求变力做功的六种方法
求解变力做功的六种常见方法剖析

ʏ李鹏飞公式W =F l c o s α只适用于恒力做功的计算,若遇到的是变力做功问题该怎样计算呢?下面我们就结合例题来剖析求解变力做功的六种常见方法,供同学们参考㊂方法一:等效替代法若通过转换研究对象能找到一个与待求变力做的功相同的恒力,则可以利用公式W =F l c o s α计算出该恒力做的功,间接求得变力做的功㊂这种将变力做功转换成恒力做功的求解方法叫等效替代法㊂例1 如图1所示,某人用跨过定滑轮的细绳以恒力F 拉着放在水平面上的滑块,使其沿着水平面由A 点前进距离l 后到达B 点㊂已知滑块在A ㊁B 两点时,细绳与水平方向间的夹角分别为α和β,滑轮到滑块的高度为h ,不计细绳与滑轮之间的摩擦和细绳的重力㊂求在这一过程中细绳的拉力对滑块所做的功㊂图1细绳对滑块的拉力大小始终等于F ,但方向在时刻改变,属于变力做功问题,不能直接利用W =F l c o s α进行计算㊂实际上,恒力F 对细绳末端所做的功等效于细绳的拉力对滑块所做的功㊂在细绳与水平面间的夹角由α变到β的过程中,恒力F 作用的细绳末端移动的位移Δl =h s i n α-h s i n β=h 1s i n α-1s i n β(),因此恒力F 对细绳末端所做的功W F =F ㊃Δl =F h 1s i n α-1s i n β(),即细绳的拉力对滑块所做的功W =W F =F h1s i n α-1s i n β()㊂方法二:平均力法若物体受到的力方向不变,而大小随着位移呈线性变化,则可以先求出力的平均值F =F 1+F 22(F 1和F 2分别为物体在研究过程初㊁末状态下所受的力),认为物体受到的是一个大小为 F 的恒力作用,再利用公式W = F l c o s α求解变力做的功㊂例2 如图2所示,轻弹簧的一端与竖直墙壁连接,另一端与一质量为m 的物块相连,物块位于光滑水平面上,已知弹簧的劲度系数为k ,开始时弹簧处于自然状态㊂用水平向右的拉力F 缓慢拉物块,使物块在弹性限度范围内前进距离x 0,求在这一过程中拉力F 对物块所做的功㊂图2在物块缓慢运动的过程中,拉力F 的方向不变,大小始终与弹簧的弹力等大反向,与位移x 满足关系式F =k x ,即从零开始随位移均匀增大,因此在物块前进距离x 0的过程中,拉力F 的平均值 F =0+k x 02=12k x 0,拉力F 对物块所做的功W = F x 0=12k x 20㊂方法三:F -x 图像法当力F 与位移x 同向时,计算功的公式可表示为W =F x ,因此在F -x 图像中,图像与x 轴所围成的 面积 就表示力F 在位移x 上所做的功㊂ 面积 位于x 轴上方,说明力F 做正功; 面积 位于x 轴下方,说明力F 做负功㊂53物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.例3 如图3所示,一个正方形木块漂浮在一个面积很大的水池中,水深为H ,木块边长为a ,质量为m ,密度为水的一半㊂开始时木块静止,有一半没入水中㊂现用力F 将木块压到池底,不计摩擦㊂求力F 在将木块从初始状态刚好压到池底的过程中,力F 对木块所做的功㊂图3将木块从初始状态缓慢地压到刚好完全没入水中的过程中,力F 与木块下降的位移x 成正比,木块下降位移x =a2时,力F 最大,且F m a x =m g ,之后力F 始终等于F m a x ㊂作出F -x 图像如图4所示,则图中阴影部分的面积在数值上等于力F 对木块所做的功,即W =m g (H -a )+H -a2()2=m gH -3m g a4㊂图4方法四:微元法若物体在运动过程中所受的变力始终与速度方向在同一条直线上或成某一固定角度,则可以将运动过程分成无数个小段,在每一个小段上都可以认为物体受到的力是恒力,物体在整个运动过程中的位移等于运动轨迹的长度,则力在各个小段上所做功的代数和即为变力在整个运动过程中所做的功㊂图5例4 以前的人们经常采用如图5所示的 驴拉磨 方式把粮食加工成粗面来食用㊂假设某次采用 驴拉磨 方式进行粮食加工的过程中,驴对磨的拉力大小始终为500N ,驴做圆周运动的半径为1.5m ,则在驴拉磨转动一周的过程中,拉力所做的功为( )㊂A .0 B .500JC .750JD .1500πJ在驴拉磨转动一周的过程中,拉力F 的大小不变,方向时刻改变,但总与速度的方向相同㊂将转动的一周分割成无数个小段,则每一个小段对应的位移Δs 