国外斯伦贝谢电缆测井新技术与应用

合集下载

斯仑贝谢电缆测井新技术

斯仑贝谢电缆测井新技术

Schlumberger Private
高分辨 上天线 高分辨 下天线 主天线
<4>
多重测量深度
MAGNET
Hi-Res
Main 1
S
Main 2
Main 3
N
Main 4
Main 8
天线 测量壳型区
1.25 in. 1.5 in. 1.9 in. 2.3 in. 2.7 in. 4.0 in.
特点:
Schlumberger Private
“Rv” 15 ft
“Rh”
1
V = sand
V + shale
RR R
h
sand
shale
Rh
Rh dominated by Rsh
**把薄层当作各项异性的 一个整体来处理,通过 测量Rh,Rv来评价薄层
<13>
电阻率扫描测井(Rt Scanner)实例分析
接收器: 水诊器/ 3-C接收器
井深
7,000m+
井间距
1,000m (piezo)
1,500m+ (Z-Trac)
温度
150°C
特殊水蒸汽作业 270°C
接收器外径 43mm (1-11/16”)
震源外径
88.9mm (3 ½ ”)
震源选择
裸眼井 (piezo)
套管井 (piezo/Z-Trac)
铬套管
接收井 裸眼 玻纤 套管
钢套管 铬套管 铬套管
最大井距* 1000m
1000m
450m 500m 350m
井间电磁波测井(Cross-well EM)
Schlumberger Private

美国斯伦贝谢随钻声波测井新技术

美国斯伦贝谢随钻声波测井新技术

根 据 所 需 的 物 理 记 录, 可 将 声
波信号中识别出来 [1]。
波测井仪设计成一组发射器(声源),
很 多 物 质 都 有 各 自 具 体 的 声 波 用于产生特定形式的压力脉冲。最基
慢度(下表)。例如纵波通过钢材的 本 的 方 式, 也 是 各 种 声 波 测 井 仪 常
慢度是 187 微秒 / 米(57 微秒 / 英尺)。 用 的 类 型 是 单 极 子 声 源。 单 极 子 声
波快。
于快地层这种情况。
声源的测井仪记录的资料中提取。在
临界折射的纵波在井筒中产生的
如果地层的横波慢度大于井筒流 非常需要这些资料的井段通常也无法
头波以地层纵波速度传播 [3]。根据惠 体的纵波慢度(这种情况被称为慢地 获得。
更斯原理,井壁上每一点上的纵波都 层),纵波在到达井筒时仍然会发生折
单极子声源在测量慢地层横波资
偶极子声源也具有定向性,利用
ཀྵհ
࢙հ
ୁ༹հ
ጻհ ཀྵհ
ୁ༹հ
定向接收器阵列和两个互成 90°的声 源,工程师能够得到井筒周围的定向 横波资料。这种交叉偶极测井方法提 供了最大、最小应力方位,径向速度
‫ڇ‬टጱำᇸ
‫ڇ‬टጱำᇸ
分布和各向异性横波资料的方向。 上世纪 80 年代引入了将快地层中
使用的单极子声源纵波和横波数据与
Jeff Alford Matt Blyth Ed Tollefsen 美国得克萨斯州休斯敦
John Crowe 雪佛龙卡宾达海湾石油有限公司 安哥拉罗安达
Julio Loreto 得克萨斯州Sugar Land
Saeed Mohammed 沙特阿拉伯宰赫兰
随钻声波测井新技术
工程师根据声波测井仪记录的声波资料以更高的安全系数提 高钻井效率,优化完井方式。LWD 声波测井仪是在上世纪 90 年 代中期问世的,能够记录纵波资料,但不能记录所有地层的横波 资料。新型 LWD 声波测井仪能记录以前无法得到的横波资料,工 程师正在利用横波资料优化钻井作业,确定最佳钻进方向,识别 具有更好完井特征的岩层。

