排列组合概率

排列组合概率
排列组合概率

1。排列组合:

可“区分”的叫做排列abc P33

不可“区分”的叫做组合aaa C33

用下列步骤来作一切的排列组合题:

(1)先考虑是否要分情况考虑

(2)先计算有限制或数目多的字母,再计算无限制,数目少的字母

(3)在计算中永远先考虑组合:先分配,再如何排(先取再排)

例子:

8封相同的信,扔进4个不同的邮筒,要求每个邮筒至少有一封信,问有多少种扔法?

第一步:需要分类考虑(5个情况)既然信是一样的,邮筒不一样,则只考虑4个不同邮筒会出现信的可能性。

第二步:计算数目多或者限制多的字母,由于信一样就不考虑信而考虑邮筒,从下面的几个情况几列式看出每次都从限制多的条件开始作。先选择,再考虑排列。

5个情况如下:

a. 5 1 1 1:4个邮筒中取一个邮筒放5封信其余的3个各放一个的分法:C(4,1)=4

b.4 2 1 1:同上,一个邮筒4封信,其余三个中间一个有两封,两个有一封:C(4,1) * C(3,1)=12

c. 3 3 1 1: C(4,2) =6

d. 3 2 2 1: C(4,1) * C(3,2) = 12

e. 2 2 2 2 :1

4+12+6+12+1=35种放法

[原创]如何解决排列后的组合问题(大家讨论哦)

很多CDer问的排列组合的问题中最多的是关于排列后的组合问题,这种题目确实很头疼,且考场上时间紧迫,头脑紧张,更没有时间考虑这些问题,所以出错多在此处。

根据我的经验:

如果排列后重新组合一般是两种排列的组合,这时可以看排列中和组合中的两组事务的性质,如果有一方是同质的或者是随机的,则不用重新组合;需要组合的情况只在两者都是异质或者非随机的时候。

例题1:从10个人中取出2个人住进2个屋子,有多少种住法?

解答:C10,2,不用排列

可以这样考虑,取出2个人是随机的,房子没有说有区别,两个随机,所以不用排列其实两个中有一个是随机的,就不用考虑排列了

两个都是有顺序或者编号的才用考虑排列

(这个答案可能不对)

例题2:从10个人中取出2个人住进A、B,2个屋子,有多少种住法?

解答:C10,2,不用排列

这样考虑,从10个中取2个出来,是C10,2,这两个是同质的,没有区别,取哪个放在A中还是B中是没有区别的,所以不用排列。

例题3:从编号1-10的人中取出2个人住进A、B,2个屋子,有多少种住法?

解答:P2,2×C10,2这时需要排列了

例题4:从10个小球中1取出2个放在A,B两个盒子里,有多少种放法?

答案:C10,2

小球同质

例题5:从编号1-10的小球中取出2个放在2个盒子里,有多少种放法?

答案:C10,2

盒子同质

2。概率

加法原则和乘法原则:问自己这个事儿完成了没有?如果完成了就是加法原则,没有完成就是乘法原则。

例子:从北京到上海可以乘飞机(3种方案),轮船(2种方案),或者火车(5种方案),问从北京到上海乘这3种交通工具共几种方案?答:既然任何一个方案都已经到达了上海,这件事儿已经完成了,所以用加法原则:3+2+5=10种

例子:从北京到上海有2条路线,从上海到深圳有5条路线,问从北京出发经由上海到深圳会有多少种路线?答:当你到达上海时还没有到达深圳呢,没有完成,那就乘起来,用乘法原则:2×5=10

3。数论

考试时可以运用歌德巴赫猜想:任何一个大于等于4的偶数都能表达成两个质数和的形式。

******************************************************************************* ***************************

求最大公约数的方法:辗转相除法

辗转相除法就是当你求AB两个数的最大公约数时你先用大数去被小数除,除完得到一个余数,下一步,你用上一步中那个较小的数去被上一步中的余数除,再得到余数,再继续重复这个步骤直到你用一个除数被余数除时余数为0,在最后这一步中的除数就是AB的最大公约数。我会用一个图来表示这个步骤的。大家看图一。

200582221343639184.jpg(大小:11.1 K 下载次数:168)

******************************************************************************* ***************************

AB两数的最大公约数×AB两数的最小公倍数=A×B

******************************************************************************* ***************************

整除,余数,因子数的概念:

如何求一个数共有多少个不同的factor(因子)?