1㊁Δs 2㊁Δs 3㊁ ㊁Δs n 都可认为与拉力F 同向,因此在驴拉磨转动一周的过程中,力F 所做的功等于恒力F 在各个小段上所做功的代数和,即W F =F ㊃Δs 1+F ㊃Δs 2+F ㊃Δs 3+ +F ㊃Δs n =F (Δs 1+Δs 2+Δs 3+ +Δs n )=F ㊃2πR =1500πJ ㊂答案:D方法五:动能定理法若物体的运动情况较为复杂,但是物体在初㊁末状态下的动能,以及除待求变力所做的功外其他力所做的功都可以比较容易地求出,则可以利用动能定理来求解这个变力所做的功㊂图6例5 如图6所示,一个半径为R 的半圆形轨道固定在竖直平面内,轨道两端等高;质量为m 的质点自轨道左端P 点由静止开始下滑,滑到最低点Q 时,对轨道的压力大小为2m g ,重力加速度为g ㊂在质点自P 点滑到Q 点的过程中,克服摩擦力所做的功为( )㊂A .14m g R B .13m g R C .12m g R D .π4m gR 在质点自P 点滑到Q 点的过程中,质点受到的滑动摩擦力的大小和方向都在变化,属于变力做功问题㊂设此过程中质点克服摩擦力所做的功为W f ,根据动能定理得m gR -W f =12m v 2Q -0;根据牛顿第三定律可知,质点在Q 点受到轨道63 物理部分㊃经典题突破方法 高一使用 2022年4月Copyright ©博看网. All Rights Reserved.的支持力大小N =2m g ;质点运动到Q 点时,根据牛顿第二定律得N -m g =m v 2QR㊂联立以上三式解得W f =12m g R ㊂答案:C方法六:机械能守恒定律法若物体只受重力和弹力作用或只有重力和弹力做功,且重力和弹力中有一个力是变力,则可以利用机械能守恒定律来求解这个变力所做的功㊂图7例6 如图7所示,一根金属链条的总长为l ,置于足够高的光滑水平桌面上,链条下垂部分的长度为a ㊂某时刻链条受到微小扰动由静止开始下滑,在链条由静止开始下滑到整根链条刚好离开桌面的过程中,重力所做的功为多少?链条在下滑的过程中,下垂部分不断增长,质量不断增大,即这部分链条的重力是变力,整根链条的运动是在该变力作用下的运动,属于变力做功问题㊂取桌面为零重力势能参考平面,设整根链条的质量为m ,初始状态下链条下垂部分的质量为m 0,则m 0=al m ㊂初始状态下,整根链条的机械能E 1=0-m 0g ㊃a 2=-m g a22l;整根链条刚好离开桌面时,整根链条的机械能E 2=W 重-m g ㊃l2㊂根据机械能守恒定律得E 1=E 2,解得W 重=m g (l 2-a 2)2l㊂ 图81.如图8所示,摆球质量为m ,悬绳的长度为L ,把悬绳拉到与悬点O 处于同一水平线上的A 点后放手㊂在摆球从A 点运动到最低点B 的过程中,设空气阻力F 阻的大小保持不变,则下列说法中正确的是( )㊂A .重力做功为m g L B .悬绳的拉力做功为12m g πL C .空气阻力F 阻做功为-m g L D .空气阻力F 阻做功为-12πF 阻L 2.用大锤将一木桩打入泥土里,木桩长为L ,大锤第一次击桩时使木桩从地面钻入泥土的深度为L5,如果木桩受到泥土的阻力远大于木桩的重力,且与木桩钻入泥土的深度成正比,那么大锤打击木桩多少次后木桩全部钻入泥土中图93.如图9所示,质量为m 的小球用长度为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一个光滑的细钉,已知O ㊁P 两点间的水平距离为L2㊂在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达与P 点在同一竖直线上的最高点B ㊂(1)小球到达B 点时的速率为多大(2)若初速度v 0=3g L ,则在小球从A 点运动到B 点的过程中克服空气阻力做了多少功图104.如图10所示,质量m =2k g 的物体,从光滑斜面的顶端A 点以初速度v 0=5m /s 滑下,在D 点与弹簧接触并将弹簧压缩到B点时的速度为零㊂已知A ㊁B 两点间的竖直高度h =5m ,取重力加速度g =10m /s2,在物体从A 点运动到B 点的过程中,弹簧的弹力对物体所做的功为多少参考答案:1.A D 2.25次㊂3.(1)v B =g L 2;(2)W 克=114m g L ㊂4.W 弹=-125J㊂作者单位:山东省惠民县第一中学(责任编辑 张 巧)73物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。
