蛋白质合成过程
蛋白质合成的基本过程

蛋白质合成的基本过程蛋白质合成是细胞内基本的生物化学过程之一。
蛋白质是细胞内最重要的生物大分子之一,它们在细胞的结构、功能和代谢中发挥着至关重要的作用。
蛋白质由一种或多种氨基酸经过合成而成,合成蛋白质的过程称为蛋白质合成。
本文将介绍蛋白质合成的基本过程。
蛋白质合成的基本过程可以分为两个主要的步骤:转录和翻译。
一、转录转录是指在细胞核中,由DNA模版合成mRNA的过程。
转录是蛋白质合成的第一步,它在细胞核内进行。
转录的基本过程包括下列几个步骤:1. DNA的解旋:DNA双链在转录起始点附近被解旋,形成一个转录气泡。
气泡中包含有相关的转录因子和RNA聚合酶。
2. RNA的合成:DNA的一个链上的碱基按照与其互补的规则与mRNA的核苷酸配对。
形成的mRNA链被RNA聚合酶逐渐合成。
3. 剪切和修饰:产生的原始mRNA包含着不仅的外显子和内含子,经过剪切和修饰过程,最终形成只包含外显子的成熟mRNA。
二、翻译翻译是指在细胞质中,由mRNA的序列指导tRNA转运氨基酸,最终合成蛋白质的过程。
翻译是蛋白质合成的第二步,它在细胞质中进行。
翻译的基本过程包括下列几个步骤:1. 启动子的识别:mRNA与小核(ribosome)的结合,通过特定序列的启动子的识别,从而确定翻译的起始位点。
2. 肽链的合成:在rRNA的作用下,tRNA带着氨基酸与mRNA的密码子配对,形成肽键,合成新的肽链。
此过程一直延续直到遇到停止密码子为止。
3. 多肽链的转运:合成的多肽链依次从小核中释放出来,并在细胞质中经过进一步的修饰和折叠,发挥其特定的生物学功能。
总结:蛋白质合成的基本过程包括转录和翻译两个步骤。
在转录过程中,DNA模版被转录成mRNA,并经过剪切和修饰生成成熟mRNA。
而在翻译过程中,mRNA的信息被转换成氨基酸序列,最终合成蛋白质。
蛋白质合成是细胞内不可或缺的生物化学过程,对于细胞的正常功能和生存至关重要。
了解蛋白质合成的基本过程有助于我们更好地理解细胞内的生物学活动。
蛋白质的合成过程

核糖体的结构
1
核糖体由大亚基和小亚基组成,大亚基含有结合 mRNA的位点,小亚基含有肽酰-tRNA的结合位 点。
2
核糖体大亚基含有三个RNA分子和几十个蛋白质 分子,这些分子协同作用,确保mRNA的正确翻 译。
3
核糖体小亚基含有两个RNA分子和一个蛋白质分 子,这些分子共同作用,确保肽酰-tRNA的正确 结合。
02
DNA转录为RNA
DNA转录的启动
启动子识别
转录起始前,RNA聚合酶需要识别 DNA上的启动子序列,这是转录起始 的信号。
磷酸二酯键的形成
转录起始复合物中的RNA聚合酶催化 DNA的磷酸二酯键形成,标志着转录 的开始。
形成转录起始复合物
RNA聚合酶与启动子结合后,招募转 录因子和其他辅助蛋白,形成完整的 转录起始复合物。
THANKS FOR WATCHING
感谢您的观看
核糖体的组装过程需要消耗能 量,这个过程也是由ATP提供 的。
核糖体的组装完成后,就可以 开始蛋白质的合成过程了。
04
氨基酸的活化
氨基酸的特化
氨基酸的种类
自然界中存在20种氨基酸,每种 氨基酸具有独特的化学结构和性
质,是蛋白质多样性的基础。
氨基酸的生物合成
部分氨基酸可在体内由其他简单物 质合化学特 性和空间构象,决定了蛋 白质的多样性和功能。
蛋白质合成的场所
核糖体
核糖体是细胞内蛋白质合成的场所,由大、小亚 基组成。
细胞质
细胞质中的核糖体附着在内质网或游离于细胞质 中,进行蛋白质合成。
线粒体与叶绿体
部分蛋白质在线粒体或叶绿体内合成,这些场所 具有自身遗传物质和蛋白质合成体系。
氨基酸的分解代谢