将这个数写成它质因子幂指数相乘的形式,然后将每一个质因子的幂加一,然后彼此相乘,就得到了这个数包括1和它本身在内的所有因子个数:

200582221404585743.jpg(大小:8.3 K 下载次数:140)

******************************************************************************* ***************************

任一个自然数n,它的因子个数如果是偶数的话,那么它的因子个数中有一半儿因子小于根号下的n,有一半儿大于根号下的n。

如果一个自然数m它的因子个数是奇数的话,它就必然是一个完全平方数,且根号下m就是它的一个因子。当你得到m的因子数后,若是a个的话,它所有的因子必然有(a-1)/2个是小于根号下m,有(a-1)/2个大于根号下m。

4。整除和余数的一些概念

被2,4,8整除的特点:

譬如说一个数3472,要知道被2整除余几,就看最后一位2除以2,余几原数3472被2除就余几,能整除则原数也能整除;被4除时,要看后两位72被4除余几,原数被4除就余

几,能整除则原数也能整除;被8除时,要看最后3位472被8除余几,原数被8除就余几,能整除则原数也能被8整除

被3,9整除的特点:

还是举一个例子,3472,把这个数每一位都加起来:3+4+7+2=16,1+6=7,加完以后得的数除以3余几,原数除以3就余几,如果能整除则原数也能被3整除;加完后的数被9除余几,原数被9除就余几。

被6除时:

分别考虑被2,和被3除时的情况

被5除时:

一个数最后一位除以5余几,原数被5除就余几

被11除时:

错位相加再相减。譬如说3472错位相加再相减的过程就是(3+7+1)-(4+2)=5

最后一位数5去除以11,能整除则原数3472就可以被整除,如果不能整除则原数不能被11整除。

******************************************************************************* ***************************

如何凑数?

例子:一个数n被3除余1,被4除余2,被5除余1,问被60除余几?

凑数的原则:(1)从最小数开始;(2)凑后边时要保证前面已经满足的不变化。

(1)从3开始,最小为1:1

(2)保证它的情况下凑被4除余2:当然每次就要加3,加3这么加上去得1+3+3+3=10,10被4除余2

(3)在保证前面的情况下凑被5除余1:在10的基础上每次加上3和4的最小公倍数12,得(1+3+3+3)+12+12+12=46,此时46被5除余1

(4)检查一下,46能被3除余1,被4除余2,被5除余1。用46除以60就得到余数

******************************************************************************* ***************************

5。幂得尾数循环特征

比如说3333^7777和7777^3333比,最后一位谁最大?其实这类问题只和个位数有关。这个问题可以被理解成为3^7777和7^3333比,最后一位是怎么比得的。

每一个数它的n次方都是4个4个循环的:

个位数是1的n次方尾数循环是:1111 1111 1111 1111....

个位数是2的n次方的尾数循环为:2468 2468 2468 2468....

个位数是3的n次方的尾数循环为:3971 3971 3971 3971....

个位数是4的n次方的尾数循环为:4646 4646 4646 4646....

个位数是5的n次方的尾数循环为:5555 5555 5555 5555....

个位数是6的n次方的尾数循环为:6666 6666 6666 6666....

个位数是7的n次方的尾数循环为:7931 7931 7931 7931....

个位数是8的n次方的尾数循环为:8426 8426 8426 8426....

个位数是9的n次方的尾数循环为:9191 9191 9191 9191....

在这道题中,把7777的最后两位除以4,余数是1,我们就知道是3的尾数循环的第一位,也就是3。换句话说3333^7777的最后一位就是3

把3333的最后两位除以4,余1,所以就知道7的尾数循环第一位,是7,所以7777^3333最后一位就是7。

我总结了数学的TRICKS:

1、度量单位不一样,每个数字指代的对象有差别

2、PS题:只求比率,不用求数值;DS题:不求解值,只求个数。

3、长题绕弯,注意前后阅读

4、题目经常有隐含条件:如integer,consecutive,总之,任何一个条件都不是白给的,都得考虑到;

5、有没有过于自信,想当然认为某条件;

每题做完之后,问自己以下:

1、我看清了所问的问题了?

2、单位有没有变化?

3、有没有用到所有的原题文字了?

4、DS题,我有没有单独考虑B?

