只有37项数据可用(但不一定都能下 载),可选择“Save Results”保存检索结果,也可选择“Results”直接查看结果。

8)进入显示结果的界面以后,即可单击下载,L7不支持FTP批量下载(MODIS是支持的),所以如果网络较为稳定,可用迅雷等工具下载;如果网络不够稳定,建议用wget工具下载(每景影像约250M,解压后将近600M,直通车下载速度为250kb/s,这样下载一景数据需要20min左右) 3、影像查看 以下为各波段数据介绍,其中将文件解压缩以后一般可看到12个文件,*b10.tif为B1数据, 等工具,波段组合可根据解译的地物而定,一般可选择743、543、432、321。

常见遥感卫星的基本参数大全

常见遥感卫星的基本参数大全 1. BERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星。 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天,平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 –1.75(um)B8:2.08 –2.35(um)B9:10.4 –12.5(um)覆盖宽度:119.50公里空间分辨率:B6 –B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 –0.52(um)B2:0.52 – 0.59(um)B3:0.63 –0.69(um)B4:0.77 –0.89(um)B5:0.51 –0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 –0.69(um)B11:0.77 –0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS- 1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS- 1的数据。2002年我国将发射CBERS-2 卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 圈/分101.469轨道周期: 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 –0.59um 20米分辨率B2 0.61 –0.68um B3 0.78 –0.89um SWIR 1.58 –1.75um

卫星遥感影像解译服务一、项目内容

xx遥感影像解译服务一、项目内容 本项目包括两部分内 容,一是对 xx遥感影像解译服务 一、项目内容 本项目包括两部分内容,一是对广州市2M高分辨率多光谱原始数据进行相关技术处理,包括正射校正、融合、匀色、镶嵌、裁切等,最终得出DOM成果;二是在上述2M高分辨率影像数据处理成果基础上,勾画广州市土地利用类型图斑,并利用专业GIS软件进一步处理,形成广州市土地利用现状类型图成果。 二、关键技术指标要求 1)影像分辨率2米,波段组合色彩为自然真彩色; 2)影像时间:2015年1月以后拍摄的影像数据,少部分遥感影像未拍到的地方,可用2014年12月以前的数据填补,但所占面积比例不能超过广州市区域面积的10%,色彩要与相邻区域一致。为使影像色彩一致,原则上要求采用同一卫星的影像数据; 3)数据制作精度满足1:1万比例尺要求; 4)分幅方式按广州市1:1万比例尺地形图分幅编号法分幅; 5)影像和土地利用现状图坐标:WGS84; 6)影像数据格式TIF和SID,土地利用现状图数据格式: shape格式;7)数据要求色彩清晰、层次丰富、反差适中、彩色色彩柔和鲜艳、色彩均匀,相同地物的色彩基调基本一致。正射影像接边重叠带不允许出现明显的模糊和重影,相邻数字正射影像要严格接边,精度满足规范要求。 三、xx影像数据制作加工要求

1.制图须符合国家有关技术标准和规范。 2.投标人提供的影像成果须经正射纠正,航空影像正射纠正技术流程要详细,有正射纠正的原理和具体方法,有正射纠正的工艺流程图。 3.投标人有专业遥感影像处理软件,可用软件提供的正射纠正模块进行纠正。逐张卫片处理,生成具有坐标系统和投影信息的正射影像,检验图像校正的结果是否满足要求,直至满足要求。 4.对遥感数据制作数字正射影像地图,采用满足成图比例尺精度要求的控制资料,基于适宜分辨率的数字高程模型(DEM),对卫星影像进行正射纠正、配准、融合、镶嵌,建立覆盖广州全市域范围的数字正射影像;按相应比例尺分幅整饰,制作成遥感数字正射影像图(DOM)。 5.利用成像的卫星轨道参数、传感器参数及DEM,对影像进行严密的物理 模型纠正。要求控制点均匀分布、控制整景影像,平原地区布设4个控制点,高山地控制点个数不应少于12个。对于没有影像卫星轨道参数、传感器参数地区,可采用多项式变换几何模型进行纠正。6.图幅整饰:在标准分幅的数字正射影像上分层叠加内外图廓线及公里格 网、注记、境界等要素,进行图幅整饰。其中,图廓整饰包括图名、图号、图幅行政区划注记、公里格网、图幅结合表、比例尺、左下角的出版说明注记等;行政境界包括镇级以上行政境界;注记包括居民点自然村注记、主要河流水系、大型山脉等其它地理名称。 7.对数字正射影像成果的检查包括:作业过程是否满足控制点、配准点、检查点残差和中误差的精度要求;DOM影像是否色调均匀、反差适中、色彩自然;相邻景/块之间接边差是否在控制点残差的两倍以内,是否存在扭曲变形现象;外业检测DOM精度是否符合要求;整饰内容是否准确、完整;图面要素表达是否符合规定;元数据文件各项内容填写是否完备、准确;文件命名、文件组织与数据格式是否符合规范;上交成果内容是否完备、数据的一致性、完整性及其是否可读。 四、广州市土地利用现状分布图制作处理要求