求解变力做功的六种方法

13:02
栏目 导引
动能定理法
第七章 机械能守恒定律13:02
如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为 恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变 力做功是行之有效的。
动到B端(圆弧AB在竖直平面内).拉力F大小不变始
终为15 N,方向始终与物体所在位置的切线成37°
角.圆弧所对应的圆心角为60°,
• BO边为竖直方向,g取10 m/s2.求这一过程中:
• (1)拉力F做的功;
• (2)重力mg做的功;
•
13:02
(3)圆弧面对物体的支持力FN做的功.
栏目 导引
第七章 机械能守恒定律13:02
钉进 d,如果铁锤第二次敲钉子时对钉子做的功与第
一次相同,那么,第二次钉子进入木板的深度是(
)
A.( 3-1)d
B.( 2-1)d
5-1d
C.
2
2 D. 2 d
13:02
栏目 导引
第七章 机械能守恒定律13:02
[解析] 在将钉子钉入木板的过程中,随着深度的增加,阻力
成正比地增 加,这属于变力做功问 题,由于力与深度成正 比,
[解析] (1)将圆弧 AB 分成很多小段 l1、l2、…、ln,拉力在每 小段上做的功为 W1、W2、…、Wn,因拉力 F 大小不变,方向 始终与物体所在位置的切线方向成 37°角,所以: W1=Fl1cos 37°,W2=Fl2cos 37°,…,Wn=Flncos 37°, 所以 WF= W1+ W2+…+Wn =Fcos 37°(l1+l2+…+ln) =Fcos 37°·π3R=20π J=62.8 J. (2)重力 mg 做的功 WG=-m gR(1-cos 60°)=-50 J. (3)物体受的支持力 FN 始终与物体的运动方向垂直,所以 WFN = 0.
求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念。
力可以改变物体的状态,让物体移动、加速或减速。
做功就是施加力使物体移动的过程中能量的转移。
以下将介绍几种常见的变力做功的方法。
1.推力做功:将物体推向前方时,施加的力与物体的位移方向一致,即力和位移向量的夹角为0度。
例如,我们推车子或推行李箱时,就是通过推力来做功。
2.拉力做功:这种方式与推力做功相反,即施加的力与物体的位移方向相反,力和位移向量的夹角为180度。
例如,我们拉拽一根绳子或拉弓发射箭矢时,施加的力与物体的运动方向相反。
3.重力做功:重力是地球吸引物体向地心运动的力。
当一个物体从高处下落时,重力对物体做功。
在这种情况下,重力与物体的位移方向相同,力和位移向量的夹角为0度。
4.弹力做功:当有弹簧或橡皮带等弹性物体被拉伸或压缩时,会产生弹力。
弹力做功是将弹性势能转化为动能的过程。
例如,我们拉伸弓弦时,弓的张力对箭矢做功,让它飞行。
5.摩擦力做功:当物体在表面上移动时,与表面接触的粒子之间会产生摩擦力。
摩擦力做功是将机械能转化为热能的过程。
例如,我们用力推动一个滑动在地面上的物体时,摩擦力会做功,使物体停下来。
6.磁力做功:磁力是磁体之间的相互作用力。
当磁场改变时,施加在物体上的磁力会做功。
例如,我们用电磁铁吸起一个金属球时,磁力会做功,将物体从地面抬起。
7.电力做功:电力是在电子之间产生的相互作用力。
当电流通过电阻产生的电阻力与电子的移动方向相对立时,电力会做功。
例如,电流通过电灯丝时,电力会转化为热能和光能,使灯泡发亮。
总结起来,变力做功的方法主要包括推力做功、拉力做功、重力做功、弹力做功、摩擦力做功、磁力做功和电力做功。
通过施加不同的力,我们可以改变物体的状态和能量的转移,从而实现各种实际应用。
变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
求变力做功的8种思路

