非开挖技术顶管图片展示

合集下载

管道非开挖技术

管道非开挖技术

管道非开挖技术非开挖技术是指通过导向、定向钻进等手段,在地表极小部分开挖的情况下(一般指入口和出口小面积开挖),敷设、更换和修复各种地下管线的施工新技术,对地表干扰小,因此具有较高的社会经济效果。

主要包括水平定向钻进、顶管、微型隧道、爆管、冲击等技术方法。

该技术源于20世纪70年代,并于90年代传入我国,目前被广泛应用于给水、排水、电力、通信、燃气等领域的新管道建设和旧管道修复,也可以应用于文物、古建筑的保护等方面。

特点(1)引入了管线轨迹的测量和控制;(2)大大提高了铺管能力(长度2000m,直径3m);(3)快速高效;(4)增强了在复杂地层条件下施工的能力;(5)使管道的原位修复成为可能。

新管道施工技术管道更新技术管道修复技术①高功率、高效率;②采用泥水平衡掘进施工法,可进行大管径超长度施工;③噪音小、无污染。

(2)适用范围隧道、涵洞和大口径管道。

1.4 顶管铺管技术(1)设备①导向探测仪;②导向钻机;③液压顶管机。

(2)施工方法①导向钻孔定向;②液压顶进、人工挖掘。

(3)优点①造价低;②定向准确、精度高、安全、无噪音污染;③可适用于各种地质条件;④适用于大口径小场地各种管道施工。

(4)适用范围适用于铺设3000mm以内钢管、混凝土管、铸铁管、其它材质管道可采用套管法铺设。

工程实例常用的非开挖技术采用导向钻管法,以下以东明河顶管工程实例详细介绍导向钻管的技术。

工程概况岐江河东明大桥西侧穿越工程位于中山市东明大桥西侧,穿越地点选在东明大桥侧河道,离南岸桥支墩38m位置,两岸河堤之间宽度为112m,水深5m。

由于石岐河水位受涨潮退潮影响,航道需正常通航,不能封航,因此工程采用定向钻技术,以非开挖方式进行煤气管道穿越。

该工程为一条φ273×9钢管穿越,穿越长度约为280m,最大穿越深度:自然地面以下10m;钻机入土点位于河南侧,出土点位于河北侧。

入土角度为10°,出土角度6°,钻进曲率半径为488m。

非开挖铺管技术

非开挖铺管技术

非开挖铺管技术非开挖工法非开挖敷设管道技术在近年得到广泛的应用。

由于它不需要开挖面层,能穿越地面构筑物和地下管线及公路、铁路、河道。

节省大量投资和时间。

这项技术的快速发展也使市政工程需敷设的大量上、下水道、煤气、电力、通信工程时,对城区的交通、噪音、粉尘的危害和影响大大降低。

是真正的无污染、高效率的施工技术。

随着城市建设的大规模发展,人们对生活环境的质量提出更高的要求。

各级政府都致力于新区开发和老城区改造。

而城区水污染的治理和水资源的保护又是重中之重。

大中型城市采取的几乎一样的方法截污治污。

敷设大口径的截污管一般Φ2000-Φ3500引至污水厂治理这种方案,投资最低。

但随之而来的困难是污染源到污水厂(或排放口)均需经过人口稠密区或大型建筑物、构筑物及支流小河等。

所以非开挖技术成为首选。

象上海合流污水;苏州河治理;北京清河污水干线;西安咸阳机场,广州、杭州、福州、武汉等地都有机械化顶管施工实例。

中等规模城市,如嘉兴、海宁、桐乡等地都采用较小的管径Φ300~Φ1500,有的支流管线采用更小的管径。

除了上述的环境整治方面,在能源供应,如液化气、天然气输送管。

各种油管在动力电缆、宽频网、光纤网等通讯电缆等都相继采用非开挖技术。

因为,在中心城区已无法进行架线,开槽埋管来作业施工。

这类管道则更小,一般是Φ80~Φ600之间。

综上所述,不管应用在任何领域,非开挖技术,因其优良的施工质量和低廉的施工成本及巨大的社会效益而受到建设方的广泛采用。

非开挖铺管技术非开挖铺设地下管线技术是利用岩土钻掘手段,在路面不挖沟、不破坏大面积地表层的情况下,铺设、修复和更换地下管线的施工技术。