斯伦贝谢-测井岩性识别技术与应用(1)共32页

斯伦贝谢-测井岩性识别技术与应用(1)共32页

地层对比
对比深度以补心海 拔深度对齐。第一 道为ECS 计算的铁 元素的含量;第二 道为ECS 计算的钙 元素的含量;第三 道为ECS 计算的岩 性剖面。图中可以 明显看出,白垩系 与侏罗系以一套砂 岩、泥质砂岩为界 ,在钙曲线上表现 为上高下低,是一 个明显的界面。头 屯河组和西山窑组 的界面在铁曲线上 表现为上低下高, 在钙曲线上表现为 上高下低,特征非 常明显,头屯河组 以砂岩、泥质砂岩 结束。
采集NPLC-B
伽马谱
Maximum Tool Dia
3-3/8 in.
Pressure, Temperature
20 kpsi, 175 oC
剥谱处T理ool length, Weight
元素产额 8 ft, 128 lb
Power
50 W
闭合氧环分析
干元素比重
Si, Ca, Fe, S, Ti, Gd
沉积分析
铁元素的变化与沉积的关系
沉积岩中铁的来源主要为母岩的风化、剥蚀产物,其主要以胶体溶液 搬运,在化学和生物化学作用下沉积下来。湖泊是其较重要的沉积场所, 尤其是湖岸沼泽地带更为富集。我国“沼铁矿”常与煤系地层共生。选择 每口井各层系泥岩段铁值的变化做交会图 。
为什么选泥岩段? 1、微量元素含量高。 2、泥岩中的元素是母岩化学风化的产物选择性沉积的结果,所以, 可以利用元素的特征推测沉积环境。 3、砂岩元素的组成主要反映岩石的岩屑、矿物的成分,一定程度上 可反映母岩的性质和搬运距离,而不反映沉积环境对元素聚散的影响。
岩性识别
碳酸盐岩
岩心分析数据表明: XX13~XX20米层段碳 酸盐岩含量最高达75% ;粘土类型以伊蒙间层 为主,个别段含有少量 高岭石和绿泥石。

国外斯伦贝谢电缆测井新技术与应用

国外斯伦贝谢电缆测井新技术与应用
0 0 0 0.072 0
0 0 0.088 0 0 0 0 0 0.0007 0.004 0.007 0.001
0.001 0.005
0 0 0 0.005 0
0 0.141
0 0 0 0 0 0 0.001 0.045 0.006 0.004
0.059 0.078
0 0 0 0 0
0 0 0 0 0 0 0.164 0.482 0.008 0.048 0.020 0.208
孔隙大小
粘度
扩散效应
Schlumberger Private
T1
T2
D
32
核磁共振测量的T2谱与岩石润湿性的相关关系
CMR-A F Total 1995 - SNR
2002
- Real-time
- F NMR - BFV -K
- GeoSteering - Fluid ID
NML
- T2 dist
1968…
-FFI
- K?
Wyman, et al
典型流体的核磁共振特征参数
墨西哥湾流体的核磁特征参数
核磁共振测井的测量信号与储层参数的关系
海相
陆相
海陆过渡相
复杂储层的地层测井解释模型
矿物骨架
孔隙
流体类型
体积模型
骨架(>90%) 流体-水/油气(<10%)
传统的9条曲线三组合测 井
自然伽玛-自然电位-井径:储层 密度-中子-声波:孔隙度 电阻率(深/中/浅):饱和度 岩性密度-核磁
岩心刻度 线性关系

孔隙度小、孔隙结构复杂降低了 常规曲线对岩性、孔隙度响应的 灵敏度;
新的信息重新刻度和标定
斯伦贝谢测井技术的主要发展阶段 -适应油气藏勘探开发的需要

斯仑贝谢成像测井技术

斯仑贝谢成像测井技术

成像测井技术目录1电成像测井 (2)1.1 地层微电阻率扫描成像测井技术[1] (2)1.2 阵列感应成像测井技术 (3)1.3方位电阻率成像测井技术 (4)2声波成像测井 (4)2.1超声波成像测井 (5)2.2偶极横波成像测井 (6)3核磁共振成像测井 (6)4成像测井技术的应用 (7)4.1岩性识别 (7)4.2沉积构造识别[4] (10)4.3沉积微相研究[5] (12)4.4裂缝系统的分析 (14)4.5地应力分析[11] (29)5成像测井的发展趋势 (32)参考文献 (33)成像测井技术测井起源于1927年的法国,当时只有测量视电阻率、自然电位、井温等仪器,经过近80年的发展,如今发展成为以电法测井仪、声波测井仪与核磁共振测井仪等系列的测井仪器。