求变力做功的8种思路张家港市塘桥高级中学施 坚功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程.物体受到力的作用,并且在力的方向上发生一段位移,就叫做力对物体做了功. αcos Fs W =,式中F 应是恒力.但实际问题中经常遇到变力,那变力做功如何求解呢?下面结合典型问题,指明求变力做功的八种思路.思路1、微元法:若参与做功的变力,其仅力的大小不变,而方向改变,且力与位移的夹角确定不变,则可通过微分累积W N W ∆⋅=求解.【例1】 在一粗糙的水平面上,动摩擦因素为μ,一小滑块质量为m 在某小孩手的水平拉力的作用下做匀速圆周运动,则一小滑块转动一周的过程中,水平拉力、摩擦力分别做功多少?[解析]:手的水平拉力始终在圆周的切线方向上,故可以把圆周均匀分割成N 段(N 足够大),每段位移为s ∆,则每一小段s ∆上都可以认为水平拉力(滑动摩擦力)方向不变且与位移s ∆方向一致(相反),且mg f F μ==.每一小段上拉力做功s F W∆⋅=∆,所以,Rmg R F s N F W N W W f F πμπ22⋅=⋅=∆⋅⋅=∆⋅==,即:水平拉力、摩擦力分别做功:R mg πμ2,R mg πμ2-.点评:手的拉力和摩擦力是变力,但经微分后将变力转化为恒力,再用公式求解.思路2、均值法:若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式θscos F W =求解.【例2】 用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次时,能把铁钉击入木块内1cm .问击第二次时,能击入多少深度?(设铁锤每次做功相等)[解析]:此题可根据阻力与深度成正比这一特点,将变力求功转化为求平均阻力的功,进行等效替代.铁锤每次做功都用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,kx f F =-=,可用平均阻力来代替. 如图1-1,第一次击入深度为1x ,平均阻力1121kx F =,做功为2111121kx x F W ==.第二次击入深度为1x 到2x ,平均阻力)(21212x x k F +=,位移为12x x -,做功为)(21)(21221222x x k x x F W -=-=.两次做功相等:21W W =.得:cm x x 41.1212==,即:cm x x x 41.012=-=∆.点评:对于线形变化的变力,可以取其平均值,将变力转化为恒力,进而求该力的功. 思路3、图象法(示功图求解):若参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图象.如图1-2,那么所示的阴影面积,即为变力做的功.【例3】图所示,做直线运动的物体所受的合外力与物体运动距离的对应关系.已知物体的质量为kg 4.10.开始处于静止状态,求s 12末物体的速度多大?[解析]:物体所受的合外力是变力.根据s F -图中曲线下所围的“面积”表示力的功的物理意义,可求得)()()(总J W 52612426622=-⨯+-⨯+⨯=,再由动能定理求得102==mW v 总)/(s m点评:根据示功图中曲线所围的“面积”表示功的物理意义,直接求变力的功.例2也可以利用图象法,类似匀变速直线运动的t v -图象而作出x F -图象.[解析]:因为阻力kx F =,以F 为纵坐标,F 方向上的位移x 为横坐标,作出x F -图象(图1-4),曲线上面积的值等于F 对铁钉做的功.由于两次做功相等,故有:21S S =(面积),即:))((2121121221x x x x k kx -+=,即:cm x x x 41.012=-=∆.思路4、t P Pt W==公式法:已知恒定功率或平均功率的条件下,机车等的变力做功转化为功率求解,化难为易.【例4】 质量为M 的汽车,沿平直的公路加速行驶,当汽车的速度为1v 时,立即以不变的功率行驶,经过距离s ,速度达到最大值2v .设汽车行驶过程中受到的阻力f 始终不变.求汽车的速度由1v 增至2v 的过程中所经历的时间及牵引力做的功.[解析]:汽车以恒定功率运动,此过程中的牵引力是变力.当加速度减小到0时,即牵引力等于阻力时,速度达到最大值.由于汽车的功率恒定,故变力(牵引力)的功可用Pt W=计算.对汽车加速过程中由动能定理有22122Mv Mv fs Pt -=-又2P f = 联立得:221222)(v s P v v M t +-=22122)(v Ps v v M Pt W +-==点评:运用Pt W =,将恒定功率作用下的机械做功转化为易确定的因素,另辟蹊径. 