第7章 运筹学 运输问题
运筹学运输问题相关知识点

运筹学运输问题相关知识点运筹学,旨在通过数学模型和优化方法来解决各种决策问题,其中运输问题是运筹学中的一个重要分支。
运输问题旨在帮助我们确定如何在不同地点之间运输物品以达到最佳效益。
首先,运输问题基于以下几个基本假设:一是物流成本在运输过程中是线性的,二是物品在不同地点之间的运输是无差异的,三是供应和需求之间是平衡的。
在解决运输问题时,需要考虑以下几个关键要素:1.运输网络:此步骤涉及识别和描述供应地点、运输路径和需求地点。
通常使用图形表示来可视化运输网络,以便更好地理解和分析问题。
2.供应量和需求量:确定每个供应地点可提供的物品数量和每个需求地点所需的物品数量。
供应量和需求量之间必须达到平衡。
3.运输成本:每个运输路径的费用是决策的重要因素。
这可以涉及运输距离、运输方式、燃料成本等因素。
通常通过构建费用矩阵来表示各个路径的费用。
4.运输方案:确定如何分配物品以满足需求,并选择最佳的运输路径。
这通常通过使用线性规划模型来实现,以最小化总运输成本为目标。
解决运输问题的常见方法包括:1.西北角规则:该方法从供应和需求具有最大值的角度着手,逐步分配物品,直到达到平衡。
这种方法简单易行,但不一定能够找到全局最优解。
2.最小成本法:该方法根据运输路径的成本递增顺序,逐一分配物品,直到平衡为止。
这种方法能够找到最优解,但可能需要更多的计算量。
3.转运法:该方法通过寻找“供应地点里程+需求地点里程最小”的路径来决策,直至达到平衡。
这种方法在有多个供应地点和多个需求地点时非常实用。
除了基本的运输问题之外,还有其他一些相关的运筹学问题,如多品种运输问题、多目标运输问题和带有时间窗口的运输问题等。
这些问题在实际应用中都有广泛的应用,并且可以通过相应的数学模型和优化方法来解决。
综上所述,运筹学中的运输问题是一个重要的决策问题。
它涉及到寻找最佳的物品配送方案,以最小化总运输成本。
通过合适的数学模型和算法,我们可以有效地解决这类问题,为实际的物流管理提供有力的支持。
兰州大学运筹学运输问题课后习题题解

第七章运输问题一个农民承包了6块耕地共300亩,准备播种小麦、玉米、水果和蔬菜四种农产品,问如何安排种植计划,可得到最大的总收益。
解:本问题地块总面积:42+56+44+39+60+59=300亩计划播种总面积:6+88+96+40=300亩因此这是一个产销平衡的运输问题。
可以建立下列的运输模型:代入产销平衡的运输模板可得如下结果:种植计划方案某客车制造厂根据合同要求从当年开始起连续四年年末交付40辆规格型号相同的大年度 可生产客车数量(辆)制造成本(万元/辆)正常上班时间 加班时间 正常上班时间 加班时间1 20 30 50 552 38 24 56 613 15 30 60 65 442235358根据该厂的情况,若制造出来的客车产品当年未能交货,每辆车每积压一年的存储和维护费用为4万元。
在签订合同时,该厂已储存了20辆客车,同时又要求四年期未完成合同后还需要储存25辆车备用。
问该厂如何安排每年的客车生产量,使得在满足上述各项要求的情况下,总的生产费用加储存维护费用为最少?解:这是一个生产储存问题,可以化为运输问题来做。
根据已知条件,我们可以做以下地块1 地块2 地块3 地块4 地块5 地块6 计划播种面积(亩) 小麦 6 39 31 76 玉米 29 59 88 水果 2 56 38 96 蔬菜 40 40地块面积(亩)425644396059300 300分析,建立运输模型。
1、由于上年末库存20辆车,这些产品在这四年中只计仓储费不计生产费用,所以我们记为0年,第一行;2、在建立的运输表中,相应单元格内填入当年交付产品的所有成本(包括生产和存储成本);3、年份从1到4表示当年的正常生产,而1’到4’表示当年加班生产的情况;4、由于期末(4年底)要有25辆车的库存,即4年末的需求量是40+25=65辆;5、在表中没有具体成本的单元格中,表示没有生产也没有交货,为了保证这个真实情况的描述,在这些格中填M,使安排的生产量为0。