5、运算中,我有没有少掉了细微的步骤?

高中数学排列组合与概率统计习题

高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) (1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作 为点的坐标,在同一直角坐标系中所确定的不同点的个数是C (A)32(B)33(C)34(D)36 解分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标,不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标,不同点的个数为1163P P g 不同点的个数总数是1111636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真 数,则可以得到不同的对数值的个数为 (A)64(B)56(C)53(D)51 解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 == =,应减去4个 所示求不同的对数值的个数为29287453()C ---=个 (3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生 不能全排在一起,则不同的排法数有 (A )3600(B )3200(C )3080(D )2880 解①三名女生中有两名站在一起的站法种数是23P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是66P ,其中的 三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空743342274534522880A A C A A C A --= (4 )由100+展开所得x 多项式中,系数为有理项的共有 (A )50项(B )17项(C )16项(D )15项 解1000100110011r 100r r 100100100100100100=C )+C )++C )++C --L L

Session 3-permutaiton combination probability 排列组合和概率

1. PERMUTATION Suppose n objects are to be ordered from 1st to nth, each order is called a permutation. Apply the multiplication principle to count the number of permutations of n objects, i.e. n(n-1)(n-2)(n-3)....(3)(2)(1), or n!, called n factorial. e.g. Suppose that 10 students are going on a bus trip, and each of the students will be assigned to one of the 10 available seats. What is the number of possible different seating arrangements of the students on the bus? Notice: n objects should be distinguishable and they are always ordered in a line. If the objects are not ordered in a line but in other shapes, such as a circle or a square, how to calculate the number of permutations? e.g. Five students are going to sit around a table, how many arrangement can there be? (If the relative position of two students is the same, then we view it as one arrangement.) formula: (n-1)! If there are some objects are exactly the same, the number of permutations should be calculated in another way. e.g. How many different five-letter words can be formed when all letters in the word ENTER are used each time. formula: n!/(number of repeated objects)! Suppose that k objects will be selected from a set of n objects, where k<=n, and the k objects will be placed in order from 1st to kth. The number of permutation is n(n-1)(n-2)....(n-k+1). e.g. How many different five-digit positive integers can be formed using the digits 1, 2, 3, 4, 5, 6, and 7 if none of the digits can occur more than once in the integer? 2. Combination Given the five letters A, B, C, D, and E, determine the number of ways of selecting 3 of the 5 letters, but unlike before, you do not want to count different orders for the 3 letters. i.e. Note that n choose k is always equal to n choose n-k

高中数学选修2-3基础知识归纳(排列组合、概率问题)

高中数学选修2-3基础知识归纳(排列组合、概率问题) 一.基本原理 1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。

四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路: ①直接法: ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原

理得出结论。 注意:分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2) 特殊元素优先考虑、特殊位置优先考虑; 例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公 益广告,则共有种不同的播放方式(结果用数值表示). 解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48. 例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少

排列组合概率

1。排列组合: 可“区分”的叫做排列 abc P33 不可“区分”的叫做组合 aaa C33 用下列步骤来作一切的排列组合题: (1)先考虑是否要分情况考虑 (2)先计算有限制或数目多的字母,再计算无限制,数目少的字母 (3)在计算中永远先考虑组合:先分配,再如何排(先取再排) 例子: 8封相同的信,扔进4个不同的邮筒,要求每个邮筒至少有一封信,问有多少种扔法? 第一步:需要分类考虑(5个情况)既然信是一样的,邮筒不一样,则只考虑4个不同邮筒会出现信的可能性。 第二步:计算数目多或者限制多的字母,由于信一样就不考虑信而考虑邮筒,从下面的几个情况几列式看出每次都从限制多的条件开始作。先选择,再考虑排列。 5个情况如下: a. 5 1 1 1:4个邮筒中取一个邮筒放5封信其余的3个各放一个的分法:C(4,1)=4 b.4 2 1 1:同上,一个邮筒4封信,其余三个中间一个有两封,两个有一封:C(4,1) * C(3,1)=12 c. 3 3 1 1: C(4,2) =6 d. 3 2 2 1: C(4,1) * C(3,2) = 12