思路5、动能定理法:若参与做功的变力,方向与大小都变化,导致无法直接由αcos Fs W =求变力F 做的功.这时可利用动能定理:αscos F W 合总合=∆==k E W ;但此法只能求合力做的功.【例5】 如图所示,质量为m 的物体被细绳牵引着在光滑水平面上做匀速圆周运动,O 为一光滑孔,当拉力为F 时,转动半径为R ;当拉力为8F 时,物体仍做匀速圆周运动,其转动半径为2R ,在此过程中,外力对物体做的功为: A .27FRB 、47FR C 、23FR D 、FR 4 解析:该题显然是一个变力问题,但通常有学生利用平均力法求解,即θscos F W =.此题中绳上拉力需提供向心力,方向时刻改变,不能利用平均力法求解.则可以从功能关系入手,而且绳上拉力是合外力,则动能定理:20212121mv mv W -=合,又圆周运动:Rv mF 02=;2821R v m F =,结合以上三式,得:FR FR FR mv mv W 2321221212021=-=-=合.故选C .点评:对于物体的始末状态的动能是已知的,则在这种情境下的变力做功用动能定理显得方便简捷.思路6、功能关系法:能是物体做功的本领,功是能量转化的量度.因此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解.【例6】 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:A .θcos mgLB .()θcos 1-mgLC .θsin FLD .[解析]:解物理题必须注意把握题中的关键词,比如此题中“很缓慢”三字,表明拉力F 所做的功并未增加物体的动能,根据题意恰恰是提高了势能,即:)cos 1(θ-=∆=mgl E W P F (或理解成据功能原理:F 的功增加了小球的机械能),B 正确.C 选项则是利用了恒力做功公式W=Fscos θ,但事实上F 不是恒力.如图,三球受T mg F 、、,且θmgtg F =,则在上拉过程中,↑↑F ,θ.C 选项不正确.故选B .点评:如果系统所受的外力和内力(除重力、弹力外)所做的功的代数和等于系统的机械能的增量,且这些力中有变力做功,机械能的增量易求,用功能关系(或功能原理)求解简便. 思路7、等效替代法:等效思想是物理教学中一种重要思维方法.当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功.【例7】 如图所示,某人用大小不变的力F 拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角为α,经一段时间后,绳与水平面间的夹角为β,已知图中的高度为h ,求绳的拉力T 对物体做的功.(绳的质量、滑轮质量及绳与滑轮间的摩擦不计)[解析]:物体由初态运动到终点,所受的绳子拉力是变力(变方向),但在题设条件下,人的拉力F 对绳的端点做的功就等于绳的拉力T 对物体做的功.故可用恒力F 的功替代变力T 的功.绳端的位移大小为)sin 1sin 1(21βα-=-=∆h s s s 则:)sin 1sin 1(βα-=∆⋅==Fh s F W W F T点评:当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功. 思路8、借助守恒定律求解:能量守恒定律、机械能守恒定律是物理学中极为重要的规律,为求功提供了另一条重要思路,尤其是变力做功问题.【例8】 如图所示,一根轻的刚性杆长为l 2,中点和右端各固定一个质量为m 的小球,左端O 为水平转轴.开始时杆静止在水平位置,释放后将向下摆动,求从开始释放到摆到竖直位置的过程中,杆对B 球做了多少功?[解析]:如果没有A 球,杆上只有B 球,摆到最低点B 球的速度为1v ,根据机械能守恒定律有.21212mv l mg =所以gl v 21= 现在杆上有A 、B 两球,设摆到最低点时B 球速度为2v ,则A 球速度为22v ,系统仍满足机械能守恒的条件,有22.22)2(21212v m mv mgl l mg +=+ 解出gl v 5242=B 球两次末动能之差就是轻杆对B 球做的功,即mgl mv mv W B 5221212122=-=杆对 点评:系统内只有重力和弹力做功,当弹力是变力时,求这个变力功可借助能量守恒定律(尤其是机械能守恒定律).小结:变力做功的求解对学生的思维鉴别力、跳跃性提出了较高的要求,采用平均力法、图象法、动能定理还是功能关系,必须对物理情景分析透彻,而后决定取舍.当然.有时方法不是单一的,如例2,而且适当地一题多解可以提高学生的思维深度和开阔性.图8。