韩伯棠管理运筹学第三版-第七章-运输问题分析ppt课件.ppt

B1 B2 B3 产量
A1 6 4 6
200
A2 6 5 5 销量 250 200 200
300 500
650 23
B1 B2 B3
产量
A1
6
4
6
200
A2
6
5
5
销量 250 200 200
300 500
650
解:增
B1 B2 B3
加一个 A1 6 4 6
虚设的 A2 6 5 5
产地运 A3 0 0 0 输费用 销量 250 200 200
6
4 6 200
A2
6
5 5 300
销量 150 150 200
B1
B2
B3 产量
A1
x11
x12
x13 200
A2
x21
x22
x23 300
销量 150 150 200
Min f = 6x11+ 4x12+ 6x13+ 6x21+ 5x22+ 5x23
A1 A2 销量
B1 6 6 150
B2 4 5 150
§2
运输问题的计算机求解
运行管理运筹学计算机软件:
点击运输问题模块
14
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
§2
运输问题的计算机求解
点击新建
选择Min
输入3
输入4
点击确定
15
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
管理运筹学 第七章 运输问题之表上作业法

最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。
管理运筹学之第七章 运输问题

B1 3 3 1 7 3
B2 11 4 9 2 4 6 2
B3 3 2 2 10 3 5 3
B4 10 8 5 6 6
产量 7 4 4 2 9 6 20|20
产
费
地
A1 A2 A3
销量
最小元素法
运
销 地
B1 3 1 3 7 3
B2 11 9 4 6 6
B3 3 4 2 1 10 5 4
B4 10 3 8 5 3 6 3
运
费
地
A1
销 地
B1
B2
B3
产量(件)
4000 1500
产
X11 X21 3000
X12 X22 1000
X13 X33 2000
A2
销 量
B1的供应量可0-200吨, B2的需要量应最大限度的满足, B3的供应量不少于1700吨,怎样调运?
运
费
销
B11
B12
B2
B31
1.75 1.70 M
1700
A1 A2 A3
销量
运 产
费
地
销 地
B1 3 0
B2 11 2
B3 3 5
B4 10 2
产量 7
A1
A2
A3 销量
1 3
7 9 3
9 2
4 6 6
2 1
10 11 5
8 1
5 3 6
4
9 20|20
若有某个检验数为零,则有多个最优解。 运
销 地
B1 3 2 1 1 7 3
B2 11 9 4 6 6
Ⅳ2 16 16 M 0 50
产量 50 60 50 50
管理运筹学讲义运输问题

管理运筹学讲义运输问题引言在现代社会,运输问题是管理运筹学中的一个重要问题。
无论是物流行业还是供应链管理,运输问题都是必不可少的一环。
运输问题的解决可以帮助企业有效地规划和管理物流流程,降低运输成本,提高运输效率。
本文将介绍管理运筹学中的运输问题,包括问题的定义、数学模型、常用的解决方法以及在实际应用中的案例分析。
运输问题的定义在管理运筹学中,运输问题是指在给定的供应点和需求点之间,如何分配物品的问题。
通常,问题的目标是找到一种分配方案,使得总运输成本最小。
运输问题可以抽象成一个图模型,其中供应点和需求点之间的路径表示运输线路,路径上的边表示运输的数量和成本。
每个供应点和需求点都有一个需求量或供应量。
问题的目标是找到一种分配方案,使得满足所有需求量的同时最小化总运输成本。
数学模型运输问题可以用线性规划来建模。
假设有m个供应点和n个需求点,每个供应点的供应量为si,每个需求点的需求量为dj。