使用非开挖技术具有周期短、成本低、污染少、安全性能好等优点,而且不会影响正常的交通秩序。

令人尴尬的场面在生活中我们每个人都遇到过,刚刚铺好的路面没过多久又被人为的挖开,不是埋管子就是铺设电缆。

施工周期长,劳动强度大。

传统的施工方式在给百姓生活带来诸多不便的同时也使得大气粉尘增多,造成十分恶劣的环境污染。

顶管工程施工PPT演示

顶管工程施工PPT演示

顶管机启动与试顶进
正常顶进施工
在试顶进确认正常后,开始正常顶进 施工,控制好顶进速度和泥浆流量, 确保顶管机沿着设计轴线顺利前进。
启动顶管机,进行试顶进,检查顶管 机的运行状况和各项参数是否正常。
顶管机拆卸与吊
拆卸与吊装计划
制定详细的拆卸与吊装计划,明 确人员分工和安全技术措施。
拆卸作业
按照拆卸与吊装计划,对顶管机 进行拆卸,并做好标记和记录。
顶管施工中的地面沉降及其控制措施
• 总结词:地面沉降是顶管施工中的常见问题,可能导致地面塌陷、建筑物损坏 等。控制措施包括优化施工方案、加强监测等。
• 详细描述:顶管施工中的地面沉降是一个比较常见的问题,主要是由于土层扰 动、地下水变化等因素造成。地面沉降可能导致地面塌陷、建筑物损坏等严重 后果,因此需要采取有效的控制措施。其中,优化施工方案是控制地面沉降的 有效方法之一,包括合理安排顶进顺序、优化管道设计等。此外,加强监测也 是控制地面沉降的重要措施之一,可以及时发现沉降迹象并采取相应措施进行 调整。在施工过程中,应定期进行地面沉降监测,及时发现沉降迹象并采取相 应措施进行调整。同时,还可以采用注浆、钢板桩等辅助措施对沉降区域进行 处理,以达到控制地面沉降的目的。
根据工程要求和地质条件,选择合适的注浆材料,如单液浆、双液浆等,并确定 各组分的比例。
性能要求
注浆材料应具备良好的渗透性、流动性、稳定性等性能,能够有效地加固土壤、 防止渗漏。
注浆工艺的控制
注浆方式
采用分段注浆、分层注浆等方式,确保注浆效果均匀、可靠 。
注浆参数
合理控制注浆压力、注浆量、注浆速度等参数,避免出现冒 浆、跑浆等现象。
Part
05
工程案例分析

非开挖技术(顶管技术)

非开挖技术(顶管技术)

4.3.2.6非开挖技术(顶管技术)施工非开挖技术施工优点:非开挖技术在不稳定及饱和土层中以最小的破坏和最大的保护环境等方面解决了城市施工中的难题,并在应付最恶劣的地下土壤条件中有丰富的经验,任何地方都能提供最经济、准确、齐全、快速而可靠的解决问题的方法。

4.3.2.6.1作业前工作1.技术准备1.1定向钻铺管施工前应进行工程勘察。

工程勘察应符合《岩石工程勘察规范》GB50021、《岩石工程勘察规范》DBJ13-84和《城市地下管线探测技术规程》CJJ61的规定。

1.2地下管线复查并在地面上做出标记。

1.3根据地下管线复查结果调整钻孔设计轨迹。

1.4选定出、入钻点,开挖出、入钻工作沟。

1.5绘制出详细的地下管线勘察成果图,作为钻孔轨迹设计的依据。

1.6入钻点和出钻点的选取:根据设计要求,入钻点宜设在行人车辆稀少且有足够空间摆放设备处,出钻点则宜设置在能够摆放管材、方便拖管的另一端。

1.7钻孔轨迹设计要求根据取得地下管线勘察成果、现场地形地貌和周边环境信息。

钻杆最小弯曲半径等技术资料。

其中钻孔轨迹参数包括入钻角ai、出钻角ao、入钻造斜段Li、中间水平段L´、出钻造斜段Lo、钻孔深度H等。

1.8编制施工方案,准备好相关的施工记录表。

2.现场施工负责任向进入施工范围内所有人员详细交代本次施工作业内容、进度要求、特殊项目施工要求、作业标准、安全注意事项、危险点及控制措施、危害环境的相应预防控制措施、人员分工并签署(班组级)安全技术交底。