求变力做功的方法

求变力做功的方法以求变力做功的方法为标题,我们来探讨一下。
第一种方法是应用直接施力。
当我们需要对物体施加力量时,可以直接使用肌肉力量来推动或拉动物体,这样就能够对物体做功。
比如,我们可以用手推动一辆停在原地的自行车,或者拉动一个重物。
第二种方法是应用杠杆原理。
杠杆是一种简单机械装置,可以将施加的力放大。
通过调整杠杆的长度或角度,我们可以改变施加在物体上的力的大小,从而实现对物体做功。
比如,我们可以用杠杆原理来举起一个重物,或者将一个重物推离地面。
第三种方法是应用滑轮系统。
滑轮系统是一种机械装置,可以改变力的方向和大小。
通过使用滑轮组合,我们可以改变施加在物体上的力的方向和大小,从而实现对物体做功。
比如,我们可以用滑轮系统来举起一个重物,或者将一个重物推离地面。
第四种方法是应用斜面原理。
斜面是一种简单机械装置,可以减小施加在物体上的力的大小。
通过调整斜面的角度,我们可以改变施加在物体上的力的大小,从而实现对物体做功。
比如,我们可以用斜面来推动一个重物上斜面,或者将一个重物从斜面上滑下来。
第五种方法是应用弹簧原理。
弹簧是一种弹性体,可以储存和释放能量。
通过压缩或拉伸弹簧,我们可以改变施加在物体上的力的大小,从而实现对物体做功。
比如,我们可以用弹簧来推动一个重物,或者将一个重物弹射出去。
第六种方法是应用气压原理。
气压是气体分子对容器壁面的压力。
通过调节气压,我们可以改变施加在物体上的力的大小,从而实现对物体做功。
比如,我们可以利用气压来推动汽车或自行车的轮胎,从而使其前进。
第七种方法是应用电力原理。
电力是电流通过导体时所产生的能量。
通过控制电流的大小和方向,我们可以改变施加在物体上的力的大小和方向,从而实现对物体做功。
比如,我们可以利用电力来推动电动机,从而使机器工作。
以上所提到的方法只是其中的几种常见方法,实际上还有很多其他方法可以实现对物体做功。
无论采用哪种方法,我们都要根据具体情况选择合适的方法,并合理应用力量,以实现对物体的目标操作和做功。
变力做功的六种常见计算方法

变力做功的六种常见计算方法变力做功是指当力的大小和方向随着对象运动的位置而变化时,力对物体所做的功。
下面将介绍六种常见的计算变力做功的方法。
1.通过力的曲线面积计算功:当力的大小和方向随着位置的变化而变化时,可以通过绘制力与位置的曲线图,然后计算曲线下的面积来求得所做的功。
2.利用求和法计算功:将运动过程划分成若干个小的位移段,对每个位移段内力的大小和方向保持不变,然后通过求和法计算每个位移段上力所做的功,最后将所有位移段上力所做的功相加得到总功。
3.应用积分法计算功:对力和位移变化连续的问题,可以利用微积分中的积分法来计算变力做功。
通过计算力在位移方向上的积分,即对力关于位移的函数进行积分,来得到变力做功的结果。
4.利用功率和时间计算功:如果已知物体在一段时间内所受到的平均力和物体的平均速度,可以利用功率和时间的关系来计算功。
功率定义为单位时间内做功的大小,根据功率公式P=W/t,其中W是做功的大小,t是时间,可以通过已知的其它量来计算功。
5.利用速度和质量计算功:在一些特定的情况下,可以利用物体的速度和质量来计算变力做功。
根据力学中的动能定理,物体的动能变化等于外力所做的功,其中动能定义为 K=1/2 mv^2,其中 m 是质量, v 是速度。
6.利用万有引力计算功:当物体受到的力是万有引力时,可以利用万有引力公式来计算变力做功。
万有引力公式为F=GmM/r^2,其中F是力,m和M是物体的质量,G 是万有引力常数,r是两物体之间的距离。
通过将力乘以物体的位移并将结果进行积分,可以得到变力做功的计算结果。
这些是常见的计算变力做功的方法,根据具体问题的条件和要求,选择适合的方法来计算变力做功。
求变力做功的六种方法

求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW=、F-x图像、用动能定理、等效代换法等来求变力做功。
一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。