定义xij为从供应点i到需求点j 的运输量,则运输问题的数学模型可以形式化表示为如下线性规划问题:minimize ∑(i=1 to m)∑(j=1 to n) cij * xijsubject to∑(j=1 to n) xij = si, for all i = 1,2,...,m∑(i=1 to m) xij = dj, for all j = 1,2,...,nxij >= 0, for all i = 1,2,...,m and j = 1,2,...,n其中cij表示从供应点i到需求点j的运输成本。
解决方法针对运输问题,常用的解决方法有以下几种:1. 单纯形法单纯形法是一种用于解决线性规划问题的常用方法。
对于运输问题,可以通过将其转化为标准的线性规划问题,然后使用单纯形法来求解最优解。
2. 匈牙利算法匈牙利算法是一种经典的图论算法,可以用于解决运输问题。
算法的核心思想是通过不断寻找增广路径来寻找最大匹配。
《管理运筹学》02-7运输问题
通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。
管理运筹学第七章运输问题之表上作业法
5 3
9
销量
3
6
5
6
20
最小检验数原则,确定进基变量
最小偶点原则,确定出基变量和调整量
+1
-1
+1
-1
四、方案调整
B1
B2
B3
B4
产量ai
A1
3
11
3 5
10 2
7
A2
1 3
9
2
8 1
01
最优值:
01
f* =3×5+10×2+1×3+8×1+4×6+5×3 = 85
01
四、方案调整
闭回路调整法步骤:
01
入基变量的确定:选负检验数中最小者 rk,那么 xrk 作为进基变量;(使总运费尽快减少)
02
出基变量的确定:在进基变量xrk 的闭回路上,选取偶数顶点上调运量最小的值,将其对应的运量作为出基变量。(刚好有一个基变量出基,其它基变量都为正)
三、最优性检验
三、最优性检验
若让x11=1,则总运费变化:3–3+2–1=1 。
B1
B2
B3
B4
产量
A1
3
11
3 4
10 3
7
A2
1 3
9
2 1
8
4
A3
7
4 6
10
5 3
9
9
2
8 1
4
A3
7
4 6
10
5 3
9
销量bj
3
6
5
6
20
如上例中的最优方案就不唯一:
(0)
运筹学:运输问题
运输问题运输问题(transportation problem)一般是研究把某种商品从若干个产地运至若干个销地而使总运费最小的一类问题。
然而从更广义上讲,运输问题是具有一定模型特征的线性规划问题。
它不仅可以用来求解商品的调运问题,还可以解决诸多非商品调运问题。
运输问题是一种特殊的线性规划问题,由于其技术系数矩阵具有特殊的结构,这就有可能找到比一般单纯形法更简便高效的求解方法,这正是单独研究运输问题的目的所在。
§1运输问题的数学模型[例4-1] 某公司经营某种产品,该公司下设A、B、C三个生产厂,甲、乙、丙、丁四个销售点。
公司每天把三个工厂生产的产品分别运往四个销售点,由于各工厂到各销售点的路程不同,所以单位产品的运费也就不同案。
各工厂每日的产量、各销售点每日的销量,以及从各工厂到各销售点单位产品的运价如表4-1所示。
问该公司应如何调运产品,在满足各销售点需要的前提下,使总运费最小。
表4-1设代表从第个产地到第个销地的运输量(;),用代表从第个产地到第个销地的运价,于是可构造如下数学模型:(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)通过该引例的数学模型,我们可以得出运输问题是一种特殊的线性规划问题的结论,其特殊性就在于技术系数矩阵是由“1”和“0”两个元素构成的。
将该引例的数学模型做一般性推广,即可得到有个产地、个销地的运输问题的一般模型。
注意:在此仅限于探讨总产量等于总销量的产销平衡运输问题,而产销不平衡运输问题将在本章的后续内容中探讨。
(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)供应约束确保从任何一个产地运出的商品等于其产量,需求约束保证运至任何一个销地的商品等于其需求。