DNA复制和蛋白质合成的过程

DNA复制和蛋白质合成的过程DNA复制和蛋白质合成是生物体内两个重要的分子合成过程,它们在维持生命活动和遗传信息传递中起着关键作用。
本文将分别介绍DNA复制和蛋白质合成的过程。
一、DNA复制的过程DNA复制是指在细胞分裂过程中,DNA分子通过复制产生两个完全相同的复制体的过程。
1.1 起始点识别与分离DNA复制的起始点通常由多个起始蛋白质识别并结合,形成起始复合物。
起始复合物的结合导致DNA双链在该区域发生局部解旋,形成复制泡(replication bubble),并使DNA双链分离成两条单链。
1.2 主要复制酶合成新链在复制泡的两条单链DNA上,主要复制酶DNA聚合酶α将相应碱基与模板DNA互补配对,并通过糖苷键连接新合成的核苷酸。
DNA聚合酶α负责合成RNA嵌合体(RNA primer),为DNA链延伸提供起始引物。
1.3 DNA链延伸与连接DNA链延伸过程中,DNA聚合酶δ和ε结合到DNA聚合酶α合成的RNA嵌合体上,开始合成新的DNA链。
同时,在DNA链的3'末端,DNA聚合酶α继续合成新的RNA嵌合体,并在链延伸过程中逐渐被DNA聚合酶δ和ε替代。
1.4 合成链的修复DNA聚合酶在合成过程中可能会发生错误,但细胞具有一系列修复机制可以修复这些错误。
最常见的修复机制是核苷酸切除修复和错配修复。
1.5 DNA复制的终止当DNA聚合酶复制至DNA链的末端时,由于核苷酸缺失,无法进一步合成。
此时,DNA连接酶将两个DNA片段连接在一起,形成连续的DNA双链。
二、蛋白质合成的过程蛋白质合成是指在细胞中,根据DNA上编码的基因信息,通过转录和转译过程合成蛋白质的过程。
2.1 转录转录是指在细胞核中,DNA分子作为模板,由RNA聚合酶将DNA上的信息转录成RNA分子(mRNA)。
转录包括起始、延伸和终止三个阶段。
在转录起始阶段,RNA聚合酶通过识别启动子区域,并与DNA双链分离形成转录泡。
蛋白质合成过程解析

蛋白质合成过程解析蛋白质合成是生物体内一个重要的生化过程,是细胞利用遗传信息合成所需蛋白质的过程。
在这个过程中,信息由DNA转录成RNA,然后由RNA转化为具有特定氨基酸序列的蛋白质。
本文将对蛋白质合成的基本原理、转录和翻译过程进行详细解析。
一、蛋白质合成的基本原理蛋白质是由氨基酸组成的长链状分子,在生物体内具有各种重要功能。
蛋白质合成由两个主要步骤组成:转录和翻译。
转录是指DNA的一段特定区域在细胞核内被RNA聚合酶酶解,生成相应的mRNA分子的过程。
这一过程的主要目的是将DNA中的遗传信息转录到mRNA中,为蛋白质合成提供模板。
翻译是指在细胞质中,通过mRNA和tRNA的配对作用,氨基酸按照一定的顺序连接起来,形成具有功能的多肽链的过程。
这一过程对应的基因序列区域被称为编码区,其中的密码子(三个碱基)与特定的氨基酸相对应。
二、1. 转录过程转录是蛋白质合成的第一步。
在这一过程中,DNA双螺旋结构的一段特定区域在细胞核中被RNA聚合酶酶解,生成与该DNA区域相应的mRNA分子。
转录过程可分为三个阶段:起始、延伸和终止。
起始:RNA聚合酶结合到DNA的起始点,形成一个由DNA双链分离的转录起始复合物。
延伸:RNA聚合酶沿着DNA模板链向下滑动,并以3'→5'方向合成mRNA链。
在这一过程中,DNA的非模板链完全没有作用。
终止:当RNA聚合酶到达终止序列时,mRNA链与DNA模板链分离,完成转录过程。
2. 翻译过程翻译是蛋白质合成的第二步,同时也是转录的产物mRNA被转化为蛋白质的过程。
这一过程主要发生在细胞质中的核糖体上,通过mRNA和tRNA的互补配对,将氨基酸按照一定的顺序连接起来。