卫星遥感技术的创新应用

卫星遥感技术的创新应用 一、资源一号02C 业务卫星工程及国土资源应用 “资源一号02C 业务卫星工程及国土资源应用”获得2019 年度国土资源科学技术奖一等奖。该项目创新发展了我国遥感业务卫星发展应用机制,填补了我国公益性民用陆地业务卫星发展的机制空白,实现了我国陆地遥感卫星从科研试验型向业务应用型转变。突破了大幅宽、多谱段、高分辨一体化卫星成像技术,创建了遥感卫星“一步正样”研制模式,将卫星研制周期从36 个月以上缩短到22 个月以内。突破了传感器内非共线多CCD 成像高精度拼接处理、姿态参数时序化分析精化、相对辐射模型自动构建等3 项核心关键技术,显著提升了图像的定位精度、内部几何精度和产品辐射质量,自主研发了02C 卫星地面数据处理系统,实现了02C 数据标准产品的高质量业务化实时处理服务。突破了02C 卫星数据应用产品规模化生产关键技术,自主研发了首个国土资源卫星遥感应用系统,实现了02C 卫星数据天地一体化的应用服务,应用效率整体提升了5 倍以上。 二、数字中国自然资源卫星立体遥感测绘技术 “数字中国自然资源卫星立体遥感测绘技术及工程应用”获得2019 年度国土资源科学技术奖一等奖。针对自然

资源监测监管对高精度三维立体影像和信息产品的迫切需求,突破了国产高分辨率光学卫星影像多时相融合处理、多级格网数字高程模型快速生成、平面影像与高程模型高精度整合、大范围立体模型高保真构建、三维模型动态处理和展示、遥感影像信息提取等六项关键技术,建立覆盖全国的高分辨率三维立体平台和虚拟现实系统,完成了4 版2 米分辨率全国正射影像以及三维立体中国的构建,开展了基于高分卫星的自然环境典型要素信息提取等应用,为自然资源、生态环境和数字中国建设提供了立体遥感手段支撑。项目实现了多行业、大规模、系统化应用,形成的高精度、高保真DOM、DSM 产品,推广使用约4 亿平方千米,取得了显著社会经济效益,产生直接经济效益约2 亿元,间接经济效益数十亿元。 三、自然资源卫星遥感云服务平台关键技术 “自然资源卫星遥感云服务平台关键技术研究及应用”荣获2019 年度测绘科技进步一等奖(图5-1)。该项目面向新时期自然资源管理及相关行业部门对国产高分辨率卫星遥感数据应用的需求,针对国产卫星影像深层应用服务中存在的主要问题,综合运用互联网+、云服务、云计算等新技术,通过关键技术攻关,研发了卫星遥感云服务平台,建立自然资源遥感监测监管模式并实现业务化运行。这一平台很好地解决了自然资源管理的及时性、准确性、全面性三大难

常用遥感数据的遥感卫星基本参数大全

常用遥感数据的遥感卫星基本参 数大全 常用遥感数据的遥感卫星基本参数大全 常用,遥感数据,遥感卫星,基本参数,大全 1、CBERS-1中巴资源卫星 CBERS-1中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o重复周期:26天平均降交点地方时为上午10:30相邻轨道间隔时间为4天扫描带宽度:185公里星上搭载了CCD 专感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6: 0.50 - 1.10(um)B7 : 1.55 - 1.75(um)B8 : 2.08 - 2.35(um)B9 : 10.4 - 12.5(um)覆盖宽度:119.50 公里 空间分辨率:B6 - B8 : 77.8米B9: 156米CCD相机:波段数:5波谱范围:B1:0.45 —0.52(um)B2: 0.52 —0.59(um)B3: 0.63 —0.69(um)B4: 0.77 — 0.89(um)B5 : 0.51 - 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数:2 波谱范围:B10: 0.63 —0.69(um)B11 : 0.77 — 0.89(um) 覆盖宽度:890公里空间分辨率:256米 CBERS-卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-卫

相关文档
最新文档