除非负约束外,运输问题约束条件的个数是产地与销地的数量和,即;而决策变量个数是二者的积,即。
由于在这个约束条件中,隐含着一个总产量等于总销量的关系式,所以相互独立的约束条件的个数是个。
运筹学运输问题
须满足需求量区域的相应变量x31, x33, x34运费的取
值为M,可调整需求量区域的相应变量x32 , x35运费
的取值为0,作出产销平衡的运价表
运筹学运输问题
B1
B1’
B2
B3
B3’ Supply
A1
175 175 195 208 208 1500
A2
160 160 182 215 215 4000
•因此运输问题约
束条件系数矩阵
•第i个
的元素只能是0 或1,对应变量xij 列除了第i个与第
•第(m+j)个
(m+j)个分量为1 外,其它分量均
为零
此外产销平衡运输问题的数学模型还具有 特点:
• 所有约束条件都是等式
• 前m个约束条件的和等于后n个约束条件 的和(可以证明尽管有m+n个约束条件, 但独立的约束条件只有m+n-1个)
B62
2B3
8B4 Supply
9 •[1 3 (15)
0 •[3] 15
3 0•[]8] 4 •[5] 0 •[7] 18
2 (12) 6 (1) 0 (4)
17
12
16
4
运筹学运输问题
•思考题2:
•运
•已知某运输问题的产销需求及单位运价如下表所示
输
B1
B2
B3
Supply
问
A1
5
9
3
15
A2
1
40
15
30
30
100
A3
30
35
40
55
25
130
需要量 25
115
60
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B1 B 2 B3 B 4 产量
A1
4 12
4 11 16
A2
2 10
3 9 10
A3
8
5 11 6 22
销量 8 14 12 14 48
.
管理运筹学
23
第一步:确定初始基可行解 ——最小元素法、伏格尔法
• 最小元素法思路:
按单位运价的大小决定供应的先后,优先 满足单位运价最小者的供销要求。
即从单价中最小运价确定供应量,逐步次 小,直至得到m+n-1个数字格。
20
D
产量
0
25
0
35
0
30
0
10
30
100
100
.
管理运筹学
12
• 某造船厂根据合同需连续三年提供五艘大型货轮给客户, 该厂三年内的生产情况如表所示。
年度 正常生产 加班生产 正常生产每艘成本(万元)
13
3
600
24
2
700
32
3
650
• 加班生产比正常生产高出10%,每艘货轮积压一年的损失为
60万元,签合同时,该厂已积压两艘货轮,该厂希望在三
A2 8 2 10 2考虑3 运 9 10
A3
8 14 5 价11差 8 6 22
1 30 2 32 3 20 4 28
单位成本 交货 (万元) 台数
10.55 25
10.8 30
11
15
11.1 45
.
管理运筹学
14
分析:
• 可用线性规划,但用运输问题更简单
• 要决策的问题是各季度生产量和交货量设xij
表示第i季度生产第j季度交货的台数 • 因加班时间生产成本不同,故要区别开来,
年后有一艘备用,问应该如何安排生产,总的费用最小? .
管理运筹学
13
生产问题
• 某机床厂定下一年合同分 别于各季度末交货。已知 各季度生产成本不同,允 许存货,存储费0.12万元/ 台季,三、四季度可以加 班生产,加班生产能力8台/ 季,加班费用3万元/台
• 问如何安排生产使得总费 用最低?
季 正常生 度 产能力
三四季度可加班,视同增加两个季度 • 需求量合计115台,生产能力合计126台,供
需不平衡,因此,增加一个虚拟的需求点。
.
管理运筹学
15
建模:
成本 交货 生产 1季度正常生产 2季度正常生产 3季度正常生产 3季度加班生产 4季度正常生产 4季度加班生产
需求量
产量
1 2 3 4 5(虚拟)
10.55 10.67 10.79 10.91 0
.