回顾测井技术的发展历程,测井技术经历了从模拟测井到数字测井、数控测井、成像测井的发展历程。

成像测井技术是美国率先推出的具有三维特征的测井技术,是当今世界最新的测井技术。

它是在井下采用阵列传感器扫描测量或旋转扫描测量,沿井眼纵向、径向大量采集地层信息,利用遥传将采集到的地层信息从井下传到地面,通过图像处理技术得到井壁二维图像或井眼周围某一探测范围内的三维图像。

因此,成像测井图像比以往的曲线表达方式更精确、更直观、更方便。

传统的测井只能获取井下地层井眼周向和径向上单一的信息,它适用于简单的均质地层。

而实际上地层是非均质的,尤其是裂缝性油气层的非均质性最为明显,在地层的周向和径向上的非均质性也非常突出。

这促使人们开始利用非均质和非线性理论来设计测井仪器。

成像测井技术就是在此理论基础上发展起来的,它能获取井下地层井眼周向方位上和径向上多种丰富的信息,能够在更复杂、更隐蔽的油气藏勘探和开发方面有效的解决一系列问题:薄层、薄互层、裂缝储层、低孔隙低渗透层、复杂岩性储层评价;高含水油田开发中剩余油饱和度及其分布的确定;固井质量、压裂效果、套管井损坏等工程测井问题以及地层压力、地应力等力学参数的求取等等。

基础研究是石油工程高质量发展基石——斯伦贝谢测井科技发展剖析及启示

基础研究是石油工程高质量发展基石——斯伦贝谢测井科技发展剖析及启示

n stries行业422023 / 08 中国石化基础研究是石油工程高质量发展基石——斯伦贝谢测井科技发展剖析及启示斯伦贝谢(SLB)公司的测井技术一直是当今世界测井技术的前沿,世界上第一套数字测井仪、第一套数控测井仪和第一套成像测井仪都出自斯伦贝谢。

科技是斯伦贝谢最重要的发展基石,斯伦贝谢从建立之初就高度重视基础研究和前瞻研究,斯伦贝谢道尔研究中心在电磁学、地声学、核学等方面的基础研究有力支撑了斯伦贝谢测井技术的发展。

剖析研究斯伦贝谢在基础研究方面的布局经验,可为中国石化石油工程在基础研究和前瞻研究方面“下好先手棋、打好主动仗”提供经验借鉴。

斯伦贝谢基础研究的沿革及特点斯伦贝谢高度重视基础前瞻研究,在公司业务稳定后就设立了研究中心开展基础研究和前瞻研究。

1948年,斯伦贝谢在美国康涅狄格州里奇菲尔德成立了研究中心(后更名为斯伦贝谢道尔研究中心),是斯伦贝谢最早开展基础研究的机构,时至今日仍是斯伦贝谢最重要、核心的研究中心,从最初的4个测井学科研究部门发展成为3个测井研究中心。

构建多层级基础研发体系,设立稳定的基础研究机构。

为保证技术的先进性和前瞻性,斯伦贝谢构建多层级研发体系,从事不同层次的基础研究和前瞻研究,分别设立美国道尔研究中心、英国剑桥研究中心和挪威斯塔万格研究中心,主要研究10~50年内不同技术方向不同层次的石油工程技术的基础研究和前瞻研究:道尔研究中心主要进行传感器、数学和建模、油气藏储层、地球科学、机械学和材料科学、碳捕获与封存、机器人等领域基础研究;英国剑桥研究中心主要开展钻完井技术、流体技术、地震以及岩石力学等方面应用研究;挪威斯塔万格研究中心主要致力于地震图像解释、地表和地下测量数据的自动分析和建模等应用研究。