3.现场施工负责人办理相关的工作许可手续,开工前做好现场施工防护围蔽警示措施;夜间施工的须有足够的照明。

4.现场施工负责人检查所有工作人员是否正确使用劳保用品及着装按安规规定佩戴统一的安全帽、统一佩戴有个人相片的作业证(或胸卡证)、穿着统一的工作服,并带领施工作业人员进入作业现场。

4.3.2.6.2导向孔施工1.导向孔施工应按事先设计好的钻孔轨迹进行导向施工,并做好导向孔施工的记录。

非开挖顶管的管节对接技术要点(全)

非开挖顶管的管节对接技术要点(全)

非开挖顶管的管节对接技术要点一、对接工艺顶管施工过程中一旦发生由于管节、设备的原因造成不能继续顶进时,采用地下对接的方式来实现管道的顺利贯通是一种比较好的手段。

顶管对接有多种形式,一种是直线对接,一种是带有角度的对接(直角、斜角)。

采用地下顶管对接施工与常规顶管施工有许多不同之处,主要是顶管掘进机的特殊加工改造、对接处土体的加固、顶管设备的拆除和面板的割除、对接处的接口处理、对接测量技术以及内衬结构的处理。

在整个顶管对接施工中,对接施工工艺流程至关重要,是指导对接的操作步骤。

顶管施工地下对接技术工艺总流程见对接流程图。

二.对接区土体改良为保证顶管顺利对接,对两根顶管顶管机应有所限制,防止顶管机在对接过程中产生不必要的侧向位移,同时为保证对接区域的止水效果,有必要对对接区域的土体进行改良。

改良的措施主要有深层搅拌桩、高压旋喷桩和冷冻法等。

改良区域长度以〃顶管机纠偏前段+刀盘宽度+对接间隙〃来确定。

改良区域深度及宽度应以顶力扩散范围取值,以顶管机前段长度做上下、左右的延伸。

三.对接施工对顶管机的要求掘进机及相关辅助设备改造对顶管地下对接特别重要,结构的好坏是对接能否完成的前提和主要条件,应着重考虑以下几个主要方面。

1、双向切口结构双向切口结构改造以便于对接导向和连接,导向圈板工作原理及结构见下图。

(1)导向内圈与导向外圈分别焊接在两个对接掘进机前壳体的前端,考虑到机头前进和纠偏时产生的作用力,应有一定的搭接长度,一般不小于200mm,具体应根据掘进机的大小和其他实际情况而定。

(2)导向外圈应安装于对接时不动的掘进机上,导向内圈安装于对接用掘进机上。

(3)导向内圈与导向外圈之间的间隙应严格控制,因为间隙过大容易造成土仓内注浆效果不好、跑浆等后果,甚至在打开土仓时产生漏砂等严重危险。

(4)间隙的大小应根据对接的距离、埋深、土层性质、测量精度等经过专家论证和讨论来确定,掘进机改造时必须严格按此执行。

两台掘进机的导向圈分别装在前壳体外侧和内圈,这样就形成40mm的间隙。

常用的几种顶管施工工法、适用土质及顶管3D工作原理图

常用的几种顶管施工工法、适用土质及顶管3D工作原理图

常⽤的⼏种顶管施⼯⼯法、适⽤⼟质及顶管3D⼯作原理图 01 顶管施⼯概述长期以来,城市建设过程中,城市道路被频繁开挖严重影响了⼈民的⽣活。

⼀项⾮开挖施⼯技术——顶管施⼯技术,不需开挖地⾯,并且能够穿越公路、铁路、河道、湖泊、建筑物、以及各种地下管线等,解决了市政施⼯难题,⽽且,顶管施⼯随着城市建设的发展已越来越普及,已运⽤到给排⽔、煤⽓、电⼒、通信等管道的施⼯。

顶管法施⼯就是在⼯作坑内借助于顶进设备产⽣的顶⼒,克服管道与周围⼟壤的摩擦⼒,将管道按设计的坡度顶⼊⼟中,并将⼟⽅运⾛。

⼀节管⼦完成顶⼊⼟层之后,再下第⼆节管⼦继续顶进。

其原理是借助于主顶油缸及管道间、中继间等推⼒,把⼯具管或掘进机从⼯作坑内穿过⼟层⼀直推进到接收坑内吊起。

管道紧随⼯具管或掘进机后,埋设在两坑之间。

02 顶管施⼯的基本原理图顶管施⼯原理图顶管施⼯法是先在⼯作井内设置⽀座和安装主千⽄顶,所需铺设的管道紧跟在⼯具管后,在主千⽄顶推⼒的作⽤下⼯具管向⼟层内掘进,掘出的泥⼟由⼟泵或螺旋输送机排出或以泥浆的形式通过泥浆泵经管道排出.,推进⼀节管道后,主千⽄顶缩回,吊装上另⼀节管道,继续顶进。