e. 2 2 2 2 :1 4+12+6+12+1=35种放法 [原创]如何解决排列后的组合问题(大家讨论哦) 很多CDer问的排列组合的问题中最多的是关于排列后的组合问题,这种题目确实很头疼,且考场上时间紧迫,头脑紧张,更没有时间考虑这些问题,所以出错多在此处。 根据我的经验: 如果排列后重新组合一般是两种排列的组合,这时可以看排列中和组合中的两组事务的性质,如果有一方是同质的或者是随机的,则不用重新组合;需要组合的情况只在两者都是异质或者非随机的时候。 例题1:从10个人中取出2个人住进2个屋子,有多少种住法? 解答:C10,2,不用排列 可以这样考虑,取出2个人是随机的,房子没有说有区别,两个随机,所以不用排列其实两个中有一个是随机的,就不用考虑排列了 两个都是有顺序或者编号的才用考虑排列 (这个答案可能不对) 例题2:从10个人中取出2个人住进A、B,2个屋子,有多少种住法? 解答:C10,2,不用排列 这样考虑,从10个中取2个出来,是C10,2,这两个是同质的,没有区别,取哪个放在A中还是B中是没有区别的,所以不用排列。 例题3:从编号1-10的人中取出2个人住进A、B,2个屋子,有多少种住法? 解答:P2,2×C10,2这时需要排列了 例题4:从10个小球中1取出2个放在A,B两个盒子里,有多少种放法? 答案:C10,2 小球同质 例题5:从编号1-10的小球中取出2个放在2个盒子里,有多少种放法? 答案:C10,2 盒子同质 2。概率 加法原则和乘法原则:问自己这个事儿完成了没有?如果完成了就是加法原则,没有完成就是乘法原则。 例子:从北京到上海可以乘飞机(3种方案),轮船(2种方案),或者火车(5种方案),问从北京到上海乘这3种交通工具共几种方案?答:既然任何一个方案都已经到达了上海,这件事儿已经完成了,所以用加法原则:3+2+5=10种

在概率的计算中的排列组合

预备知识 在概率的计算中经常要用到一些排列组合知识,也常常用到牛顿二项式定理。 这里罗列一些同学们在中学里已学过的有关公式,并适当作一点推广。 一. 两个原理 1. 乘法原理: 完成一项工作有m 个步骤,第一步有1n 种方法,第二步有2n 种方法,…, 第m 步有m n 种方法,且完成该项工作必须依次通过这m 个步骤, 则完成该项工作一共有 1n 2n …m n 种方法,这一原理称为乘法原理。 2. 加法原理: 完成一项工作有m 种方式,第一种方式有1n 种方法,第二种 方式有2n 种方法,…,第m 种方式有m n 种方法,且完成该项工作只需 选择这m 种方式中的一种,则完成这项工作一共有 1n +2n +…+m n 种方法,这一原理称为加法原理。 二. 排列: 从n 个元素里每次取出r 个元素,按一定顺序排成一列,称为 从n 个元素里每次取r 个元素的排列,这里n 和Z 。均为正整数(以 下同)。 当这n 个元素全不相同时,上述的排列称为无重复排列,我 们关心的是可以做成多少个排列,即排列数。 对于无重复排列,要求当 时 r n 称为选排列,而当 r =n 时称为全排列。我们记排列数分别为 即将全排列看成选排列的特例。 利用乘法原理不难得到 由阶乘的定义

由阶乘的定义 将上面的n个不同的元素改为n类不同的元素,每一类元素 都有无数多个。今从这n类元素中取出r个元素,这r个元素可 以有从同一类元素中的两个或两个以上,将取出的这r个元素dl 成一列,称为从n类元素中取出r个元素的可重复排列,排列数记 作,由乘法原理得 显然,此处r可以大于n 例3 将三封信投入4个信箱,问在下列两种情形下各有几 种投法? 1)每个信箱至多只许投入一封信; 2)每个信箱允许投入的信的数量不受限制。 解1)显然是无重复排列问题,投法的种数为 2)是可重复排列问题,投法的种数为 三、组合 从“个元素中每次取出r个元素,构成的一组,称为从n个元 素里每次取出r个元素的组合。 设这n个元素全不相同,即得所谓无重复组合,我们来求组合数,记作 将一个组合中的r个元素作全排列,全排列数为 , 所有组合中的元素作全排列,共有 个排列,这相当于从n个元素里每次取r个元素的选排列,排列总数为 故有