此外,斯伦贝谢在全球还设有11个技术研发中心(包括北京地球科学中心BGC),主要从事石油工程领域10年内的技术和产品研发。

持续打造高水平基础研究团队。

道尔研究中心基础研究团队由来自全球多个国家的科学家和工程师组成,多数都已拿到博士学位,并且具备多年相关行业研究经验。

斯伦贝谢-测井岩性识别技术与应用(1)32页PPT文档

斯伦贝谢-测井岩性识别技术与应用(1)32页PPT文档

井眼流C体o:nveyanc任e 何流体 仪器尺E M 寸Ca:S ximum T5o.0oilnDOia. D. 长度: 6.6 ft Pressure, Temperature
Maximum Internal Temp
最大温T度oo: l length3,50WoeFi(gh1t 75 oC) 最大压M M 力ain:xim imuummHH2o0ol,el0e0SS0izipzeesi
斯伦贝谢 数据与咨询服务
2019.02.21
主要内容
ECS原理及仪器 ECS资料用于岩性识别 ECS资料用于地层对比 ECS资料用于沉积分析 DecisionXpress简介
ECS 的伽马能谱 非弹性散射与俘获
Log Scale
Gd
H
Si
Fe
Cl In e la s tic 非弹性散射
501
彩501井岩性识别图版(Fe-Si-clay)
横轴为硅曲线,纵轴为铝曲线 ,Z轴为铁曲线,图中彩色点 由蓝到红的变化,表示铁值由 小到大的变化,反映岩性由砂 岩到泥岩的变化。图中右下角 的点为煤层的反映。
地层对比
从ECS 结果可以看出 :以2892m为 界,上部地层 铁含量大于下 部地层;钙含量 大于大于下部 地层。上部铝 (泥质)含量 较高,下部相 对较低,薄砂 层发育。
0
50
100
150
200
250
ECS 仪器和数据处理流程
6.6 ft
AmBe Source
BGO Crystal and PMT
Boron Sleeve
Electronics Heat Sink
Internal Dewar Flask
测速:

大斜度水平井生产测井技术(斯伦贝谢)

大斜度水平井生产测井技术(斯伦贝谢)

大斜度/水平井生产测井技术Schlumberger Private斯伦贝谢Schlumberger Private水平井生产所面临的挑战•初期产量较高•含水上升快•产量递减快•产液剖面测量难•井段产液不均匀•措施作业难•有效期较短…主要难点:¾井下多相流态复杂¾产液剖面测量仪器¾仪器传输方式Schlumberger Private油水均匀混合 速度剖面光滑 持率线性变化 单相水在底部,分散相油在顶部速度和持率变化剧烈水有可能回流分层流动,油水分异呈单相井斜微变,相速度和持率剧变井斜<20°井斜20°~85°井斜85°~95°复杂多相流流态-油水两相流试验Schlumberger Private水平井产液剖面测量-流体扫描成像Flow Scanner具有5个微转子测量分层流速,6对光学和电阻探针测量分层三相持率,实时监测数据质量Schlumberger PrivateFlow Scanner* 仪器示意图H y dra u l i c a c t u a t o r F l ow S c a n n e r *4 MS5 O P、5E P1 mi n i s p i n n e r , 1o p t i c a l p r o b e , 1e l e c t r i c a lp r o b e Minispinner cartridgewith integrated one-wire detectorFluid local velocityOptical GHOST*probesGas holdupElectrical FloView*probesWater holdup5 ft11 ftSchlumberger PrivateFlow Scanner* 流速传感器相速度-Minispinner最新技术;5个微型转子流量计垂直于井轴方向分布; 直接测量气相速度;电动短节扫描转子流量计,精确测定相速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新的信息重新刻度和标定
斯伦贝谢测井技术的主要发展阶段 -适应油气藏勘探开发的需要
1990年以前
1990年-2000年 2000年-2006年
常规三组合
PeX+元素 声、电成像
扫描 Scanner 系列
SonicScanner MR/RtScanner
2006年-2015年
扫描 Scanner系 列+无化学源新
电缆测井新技术与应用
基于传统“三组合”测井的储层测井解释模型
油气 骨架 粘土

W体水a积te模r型 骨架(75%-85%) 流体-水/油气(15%-25%)
传统的9条曲线三组合 测井
自然伽玛-自然电位-井径:储 层
油气 密度-中子-声波:孔隙度
电阻率(深/中/浅):饱和
粘土