翻译过程可分为三个阶段:启动、延伸和终止。
启动:mRNA的起始密码子(通常为AUG)与与之匹配的tRNA 上的氨基酸结合。
这一复合物附着在核糖体的A位。
延伸:tRNA上的氨基酸被酶解出来,连接到核糖体上的前一个氨基酸上。
蛋白质合成的细胞过程

蛋白质合成的细胞过程蛋白质合成是生物体维持生命所必需的过程之一,在所有细胞中都十分重要。
细胞需要大量的蛋白质来构建细胞和组织,也需要蛋白质完成许多重要的生物学功能,例如递质分泌、酶催化等。
蛋白质合成是一个复杂的过程,涉及到许多不同的细胞器和分子,其中的一个重要角色是核糖体。
核糖体是细胞内的一个小器官,其主要作用是将mRNA转换成蛋白质。
这个过程需要一系列的生物学分子和能量。
在此我们将对蛋白质合成的过程进行详细的介绍。
mRNA的转录蛋白质合成的第一步是转录,它是将DNA中的信息转换成mRNA的过程。
这个过程发生在细胞核中,通过DNA上的RNA聚合酶启动。
RNA聚合酶会将一条基因转写成mRNA,这个过程需要一定的特异性。
一旦RNA聚合酶开始转录基因,mRNA链就会不断生长,直到到达终止密码子。
在这样的情况下,mRNA链被释放出来,然后离开细胞核进入细胞质。
翻译和起始序列mRNA链进入细胞质后,开始翻译成蛋白质。
这个过程需要一组不同的生物学分子,其中最重要的是RNA酶和tRNA。
在翻译的过程中,mRNA链中的三个碱基(序列)会被识别并与tRNA中的互补三个碱基(称为反式三联体或三核苷酸)配对。
这样的配对将使tRNA分子上携带的特定氨基酸与已经存在于肽链中的氨基酸相互连接。
这个过程一直持续到翻译到终止密码子时。
在蛋白质合成的起始序列中,每个蛋白质都有一个名为Met的氨基酸。
这个氨基酸是整个氨基酸序列中的第一个,被称为起始氨基酸。
它的加入是由一个特殊的tRNA分子,称为起始tRNA,完成的。
翻译周期在翻译的周期内,tRNA分子会依次进入核糖体的A位和P位。
A位是接受新的氨基酸的地方,P位是组装肽链的地方。
在tRNA分子被设在A位时,新的氨基酸会从氨基酰tRNA合成酶(或称为合成酶)转移到它的末端。
合成酶负责将氨基酸和tRNA作为一种复合物组合,并将复合物转移到空tRNA处,从而使氨基酸能够和肽链相互连接。
细胞内蛋白质合成的过程

细胞内蛋白质合成的过程细胞内蛋白质合成是一个复杂的过程,由多个步骤和分子参与。
本文将详细介绍蛋白质合成的过程,包括转录和翻译两个主要步骤,并探讨其在细胞功能和生命活动中的重要性。
一、转录(Transcription)转录是指DNA中特定的基因序列被转录酶(RNA聚合酶)复制为单链RNA的过程。
转录起始于启动子区域,其中的转录因子会结合到DNA上,引导RNA聚合酶结合并开始转录。
在转录的过程中,RNA聚合酶在DNA上按照配对碱基原则合成RNA链,形成一个称为前体mRNA(pre-mRNA)的分子。
前体mRNA包含了由外显子和内含子组成的序列,内含子需要经过剪接作用去除,生成成熟的mRNA分子。
二、翻译(Translation)翻译是指mRNA上的遗传信息被转化为氨基酸序列的过程。
翻译过程发生在细胞质中的核糖体(ribosome)中。
核糖体由核糖体RNA (rRNA)和蛋白质组成,具有催化翻译反应的功能。
翻译的起始需要一个起始密码子(AUG),它指示翻译的开始,并使特定的甲硫氨酸(methionine)被放置在新合成的多肽链的起始端。
随后,核糖体在mRNA上滑动,每次读取三个核苷酸,对应一个特定的氨基酸。
翻译过程中,tRNA(转运RNA)作为载体将氨基酸带到核糖体上,并与mRNA上的密码子完全配对。