由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。
用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。
例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)=F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。
【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图1-2 【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx+b),可先求出力的算术平均值221FFF+=,再把平均值当成恒力,用功的计算式求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求变力做功的六种方法
都匀市民族中学:王方喜
在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式Pt
W 、F-x图像、用动能定理、等效代换法等来求变力做功。
一、运用微元积累(求和)法求变力做功
求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。
由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。
用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。
例1
如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.
图1-1
【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即
W=FΔs1+FΔs2+…FΔsn
=F(Δs1+Δs2+Δs3+…Δsn)
=F2πR
【总结】
变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。
【检测题1-1】
如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直
的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力
做了多少功
图1-2【检测题1-2】
小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:
(1)全过程中篮球克服空气阻力做的功;
(2)如果空气阻力恒为5 N ,篮球在空中飞行的路程.
二、运用平均力等效法求变力做功
当力的方向不变,而大小随位移线性..
变化时(即F=kx +b),可先求出力的算术平均值2
2
1F F F +=
,再把平均值当成恒力,用功的计算式求解。
用平均值求变力做功的关键是先判断変力F 与位移x 是否成线性关系。
例2.
要把长为l 的铁钉钉入木板中,每打击一次给予的能量为E 0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k 。
问此钉子全部进入木板需要打击几次
【分析和解答】
在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功。
钉子在整个过程中受到的平均阻力为:
F kl kl
=+=022
钉子克服阻力做的功为:
W Fl kl F ==12
2
设全过程共打击n 次,则给予钉子的总能量:
E nE kl 总
==021
2
所以n kl E =2
2
【检测题2】
某人用竖直向上的力匀速提起长为L、质量为m的置于地面上的铁链,求将铁链从提起到刚提离地面时,提力所做的功.如图2所示.
图2
【分析与解答】
铁链被提升过程中所需提力方向不变,大小随离地高度均匀地从0增大到mg.平均提力=0+mg/2=(1/2)mg,提力通过的位移为L,因此,提力所做的功为
W=·L =mgL/2. 【说明】
此题也可将铁链质量集中于其重心,从提起到刚离开地面,铁链重心上升L/2,运用功能原理求解. 特点:变力与位移成线性关系时,才可用平均力等效变力用公式W=FLcos θ计算功.