岩性密度/介电/核磁
元素能谱测井的原理和过程– 矿物组份和总有机碳量化
将元素干重曲线处理 解释得到矿物组份、 骨架特征参数和总有 机碳含量(TOC)
最新元素测井仪器 - 岩性扫描测井 LithoScanner
仪器设计的创新与突破 高性能的中子发生器(PNG),其输出中子 速度高达每秒3×108个,是普通中子管的2 倍、化学源的8倍以上 掺铈溴化镧(LaBr3:Ce)大晶体探测器, 精度比锗酸铋(BGO)探测器提高两倍以上, 在不牺牲光谱分辨率条件下处理超过每秒 2,500,000计数的计数率,同时高低温性能 优越 改善了原有元素测量精度和准确度
海相
陆相
海陆过渡相
复杂储层的地层测井解释模型
矿物骨架
孔隙
流体类型
体积模型
骨架(>90%) 流体-水/油气(<10%)
传统的9条曲线三组合测 井
自然伽玛-自然电位-井径:储层 密度-中子-声波:孔隙度 电阻率(深/中/浅):饱和度 岩性密度-核磁
岩心刻度 线性关系

孔隙度小、孔隙结构复杂降低了 常规曲线对岩性、孔隙度响应的 灵敏度;
• 连续TOC测量 • 非区域性经验公式
溴化镧(LaBr3:Ce)和锗酸铋(BGO)探测器性能对比
溴化镧(LaBr3:Ce)的温度性能明显好于锗酸铋(BGO)探测器。
岩性扫描测井LithoScanner处理解释流程
• TOC总有机碳含量
常见矿物的元素测井响应参数
Quartz Orthoclase Na-spar Ca-spar Calcite/Aragonite Dolomite Ankerite (Webmineral) Siderite Kaolinite Illite Smectite Chlorite Glauconite Muscovite Pyrite Anhydrite/Gypsum Hematite Augite Ilmenite
主要流体
• 渗透率
束缚流体
0.1 1 10 100 T2 (msec)
1000
核磁共振测井在复杂油气评价中的应用
可动水
骨架
• 孔隙度 • 孔隙尺寸大小分布
? • 流体识别
• 渗透率
毛管 束缚水
油气
粘土 束缚水
斯伦贝谢核磁共振
MRX 2004
Schlumberger MRX/LWD/ CMR+
仪器的发展史
- MRF
Hydrocarbon
Character
- NMR Based
Saturation
- Viscosity
- Deep Reading
ห้องสมุดไป่ตู้
CMR-Plus - Fast Logging
2000
- New Answers
- Faster
CMR-200 - DMR, HiRes
1997
- EPM
ProVISION
Elements from Spectroscopy
Carbon Si, MNCaa,,inMMneg,,PrS,a,eFltsce., K,
Total Carbon (TC)
-
Total Inorganic Carbon (TIC)
=
Total Organic Carbon (TOCj)
非弹谱测量总碳
测井
Matrix岩性识别 骨架 含水饱和度
孔隙度和孔隙结构
流体识别
岩心刻度
对常规储层来说,地层组分含量与常规测井响应之间基本都是线性关系,
适合体积模型(四性关系符合阿尔奇公式的理论基础)
常规“三组合”测井响应特征和“四性”关系评价思路
复杂油气藏储层的地层特征和对测井技术的挑战
中国典型复杂油气藏地层常规三组合测井曲线特征
0 0 0 0.043 0
0 0 0 0.144 0.395 0.213 0.194 0 0.001 0.005 0.013 0.007
0.005 0 0
0.294 0
0.157 0
0 0 0 0 0.004 0.129 0.053 0 0.001 0.012 0.020 0.048
0.021 0.001
有机质的存在降低了常规曲线对 孔隙度响应的灵敏度;
有机质和重矿物的存在降低了常 规曲线对岩性响应的灵敏度;
高束缚水饱和度、有机质和黄铁 矿的存在降低了常规曲线对油气 响应的灵敏度;