随着核糖体的读取,氨基酸逐渐连接成一条多肽链。
当核糖体到达mRNA的终止密码子时,翻译结束,多肽链被释放,并形成一个成熟的蛋白质分子。
细胞内蛋白质合成的重要性细胞内蛋白质合成是生命体内的一个基本过程,对维持细胞的结构和功能发挥着重要作用。
首先,蛋白质是细胞的基本组成部分,包括细胞膜、细胞器、细胞骨架等都是由蛋白质构成的。
蛋白质的合成能够维持细胞的完整性,保证细胞的正常结构和功能。
其次,蛋白质也参与了细胞代谢和信号传导等重要生物学过程。
例如,酶是一类催化反应的蛋白质,参与了细胞内各种代谢途径的调节和催化。
激素也是一类信号传导蛋白质,调控细胞的生长、分化和发育等重要生理过程。
蛋白质合成过程

蛋白质合成过程
(二)大肠杆菌中肽链合成的起始
1、起始密码子(起始信号):细菌中多肽的合成并不是从 mRNA5’端的第一个核苷酸开始的。被转译的头一个密码子往 往位于5’端的第25个核苷酸以后。mRNA上的起始密码子常为 AUG,少数情形下也为GUG。
对起始密码子附近的核苷酸序列进行分析后发现,在距 离起始密码子上游约10个核苷酸的地方往往有一段富含嘌呤 的序列(称为Shine-Dalgarno序列,简称SD序列)。它与 16SrRNA3’端的核苷酸序列形成互补。
下图为一些原和生物的SD序列和SD序列于16SrRNA3’端了核糖体上的肽基部位(P位),空着的氨酰tRNA部位 (A位)准备接受下一个氨酰tRNA。至此肽链延长的准备工作已经完成。
起始复合物形成过程中。起始因子IF2具有GTP酶活性,而IF1起协调IF2和促 进IF3离开小亚基的作用。
其起始过程的图解如下:
蛋白质合成过程
30S复合物形成:
蛋白质合成过程
1、 活化 : AA-AMP-E复合物的形成
AA+ATP+E Mg 2+ AA-AMP-E +PPi
Mn 2+
O
=-
E-CR1-C-O ~P-O- CH2 腺嘌呤
NH2 O OH
O
高能酸苷键
2、 转移
OH OH
AA-AMP-E+ tRNA
氨酰-tRNA +AMP+E
2-OH连接AA,影响下一步 肽键形成
起始复合物的形成可分三个步骤进行:首先始30S的亚基与起始因子3(IF3) 结合以阻止30亚基与50S亚基重新结合;然后30S亚基与mRNA结合成 30S·mRNA·IF3复合物(组分比例1:1:1)。第二步是30S·mRNA·IF3与已经含有结 合态GTP及甲酰甲硫氨酰-tRNA的起始因子IF1和IF2结合形成更大的复合物。第三 步是此复合物释放出IF3后就与50S大亚基结合,同时与IF2结合的GTP水解生成 GDP及磷酸释放出来。IF1及IF2也离开此复合物,形成具有起始功能的起始复合物, 即30S·mRNA·50S·fMet-tRNA。
蛋白质合成过程

蛋白质合成过程蛋白质是构成生物体的重要组成部分,参与了生物体内的各种生命活动。
蛋白质的合成是一个复杂而精密的过程,需要经过多个步骤和参与多种生物分子的协同作用。
本文将介绍蛋白质合成的整个过程,包括转录和翻译两个主要阶段,带您深入了解蛋白质合成的奥秘。
一、转录阶段转录是蛋白质合成的第一步,主要发生在细胞核内。
在转录过程中,DNA的信息被转录成RNA,其中mRNA(信使RNA)是编码蛋白质的模板。
以下是转录阶段的具体步骤:1.1 DNA解旋:在转录开始之前,DNA的双螺旋结构需要被解开,使得RNA聚合酶能够访问DNA上的基因信息。
1.2 RNA合成:RNA聚合酶按照DNA模板的信息合成mRNA分子。
RNA聚合酶会在DNA上“读取”信息,然后在合成RNA链时将对应的核苷酸加入到新合成的RNA链中。