高中数学-排列组合概率综合复习

高中数学 排列组合二项式定理与概率统计

其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。 例4、设88 018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( ) A .2 B .3 C .4 D .5 例5、组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1) C r -1n -1 C .nr C r -1 n -1 D .n r C r -1n -1 . 例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274 例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 1 84 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 )5)(4)(3)(2)(1(-----x x x x x 4 x

数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。2 乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0 n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。

高中数学排列组合概率练习题

高中数学排列组合概率练习题 1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是 (A ) 37 (B ) 47 (C ) 114 (D ) 1314 答案:D 解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是3 9C .所以3 9 613114 C - = . 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有 (A )6种 (B )9种 (C )11种 (D )13种 答案:B 解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法. 3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 (A )30个 (B )20个 (C )35个 (D )15个 答案:A 解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302 32 5=?C C 个,于是最多有30个交点. 推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有2 2 m n C C ?个 变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点. 答案:4 12C 4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 (A ) 15 (B ) 25 (C ) 35 (D ) 45 111213212223313233a a a a a a a a a ?? ? ? ???

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

排列组合与二项式定理及概率应用综合

第一讲 排列组合概念及简单应用 排列和排列数公式 A m n =n (n -1)(n -2)…(n -m +1)=n ! (n -m )!(m ,n ∈N *,并且m ≤n ) A n n =n !=n ×(n -1)×(n -2)×…×3×2×1. 规定:0!=1. 组合与组合数公式 1.组合数公式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(m ,n ∈N *,并且 m ≤n ) 2.组合数的性质 (1)C m n =C n -m n (2)C m n +1=C m n +C m - 1n 常规题型 一、投信问题 1、个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. (1)从两个口袋里各取一封信,有多少种不同的取法? (2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? 2、五位旅客到一个城市出差,这个城市有6家旅馆,有多少种住宿方法? 3、12名旅客在一辆火车上,共有六个车站,有多少种下车方案? 4、3个同学在一座只有两个楼梯的楼上下楼,有几种下楼方案? 二、染色问题 1、如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数. 2. 如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种. 3.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.

排列组合概率专题讲解

专题五: 排列、组合、二项式定理、概率与统计 【考点分析】 1. 突出运算能力的考查。高考中无论是排列、组合、二项式定理和概率题目,均是用数 值给出的选择支或要求用数值作答,这就要求平时要重视用有关公式进行具体的计算。 2. 有关排列、组合的综合应用问题。这种问题重点考查逻辑思维能力,它一般有一至两 3. 个附加条件,此附加条件有鲜明的特色,是解题的关键所在;而且此类问题一般都有 多种解法,平时注意训练一题多解;它一般以一道选择题或填空题的形式出现,属于中等偏难(理科)的题目。 4. 有关二项式定理的通项式和二项式系数性质的问题。这种问题重点考查运算能力,特 别是有关指数运算法则的运用,同时还要注意理解其基本概念,它一般以一道选择题或填空题的形式出现,属于基础题。 5. 有关概率的实际应用问题。这种问题既考察逻辑思维能力,又考查运算能力;它要求 对四个概率公式的实质深刻理解并准确运用;文科仅要求计算概率,理科则要求计算分布列和期望;它一般以一小一大(既一道选择题或填空题、一道解答题)的形式出现,属于中等偏难的题目。 6. 有关统计的实际应用问题。这种问题主要考查对一些基本概念、基本方法的理解和掌 握,它一般以一道选择题或填空题的形式出现,属于基础题。 【疑难点拨】 1. 知识体系: 2.知识重点: (1) 分类计数原理与分步计数原理。它是本章知识的灵魂和核心,贯穿于本章的始终。 (2) 排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。排列数公式 的推导过程就是位置分析法的应用,而组合数公式的推导过程则对应着先选(元素)后排(顺序)这一通法。 (3) 二项式定理及其推导过程、二项展开式系数的性质及其推导过程。二项式定理的 推导过程体现了二项式定理的实质,反映了两个基本计数原理及组合思想的具体应用,二项展开式系数性质的推导过程就对应着解决此类问题的通法——赋值法(令1±=x )的应用。 (4) 等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独 立事件的定义及其概率的乘法公式,独立重复试验的定义及其概率公式。互斥事件的概率加法公式对应着分类相加计数原理的应用,相互独立事件的概率乘法公式对应着分步相乘计数原理的应用。 (5) (理科)离散型随机变量的定义,离散型随机变量的分布列、期望和方差。 (6) 简单随机抽样、系统抽样、分层抽样,总体分布,正态分布,线性回归。

排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同 元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元 素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10 ==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有1 1--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+ 推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1m m n C -+ 8.二项式定理:若n ∈N +,则(a+b)n =n n n r r n r n n n n n n n b C b a C b a C b a C a C +++++---2221 10.其中第r+1

排列组合与概率

专题三: 排列、组合及二项式定理 一、排列、组合与二项式定理 【基础知识】 1.分类计数原理(加法原理)12n N m m m =+++. 2.分步计数原理(乘法原理)12n N m m m =???. 3.排列数公式 m n A =)1()1(+--m n n n = ! !)(m n n -.(n ,m ∈N * ,且m ≤n). 4.组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ,m ∈N * ,且m ≤n). 5.组合数的两个性质: (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1+ (3)1 121++++=++++r n r n r r r r r r C C C C C . 6.排列数与组合数的关系是:m m n n A m C =?! . 7.二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式:r r n r n r b a C T -+=1)210(n r ,,, =. 【题例分析】 例1、从6名短跑运动员中选4人参加4×100米接力,如果其中甲不跑第一棒,乙不跑第四棒,问共有多少种参赛方法? 解法:问题分成三类:(1)甲乙二人均不参加,有4 4A 种;(2)甲、乙二人有且仅有1人参加,有234C (44A -3 3A )种;(3)甲、乙二人均参加,有24C (44A -23 3A +2 2A ) 种,故共有252种. 点评:对于带有限制条件的排列、组合综合题,一般用分类讨论或间接法两种. 例2: 有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数: (1)有女生但人数必须少于男生. (2)某女生一定要担任语文科代表. (3)某男生必须包括在内,但不担任数学科代表. (4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表. 解:(1)先取后排,有13452335C C C C +种,后排有5 5A 种,共有5 513452335 )(A C C C (C +=5400种. (2)除去该女生后先取后排:8404 447=A C 种.

GRE数学排列组合和概率题目

GRE数学排列组合和概率题目 考生在答新gre数学试题时,一定要细心认真,把握好时间,最好有做完检查的时间,尽量在新gre数学部分获取高分。 1、15人中取5人,有3个不能都取,有多少种取法? C155 –C122 2、7人比赛,A在B的前面的可能性有多少种 P77 / 2 A在B前的次数与在其后的次数相等 3、3对人分为A,B,C三组,考虑组顺和组中的人顺,有多少种分法? P33 ×(P22 )3 先考虑组顺,再考虑人顺 4、17个人中任取3人分别放在3个屋中,其中7个只能在某两个屋,另外10个只能在另一个屋,有多少种分法? P72 P101 5、A,B,C,D,E,F排在1,2,3,4,5,6这六个位置,问A不在1,B不在2,C不在3的排列的种数? P66 -3P55 +3P44 -P33 (先取总数,后分别把A放1,B放2, C放3,把这个数量算出,从总数中减去即可,建议用三个同样的环相互交错取总数的方法计算) 6、4幅大小不同的画,要求两幅最大的排在一起,有多少种排法? 2P33 7、5辆车排成一排,1辆黄色,1两蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? P55 /P33 如果再加一个条件2辆不可分辨的白色车,同理:P77 /P33 P22 8、4对夫妇,从中任意选出3人组成一个小组,不能从任一对夫妇中同时选择两人,问符合选择条件的概率是多少? (C83 –C61 C41 )/C83 9、从6双不同的手套中任取4只,求其中恰有一双配对的概率。 C61 C52 C21 C21 /C124 10、3个打字员为4家公司服务,每家公司各有一份文件录入,问每个打字员都收到文件的概率? (C42 C21 )C31 /34 先把文件分为2,1,1三堆,然后把这三堆文件分给三个打字员。 虽然新版gre数学部分难度系数有所提高,但相信我们国内考生能够从容应对,以上即是搜索整理的有关新gre数学排列组合和概率题目解析,希望能对广大考生有所帮助。

(完整版)排列组合概率练习题(含答案)

排列与组合练习题 1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三 个数,则至少有两个数位于同行或同列的概率是 (A )37 (B )47 (C )114 (D )1314 答案:D 解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114 C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有 (A )6种 (B )9种 (C )11种 (D )13种 答案:B 解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法. 3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 (A )30个 (B )20个 (C )35个 (D )15个 答案:A 解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一 的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=?C C 个,于是最 多有30个交点. 推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的 交点最多有22m n C C ?个 变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点. 答案:412C 4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 (A )15 (B )25 (C )35 (D ) 45 答案:B 111213212223313233a a a a a a a a a ?? ? ? ???

高中数学排列组合与概率统计习题

高中数学必修 排列 组合和概率练习题 一、选择题(每小题5分,共60分) (1) 已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作为点的坐标,在同一直角坐标系 中所确定的不同点的个数是C (A) 32 (B) 33 (C) 34 (D) 36 解 分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标, 不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标, 不同点的个数为1 1 63P P g 不同点的个数总数是1111 636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2) 从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真数,则可以得到不同的对数 值的个数为 (A) 64 (B) 56 (C) 53 (D) 51 解 ①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为2 92P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个 ,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 ===,应减去4个 所示求不同的对数值的个数为2 9287453()C ---=个 (3) 四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生不能全排在一起,则不同 的排法数有 (A )3600 (B )3200 (C )3080 (D )2880 解 ①三名女生中有两名站在一起的站法种数是2 3P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是6 6P ,其中的三名女生排在一起的 站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为5 5P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1 5 25P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空7433422 74534522880A A C A A C A --= (4) 由100 +展开所得x 多项式中,系数为有理项的共有 (A )50项 (B )17项 (C )16项 (D )15项 解 1000100110011r 100r r 100100 100100100100 =C )+C )++C )++C --L L 可见通项式为 :1003100230010010010010023 66 6 100 100 100 100 ) 6 6 6 r r r r r r r r r r r r r r C C x C x C x ---++----===() 且当r=06121896L ,,,,,时,相应项的系数为有理数,这些项共有17个, 故系数为有理项的共有17个. (5) 设有甲、 乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有2把钥匙,这4把钥匙与不能开这两 把锁的2把钥匙混在一起,从中任取2把钥匙能打开2把锁的概率是 (A ) 4/15 (B ) 2/5 (C ) 1/3 (D ) 2/3 解 从6把钥匙中任取2把的组合数为2 6P ,若从中任取的2把钥匙能打开2把锁,则取出的必是甲锁

排列组合二项式定理和概率

排列组合二项式定理和概率 一、知识整合与考试要求: 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 5.了解随机事件的发生存在着规律性和随机事件概率的意义. 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 8.会计算事件在n 次独立重复试验中恰好发生k 次的概率. Ⅰ、随机事件的概率 例1 某商业银行为储户提供的密码有0,1,2,…,9中的6个数字组成. (1)某人随意按下6个数字,按对自己的储蓄卡的密码的概率是多少? (2)某人忘记了自己储蓄卡的第6位数字,随意按下一个数字进行试验,按对自己的密码的概率是多少? 解 (1)储蓄卡上的数字是可以重复的,每一个6位密码上的每一个数字都有0,1,2, (9) 10种,正确的结果有1种,其概率为 610 1,随意按下6个数字相当于随意按下6 10个,随意按下6个数字相当于随意按下6 10个密码之一,其概率是610 1. (2)以该人记忆自己的储蓄卡上的密码在前5个正确的前提下,随意按下一个数字,等可能性的结果为0,1,2,…,9这10种,正确的结果有1种,其概率为 10 1. 例2 一个口袋内有m 个白球和n 个黑球,从中任取3个球,这3个球恰好是2白1黑的概率是多少?(用组合数表示) 解 设事件I 是“从m 个白球和n 个黑球中任选3个球”,要对应集合I 1,事件A 是“从m 个白 球中任选2个球,从n 个黑球中任选一个球”,本题是等可能性事件问题,且Card(I 1)= 1 23)(,n m n m C C A Card C ?=+,于是 P(A)=31 21)()(n m n m C C C I Card A Card +?=. Ⅱ、互斥事件有一个发生的概率 例3在20件产品中有15件正品,5件次品,从中任取3件,求: (1)恰有1件次品的概率;(2)至少有1件次品的概率. 解 (1)从20件产品中任取3件的取法有3 20C ,其中恰有1件次品的取法为1 52 15C C 。

相关文档
最新文档