如此往复,直⾄管道铺设完毕。

管道铺设完毕后,⼯具管从接收井吊⾄地⾯。

03 顶管施⼯⼯法分类据介绍,⽬前,顶管施⼯常采⽤的施⼯⼯法分为敞开⼈⼯⼿掘式(开放型)和密封机械式顶管(密封型)施⼯⽅法,其中机械式顶管施⼯常⽤的施⼯⽅法⼜有泥⽔平衡式和⼟压平衡式两种,顶管施⼯常⽤的管材有砼管、钢管、玻璃夹砂钢管。

施⼯所采⽤的主要设备为信息化及全⾃动化泥⽔平衡顶管机。

图施⼯⼯艺分类3.1 开放型刃⼝推进⼯法图刃⼝式推进⼯法施⼯⼯艺⽰意图刃⼝式推进⼯法的掘进机结构较简单,其刃⼝部分(即机头)加⼯简便,可以根据⼟质条件加⼯成全敞开式、半敞开式或活瓣式,⼀般称之为敞开式掘进机。

刃⼝式推进⼯法可适⽤于软⼟地层中、地下⽔位以上黄⼟地层中、地下⽔位以上强风岩地层中。

刃⼝式推进⼯法的特点是施⼯成本低,在顶进过程中如遇前⽅障碍物可⽴即采⽤⼈⼯⽅式排除;其缺点是顶进管径应⼤于Φ800mm,否则不便于⼈员进出;顶进距离不宜过长,⼀般对于Φ800mm顶管、其顶进距离不宜超过150m,管径较⼤时可适当延长顶进距离;同时在管内应设置照明、通风和通讯设备;由于是采⽤敞开式或半敞开式取⼟,顶进完成后地表均有沉降现象,不适⽤于已建成的建筑物区域,⼀般在类似于农⽥对地⾯沉降要求不严格的情况下或随新建市政道路⼯程同时施⼯的情况下采⽤。

顶管法施工技术

顶管法施工技术

顶管法施工技术5.1 顶管法施工的概念顶管法是指隧道或地下管道穿越铁路、道路、河流或建筑物等各种障碍物时采用的一种暗挖式施工方法。

顶管法属于非开挖施工,是一种不开挖或者少开挖的管道埋设施工技术,它不需要开挖面层就能穿越公路、铁道、河川、地面建筑物、地下构筑物以及各种地下管线等。

顶管法施工工序是:在工作坑内借助顶进设备产生的顶力克服管道与周围土壤的摩擦力,将管道按设计坡度顶入土层中,并运走土方。

一节管道顶入土层中后,接续顶进第二节管道,这样依序顶入各节管道,做好接口,建成涵管。

其原理是借助主顶油缸、管道间及中继间等推力,把工具管或掘进机从工作坑内穿过土层一直推进到接收坑内吊起。

管道紧随其后,埋设在两坑之间,以实现非开挖敷设地下管道。

顶管法施工原理见图5.1。

图5.1 顶管法施工原理示意图5.2 顶管法施工技术发展史顶管法施工是继盾构法施工之后发展起来的地下管道施工方法,最早应用于1896年美国北太平洋铁路铺设工程,已有百年历史,20世纪60年代在世界各国推广应用,1970年,德国汉堡下水道混凝土顶管,直径 2.6m,一次最大顶进距离1200m,为国外首次最大顶距。

近20年,日本研究开发土压平衡、水压平衡顶管机等先进顶管机头和工法。

20世纪50年代中国从北京、上海开始试用。

1986年,上海穿越黄浦江输水钢质管道,应用计算机控制,激光导向等先进技术,单向顶进距离1120m,顶进轴线精度:(-150,+150)mm,上下(-50,+50)mm。