1.3 RNA修饰:在合成完成后,mRNA分子会经过一系列修饰过程,包括剪切、剪接和加上帽子和尾巴等修饰,以确保mRNA的稳定性和功能性。
1.4 mRNA运输:修饰完成的mRNA会通过核孔运输到细胞质中,为下一步的翻译提供模板。
二、翻译阶段翻译是蛋白质合成的第二步,主要发生在细胞质中的核糖体上。
在翻译过程中,mRNA上的密码子被翻译成氨基酸序列,从而合成特定的蛋白质。
以下是翻译阶段的具体步骤:2.1 起始子寻找:翻译的起始子AUG会被识别,标志着翻译的开始。
AUG对应的氨基酸是甲硫氨酸。
2.2 氨基酰-tRNA结合:氨基酰-tRNA与mRNA上的密码子配对,带来对应的氨基酸。
tRNA上的抗密码子与mRNA上的密码子互补配对,确保正确的氨基酸被带入。
2.3 肽键形成:氨基酸通过肽键连接成多肽链,形成蛋白质的主干结构。
2.4 翻译终止:当翻译到终止子时,翻译复合物会停止合成,释放出新合成的多肽链。
2.5 蛋白后修饰:新合成的多肽链可能需要进一步的后修饰,如蛋白质的折叠、磷酸化、甲基化等,以获得最终的功能性蛋白质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、氨基酸的活化
在进行合成多肽链之前,必须先经过活化,然后再与其特异的tRNA结合,带到mRNA相应的位置上,这个过程靠tRNA合成酶催化,此酶催化特定的氨基酸与特异的tRNA相结合,生成各种氨基酰tRNA.每种氨基酸都靠其特有合成酶催化,使之和相对应的tRNA结合,在氨基酰tRNA合成酶催化下,利用ATP供蛋白质合成能,在氨基酸羧基上进行活化,形成氨基酰-AMP,再与氨基酰tRNA合成酶结合形成三联复合物,此复合物再与特异的tRNA作用,将氨基酰转移到tRNA的氨基酸臂(即3'-末端CCA-OH)上(图1)。
原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。
而真核细胞没有此过程。
2、翻译起始
真核的翻译起始比原核更复杂,因为:
①真核mRNA的二级结构更为多样和复杂。
真核mRNA是经过多重加工的,它被转录后首先要经过各种加工才能从细胞核进入细胞质中,并形成各种各样的二级结构。
一些mRNA 与几种类型的蛋白质结合在一起形成一种复杂的颗粒状,有时称核糖核蛋白粒(ribonucleoprotein particle),在翻译之前,它的二级结构必须改变,其中的蛋白质必须被去掉。
②核糖体需要扫描mRNA以寻找翻译起始位点。
真核mRNA没有SD序列来帮助识别翻译起点,因此核糖体结合到mRNA的5’端的帽子结构并向3’端移动寻找翻译起点。
这种扫描过程很复杂,知之甚少。
真核翻译起始用到的起始因子(eIF)至少有9种,多数的功能仍需进步研究。
eIF3的功能类似IF3,防止核糖体大小亚基过早结合,eIF2-GTP类似与IF2-GTP,促进起始aa-tRNA、mRNA与小亚基的结合,eIF4能识别并结合在mRNA的帽子结构上。
起始复合物的形成过程:
(1)40S小亚基-(eIF-3)结合到(eIF-2-GTP)-Met-tRNAi Met复合物上形成40S前起始复合物(40S preinitiation complex)。
这里,eIF-2-GTP介导了起始tRNA与40S小亚基的结合,然后eIF-2-GDP通过eIF-2B(鸟苷酸释放蛋白)再生。
此时,由于eIF-3和40S小亚基相结合,eIF-6和60S大亚基相结合,所以小亚基暂时还不能与大亚基相结合。
(2)40S前起始复合物结合到mRNA5’端形成40S起始复合物。
消耗1个ATP。
该过程需要ATP,另外还需要一些起始因子(eIF-4A、eIF-4B、eIF-4F、eIF-1)。