三、运用Pt W =求变力做功
涉及到机车的启动、吊车吊物体等问题,如果在某个过程中保持功率P 恒定,随着机车或物体速度的改变,牵引力也改变,要求该过程中牵引力的功,可以通过Pt W =求変力做功。
【检测题4】
放在地面上的木块与一劲度系数k N m =200/的轻弹簧相连。
现用手水平拉弹簧,拉力的作用点
移动x m 102=.时,木块开始运动,继续拉弹簧,木块缓慢移动了x m 204=.的位移,求上述过程中拉力所做的功。
【分析和解答】
由题意作出F x -图象如图4-2所示,在木块运动之前,弹簧弹力随弹簧伸长量的变化是线性关系,木块缓慢移动时弹簧弹力不变,图线与横轴所围梯形面积即为拉力所做的功。
即
J J W 2040)4.06.0(2
1
=⨯+⨯=
图4-2
五、运用动能定理求变力做功
动能定理的表述:合外力对物体做功等于物体的动能的改变,或外力对物体做功的代数和等于物体动能的改变。
对于一个物体在某个过程中的初动能和末动能可求,该过程其它力做功可求,那么该过程中変力做功可求。
运用动能定理求变力做功关键是了解哪些外力做功以及确定物体运动的初动能和末动能。
例5
如图5-1所示,原来质量为m 的小球用长L 的细线悬挂而静止在竖直位置.用水平拉力F 将小球缓慢地拉到细线与竖直方向成θ角的位置的过程中,拉力F 做功为( ) A. θcos FL B. θsin FL
C. ()θcos 1-FL
D. ()θcos 1-mgL 【解析】
很多同学会错选B ,原因是没有分析运动过程,对W=FLcosθ来求功的适用范围搞错,恒力做功可以直接用这种方法求,但变力做功不能直接用此法正确的分析,小球的运动过程是缓慢的,因而任一时刻都可看作是平衡状态,因此F 的大小不断变大,F 做的功是变力功,小球上升过程中只有重力和拉力做功,而整个过程的动能改变为零,可用动能定理求解:
0=-'=+K K
G F E E W W 所以 ()θcos 1-=-=mgL W W G F ,故D 正确。
【检测题5】
如图5-2所示,质量m kg =1的物体从轨道上的A 点由静止下滑,轨道AB 是弯曲的,且A 点高出
B 点h =。
物体到达B 点时的速度为2m /s ,求物体在该过程中克服摩擦力所做的功。
图5-2
【分析和解答】
物体由A 运动到B 的过程中共受到三个力作用:重力G 、支持力F N 和摩擦力F f 。
由于轨道是弯曲的,支持力和摩擦力均为变力。
但支持力时刻垂直于速度方向,故支持力不做功,因而该过程中只有重
力和摩擦力做功。
由动能定理W E k 外=∆,其中
W W W E mv mv G f
k B A
外=+=-∆1212
22
所以mgh W mv f B +=
12
2
代入数据解得W J f =-584
. 所以,物体在该过程中克服摩擦力所做的功为。
六、用等效代换法求变力做功
求某个过程中的変力做功,可以通过等效法把求该変力做功,转换成求与该変力做功相同的恒力的功,此时可用功定义式W =FLcosа求恒力的功,从而可知该変力的功。
等效转换的关键是分析清楚该変力做功到底与哪个恒力的功是相同的。
例6
如图6-1所示,一个可以看做质点的物体静止于水平地面上的A点,用质量不计的细绳系住物体,绳子的另一端通过距地面高为h=3m 的无摩擦定滑轮,用F=4N 的恒定拉力拉绳子,使物体向右运动。
已知β=370
,γ=530
,求物体从A点运动到B点过程中,绳子的拉力对物体所做的功。
(sin 370
=,sin 530
=
图6-1
【分析与解答】
如图6-2,物体从A运动到B的过程中,绳上拉力的方向时刻变化,因而在物体位移方向上的分力大小是变化的.从图1可以看出,此变力使物体在水平方向上移动时所做的W,等效于恒力F对绳做功.力F的作用点由a 移动到b时,设力F对绳所做的功为WF.即
图6-2
绳的拉力对物体所做的功W=WF=FL ab =FL Ac =Fh [(1/sinβ)-(1/sinγ)] 把数据带入,解出W=5J 【总结】
变力对物体做功,若通过关联点(作用点)等效于某一恒力做功时,可用公式W =FLcosа直接求解.
【检测题6】
如图6-3所示,人在A 点拉着绳通过一定滑轮吊起质量m=50Kg 的物体,开始绳与水平方向夹角为
60,当人匀速提起重物由A 点沿水平方向运动m s
2 而到达B 点,此时绳与水平方向成 30角,绳子
的质量不计,绳子与滑轮的摩擦不计,求人对绳的拉力做了多少功(g =10m/s 2
)
图6-3。