1981年,浙江镇海穿越甬江管道,直径2.6m,单向顶进581m,采用5只中继环,上下左右偏差(-10,+10)mm。

1997年,中国上海黄浦江上游引水工程长桥支线钢管顶管,直径 3.5m,一次最大顶进距离为1743m,创造了钢管顶管世界纪录。

2001年,中国浙江嘉兴污水钢筋混凝土顶管,直径2m,一次最大顶进距离为2050m,创造了混凝土顶管世界纪录。

5.3 顶管机分类(1)按顶管口径大小分为大口径、中口径、小口径和微型顶管四种。

顶管施工图片(整理)课件

顶管施工图片(整理)课件

顶进操作
启动顶管机,将管道按照设计要求顶 进。
实时监测
对顶进过程中的各项参数进行实时监 测,确保顶进顺利进行。
异常处理
遇到顶进阻力过大或偏差问题时,及 时采取措施进行处理。
顶管机拆卸
设备停机
完成管道顶进后,将顶管机停机。
拆除连接
断开顶管机与管道的连接,为拆卸做好准 备。
分步拆卸
清理现场
按照顶管机的拆卸顺序,逐步进行拆卸。
顶管施工图片(整理)课 件
contents
目录
• 顶管施工概述 • 顶管施工流程图解 • 顶管施工常见问题及解决方案 • 顶管施工案例分析
01
顶管施工概述
顶管施工的定义
01
顶管施工是一种非开挖的管道埋 设施工技术,利用顶进设备将管 道按照设计要求顶入土层中,实 现管道铺设和更换的目的。
02
顶管施工不需要开挖地面,可以 穿越公路、铁路、河流、湖泊等 障碍物,具有较高的施工效率和 较低的施工成本。
设备检查
对所有施工设备进行全面检查 ,确保设备正常运转。
人员配置
根据工程需求,合理配置施工 人员,并进行安全培训。
材料准备
提前准备好所需材料,确保施 工进度不受影响。
测量放样
确定基准点
根据设计图纸,确定施工基准 点。
高程测量
对施工区域进行高程测量,确 保顶管深度符合设计要求。
定位放样
使用全站仪等测量设备,对管 道位置进行精确放样。
管道轴线偏差问题
总结词
管道轴线偏差问题是指顶管施工过程中,管道轴线与设计轴线不一致的情况。
详细描述
管道轴线偏差会导致管道铺设质量下降,严重时甚至需要返工。造成管道轴线 偏差的原因可能是多种多样的,如地质条件变化、施工设备故障、操作失误等 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
市政工程非开挖技术
**市政公司顶管工程图片
一、市政工程非开挖技术简介
定义:是指利用微开挖或不开挖技术对给排水管 道或电缆等地下管线进行铺设、修复的工程技术, 一般称为顶管工程。
非开挖技术主要用于传统的开挖施工法所不允许 进行开挖施工的场合,以及现实条件不利于进行 开挖施工的工程建设中。
非开挖技术是地下管线施工的一次技术革命,以 其独特的技术优势和广阔的市场前景受到越来越 多的重视和应用,使其成为企业参与、政府支持、 社会提倡的一个新的应用技术领域,也是城市建 设现代化的一项重要标志。
乐山市犍为县污水处理厂顶管工程
1.该工程地处岷江岸边,地质情况为5米以下是干净 的纯砂层;砂子之间的粘附力几乎为0,在人工挖 掘过程中及易垮塌;且轴线较难控制。
2.该工程工作井设计为钢木结构形式(设计时须经 严格细致的计算),具有价格低廉、可重复使用。
3.管材采用D1000×2000×100Ⅲ级平口管,且必须 保证闭水实验通过。
4.具体施工过程:
4.1工作井的形式和支护
4.2后备墙及顶镐的安设
4.3井坑布置
4.4管材下井装置
4.6管材下井
4.7管材进洞
4.8管道开挖技术的实用性特点
城市建设中因掘路施工所造成的环境、交通、市容、 安全四大问题危害严重,而非开挖技术具有施工时不影响 交通、不破坏环境、不拆建地面设施、不干扰人们的正常 生活与工作秩序、施工速度快等显著的社会效益。
同时,由于新建开发小区的地下管线都需要接入城市道 路的市政主管线,而在城市管理中不仅是对掘路的审批越 来越严格,并且掘路的政策性收费更是非常之高,所以对 于房产开发商来说,选择非开挖技术铺设小区连接城市主 干线的管线,可以说一方面是被动的必须,另一方面则是 被动的获利,因为尽管非开挖技术对于管径和埋深不是很 大的管线施工,每米成本略高于开挖施工,但省去了动则 几万甚至几十万的掘路费及繁冗的手续办理等,大大节约 了综合成本。
相关文档
最新文档