地层组分与常规测井响应之间的 线性关系程度减弱;
如何进行有效储层和产层识别? 如何量化储集空间和含油气饱和
度? 复杂的数学和体积模型问题需要
0.467
0.4
0.132
These elemental weight fractions are used to convert elements to minerals
元素能谱测井的原理和过程– 总有机碳(TOC)解释模型
Elements from Spectroscopy
Carbon Si, MNCaa,,inMMneg,,PrS,a,eFltsce., K,
• 通过能谱分析获取具有特定稳定特 征的元素产额
• 元素产额的氧闭合处理确定元素干 重
• 基于元素干重定量矿物组份含量
产额
伽马射线能量
非弹性碰撞(Inelastic Collision)- 快中子
高能中子(能量> 1 MeV) 在与矿物非弹性碰撞过程中失去大量能量. 这些 能量传递到矿物原子核中的中子/质子中并使其处于激发状态,并通过诱 发伽马射线使能量快速衰减。每种处于激发状态的原子核具有特定的诱发 伽马射线能谱特征(非弹谱)。
硅、钙、铁、硫、钛、钆、氯、钡、氢、镁 可直接测量更多的元素
碳、铝、钾、锰、钠、铜、镍、氧 精细矿物剖面与总有机碳TOC 改善安全性和作业效率 无需化学源 比ECS测速快两倍 探测器无需冷却装置,175℃耐温
18
更小外径(4.5”),最小井眼5.5”
元素能谱测井的原理和过程– 矿物组份解释模型
各种矿物的元素干重特征值
石英 钾长石斜长石方解石 白云石伊利石 蒙脱石绿泥石黄铁矿 粘土 含量 含量 含量 含量 含量 含量 含量 含量 含量 总量
LithoScanner岩性扫描测井非电法含油饱和度
Shc
=
TOC ·rma ·(1 rhc ·Xhc ·Ø t
Ø t)
TOC, rma Øt Xh rhc
总有机碳、骨架密度 总孔隙度 HC 与 C 重量百分比转换系数(~ 0.85) 油气密度。轻质油~ 0.8; 沥青 ~ 1.1
非弹谱(INELASTIC)
俘获谱(CAPTURE)
首先测量独立的中子诱发伽马 非弹谱和俘获谱数据
元素能谱测井的原理和过程– 剥谱
非弹谱(INELASTIC)
俘获谱(CAPTURE)
将每种特定元素的特征谱 从总谱中分离出来得到每 种元素的产额
元素能谱测井的原理和过程– 氧闭合
将每种元素的产额转换 成元素干重曲线
0 0 0 0.072 0
0 0 0.088 0 0 0 0 0 0.0007 0.004 0.007 0.001
0.001 0.005
0 0 0 0.005 0
0 0.141
0 0 0 0 0 0 0.001 0.045 0.006 0.004
0.059 0.078
0 0 0 0 0
0 0 0 0 0 0 0.164 0.482 0.008 0.048 0.020 0.208
孔隙大小
粘度
扩散效应
Schlumberger Private
T1
T2
D
32
核磁共振测量的T2谱与岩石润湿性的相关关系
三组合 LithoScanne+CM R+ADTScanner
2015年以后
Scanner+…
高分辨率 (高频测量) QuantaGeo/NMR
常规油气藏---低孔低渗油气藏---致密油气藏---页岩油气藏---CBM/可燃冰气藏 现在。。。
复杂油气藏地层评价的“新三组合”测井新技术
骨架
孔隙
白云石、方解石
核磁(NMR)测井简介
NMR核磁信号来源于孔隙流体中氢原子(极化、弛豫)
基于T2谱的两个直接测量信息:
• 核磁总孔隙度(f TCMR) • 孔隙大小(T2)
T2 谱分布
孔隙尺寸
0.1 1 10 100 T2 (msec)
1000
基于f TCMR 和 孔隙尺寸可以计算的信息:
• 自由流通孔隙度
自由流体截止值 (例如:33 msec 砂岩)
CMR-A F Total 1995 - SNR
2002
- Real-time
- F NMR - BFV -K
- GeoSteering - Fluid ID
相关文档
最新文档