eIF-4F能识别并结合在mRNA5’端的帽子结构上,eIF-4A(一种ATPase)和eIF-4B(一种helicase)改变mRNA的二级结构。
(3)40S起始复合物向3’端移动扫描mRNA寻找适当的起始密码子(通常是5’端附近的AUG),直到Met-tRNAiMet与之配对。
除酵母外的高等真核生物:GCCGCCpurCCAUGG (4)60S大亚基与40S复合物结合形成80S起始复合物,eIF2-GDP、eIF3离开
此时,60S大亚基上的eIF-6已经被释放。
在形成复合物过程中,在eIF-5参与下,eIF-2-GTP 水解成eIF-2-GDP。
eIF-2,eIF-3,eIF-4A,eIF-4B,eIF-4F,eIF-1从起始复合物上释放。
3、延伸
(1)入位
真核生物入位需要延伸因子为EF-1,它是多亚基蛋白,同时具有EF-Tu、EF-Ts的功能。
50kD的延伸因子eEF-1α-GTP与aa-tRNA结合,引导aa-tRNA进入A位点后,eEF-1α-GTP 水解,随后eEF-1α-GDP离开核糖体,在eEF-1β、eEF-1γ的帮助下,eEF-1α-GDP再生为eEF-1α-GTP。
在真菌(如酵母)中,需要另一个延伸因子eEF-3与eEF-1α共同引导aa-tRNA的入位。
(2)肽键形成(转肽)
核糖体大亚基的肽酰转移酶活性催化A位点α-氨基亲核攻击P位点的aa的羧基,在A位
点形成一个新的肽键。
P位点上卸载的tRNA从核糖体上离开
(3)核糖体移位
移位需要一个100kD的延伸因子eEF-2-GTP。
eEF-2-GTP结合在核糖体未知的位置上,GTP水解成释放的能量使核糖体沿mRNA移动一个密码子的位置,然后eEF-2-GDP离开核糖体。
4、终止
真核细胞中有两个释放因子eRF-1和eRF-3(GTP结合蛋白)介导终止。
当GTP结合到eRF-3后它的GTPase活性就被激活,eRF-1和eRF-3-GTP形成一个复合物,当UAG,UGA,UAA进入A位点时,该复合物就结合到A位点上,接着GTP水解促使释放因子离开核糖体,mRNA被释放,核糖体解体成大小亚基,新生肽在肽酰转移酶催化下被释放。
5、多肽链合成后的加工修饰
1.一级结构的加工修饰
⑴N端甲酰蛋氨酸或蛋氨酸的切除:N端甲酰蛋氨酸是多肽链合成的起始氨基酸,必须在多肽链折迭成一定的空间结构之前被切除。
其过程是:①去甲酰化;②去蛋氨酰基。
⑵氨基酸的修饰:由专一性的酶催化进行修饰,包括糖基化、羟基化、磷酸化、甲酰化等。
⑶二硫键的形成:由专一性的氧化酶催化,将-SH氧化为-S-S-。
⑷肽段的切除:由专一性的蛋白酶催化,将部分肽段切除。
2.高级结构的形成
⑴构象的形成:在分子内伴侣、辅助酶及分子伴侣的协助下,形成特定的空间构象。
⑵亚基的聚合。
⑶辅基的连接。
3.靶向输送
蛋白质合成后,定向地被输送到其执行功能的场所称为靶向输送。
大多数情况下,被输送的蛋白质分子需穿过膜性结构,才能到达特定的地点。
因此,在这些蛋白质分子的氨基端,一般都带有一段疏水的肽段,称为信号肽。
分泌型蛋白质的定向输送,就是靠信号肽与胞浆中的信号肽识别粒子(SRP)识别并特异结合,然后再通过SRP与膜上的对接蛋白(DP)识别并结合后,将所携带的蛋白质送出细胞。
信号肽假说:信号肽位于新合成的分泌蛋白N端。
对分泌蛋白的靶向运输起决定作用。
①细胞内的信号肽识别颗粒(SRP)识别信号肽,使肽链合成暂时停止,SRP引导核蛋白体结合粗面内质网膜;②SRP识别、结合内质网膜上的对接蛋白,水解GTP使SRP分离,多肽链继续延长;③信号肽引导延长多肽进入内质网腔后,经信号肽酶切除。
分泌蛋白在高尔基体包装成分泌颗粒出胞。