管理运筹学
19
三、转运问题
解:设 xij 为从 i 到 j 的运输量,可得到有下列特点的 线性规划模型:
目标函数:Min f = 所有可能的运输费用(运输单 价与运输量乘积之和)
约束条件: 对产地(发点) i :输出量 - 输入量 = 产量 对转运站(中转点):输入量 - 输出量 = 0 对销地(收点) j :输入量 - 输出量 = 销量
.
管理运筹学
20
三、转运问题
目标函数: Min f = 2x13+ 3x14+ 3x23+ x24+ 4x28 + 2x35+ 6x36+ 3x37+ 6x38+ 4x45+ 4x46+ 6x47+ 5x48
约束条件:
s.t.
x13+ x14 ≤ 600 (1分厂供应量限制) x23+ x24+ x28 ≤ 400 (2分厂供应量限制) -x13- x23 + x35 + x36+ x37 + x38 = 0 (3转运站) -x14- x24 + x45 + x46+ x47 + x48 = 0 (4转运站)
x35+ x45 = 200 x36+ x46 = 150 x37+ x47 = 350 x38+ x48 + x28 = 300 xij ≥ 0 , i,j = 1,2,3,4,5,6,7,8
.
管理运筹学
21
三、转运问题
用“管理运筹学”软件求得结果:
x13 = 550 x14 =50 ;
x23 = 0 x24 = 100 x28 = 300 ;
.
管理运筹学
24
最小元素法举例
B1 B 2 B3 B 4 产量
A1
4 12 10 4 6 11 166 0
A2 8 2 10 2 3 9 102 0
A3
8 14 5 11 8 6 228 0
销量
80
140
1210
0
1460
48
.
管理运筹学
25
最小元素法举例
B1 B 2 B3 B 4 产量
A1
4 12 10 4 6 11 16
需求量
12 3 25 5
25 7 8
25 30 15
闲置 4 能力
12 8
28 53 45 11
.
管理运筹学
产量
30 32 20 8 28 8 126 126
17
.
管理运筹学
18
三、转运问题
例8、腾飞公司有1、2两个分厂生产产品,1、2分厂 每月分别生产400台和600台。有3、4两个分销商负 责四个城市的供应。运输网络和运输费用如图,单 位是百元。问应该如何调运仪器,可使总运输费用 最低?
原有库存15台,年末需要留有. 1台0台库存?
管理运筹学
11
生产与存储问题
第一季度 第二季度 第三季度 第四季度
第一季度 第二季度 第三季度 第四季度
销量
10.80 M M M 10
10.95 11.10
M M 15
11.10 11.25 11.00
M 25
11.25 11.40 11.15 11.30
30
M 10.8 10.92 11.04 0
32
M M 11 11.12 0
20
M M 12 14.12 0
8
M M M 11.1 0
28
M M M 14.1 0
8
25 30 15 45 11
126
126
.
管理运筹学ຫໍສະໝຸດ 16结果:生产 交货 生产 1季度正常生产 2季度正常生产 3季度正常生产 3季度加班生产 4季度正常生产 4季度加班生产
第七章 运 输 问 题
• §1 运 输 模 型 • §2 运输问题的计算机求解 • §3 运输问题的应用 • §4* 运输问题的表上作业法
.
管理运筹学
1
.
管理运筹学
2
.
管理运筹学
3
.
管理运筹学
4
.
管理运筹学
5
.
管理运筹学
6
.
管理运筹学
7
.
管理运筹学
8
.
管理运筹学
9
.
管理运筹学
10
第四季度可以加班生产,生产能力为10台,加班费用1万元每
x35 = 200 x36 = 0 x37 = 350 x38 = 0 ;
x45 = 0 x46 = 150 x47 = 0
x48 = 0 。
最小运输费用为:4600百元
如何把转运问题转化为运输问题?
.
管理运筹学
22
举例说明表上作业法
例1、某部门三个工厂生产同一产品的产量、 四个销售点的销量及单位运价如下表: