运筹学-第2章运输问题
运筹学 04 运输问题

x23
2,12 2 a2’’=0 b3’=10 第2行
x13
16,10 10 a1’=6 b3’’=0 第3列
产量 16 10 22
新产量 新销量 划去
14
销量
8
14
12
14
西北角法步骤 运价表中找出西北角(左上角)运价cij 在该处确定运量xij=min(ai,bj) 计算剩余产量ai’=ai-xij和剩余销量bj’=bj-xij,则出现 (1)ai’=0,bj’≠0——划去第i行运价; (2)ai’≠0,bj’=0——划去第j列运价; (3)ai’=0,bj’=0——划去第i行或第j列运价 重复上述,直到获得(m+n-1)个运输数量
例2:某部门三个工厂生产同一产品的产量、四个销售点的 销量及单位运价如下表。求最低运输费的运输方案。
产地 A1 A2 A3 销量
B1 4 2 8 4
B2 12 10 5 3
B3 4 3 11 5
B4 11 9 6 6
产量 8 5 9
解答
由于总产量=8+5+9=22,总销量=4+3+5+6=18,总产量>总销 量,属于产大于销的产销不平衡运输问题。增加一个销地, 销量b5=22-18=4;运价为0。得到产销平衡表如左表。表上作 业法结果见右表。 产地 B1 B2 B3 A1 4 12 4 A2 2 10 3 A3 8 5 11 销量 4 3 5 B4 11 9 6 6 B5 产量 0 8 0 5 0 9 4 产地 B1 A1 1 A2 4 A3 10 销量 4 B2 3 3 B3 4 1 9 5 B4 0 6 6 B5 产量 4 8 1 5 5 9 4
设xij为从Ai运输到Bj的产品数量,若Σai=Σbj,则称为产销平衡 的运输规划问题,数学模型为 min f=c11x11+…+c1nx1n+c21x21+…+cmnxmn xi1+xi2+…+xin=ai (i=1,2,…,m) x1j+x2j+…+xmj=bj (j=1,2,…,n) xij≥0 (i=1,2,…,m;j=1,2,…,n)
运筹学excel运输问题实验报告(一)

运筹学excel运输问题实验报告(一)运筹学Excel运输问题实验报告实验目的通过运用Excel软件解决运输问题,加深对运输问题的理解和应用。
实验内容本实验以四个工厂向四个销售点的运输为例,运用Excel软件求解运输问题,主要步骤如下:1.构建运输问题表格,包括工厂、销售点、单位运输成本、每个工厂的供应量、每个销售点的需求量等内容。
2.使用Excel软件的线性规划求解工具求解该运输问题,确定每条路径上的运输量和总运输成本。
3.对结果进行分析和解释,得出优化方案。
实验步骤1.构建运输问题表格工厂/销售点 A B C D 供应量1 4元/吨8元/吨10元/吨11元/吨35吨2 3元/吨7元/吨9元/吨10元/吨50吨3 5元/吨6元/吨11元/吨8元/吨25吨4 8元/吨7元/吨6元/吨9元/吨30吨需求量45吨35吨25吨40吨2.使用Excel软件的线性规划求解工具求解该运输问题在Excel软件中选择solver,按照下列步骤完成求解:1.添加目标函数:Total Cost=4AB+8AC+10AD+11AE+3BA+7BC+9BD+10BE+5CA+6CB+11CD+8CE+8DA+7DB+6DC+9DE2.添加约束条件:•A供应量: A1+A2+A3+A4=35•B供应量: B1+B2+B3+B4=50•C供应量: C1+C2+C3+C4=25•D供应量: D1+D2+D3+D4=30•A销售量: A1+B1+C1+D1=45•B销售量: A2+B2+C2+D2=35•C销售量: A3+B3+C3+D3=25•D销售量: A4+B4+C4+D4=403.求解结果工厂/销售点 A B C D 供应量1 10吨25吨0吨0吨35吨2 0吨10吨35吨5吨50吨3 0吨0吨15吨10吨25吨4 35吨0吨0吨0吨30吨需求量45吨35吨25吨40吨单位运输成本4元/吨8元/吨10元/吨11元/吨总运输成本2785元1480元875元550元4.结果分析和解释通过求解结果可知,工厂1最终向A销售10吨、向B销售25吨;工厂2最终向B销售10吨、向C销售35吨、向D销售5吨;工厂3最终向C销售15吨、向D销售10吨;工厂4最终向A销售35吨。
运筹学 运输问题1汇总

4 运输问题1、运输问题表上作业法的基本步骤。
答:表上作业法的基本步骤可参照单纯形法归纳如下:(1)找出初始基可行解:即要在阶产销平衡表上给出“”个数字格(基变量);(2)求各非基变量(空格)的检验数,判断当前的基可行解是否是最优解,如已得到最优解,则停止计算,否则转到下一步;(3确定入基变量,若,那么选取为入基变量;(4确定出基变量,找出入基变量的闭合回路,在闭合回路上最大限度地增加入基变量的值,那么闭合回路上首先减少为“0”的基变量即为出基变量;(5)在表上用闭合回路法调整运输方案;(6)重复2、3、4、5步骤,直到得到最优解。
2、“最小元素法”和“伏格尔”法的基本思想及基本操作。
答:最小元素法的基本思想是就近供应,即从单位运价表中最小的运价开始确定产销关系,依此类推,一直到给出基本方案为止。
伏格尔法把费用增量定义为给定行或列次小元素与最小元素的差(如果存在两个或两个以上的最小元素费用增量定义为零)。
最大差对应的行或列中的最小元素确定了产品的供应关系,即优先避免最大的费用增量发生。
当产地或销地中的一方在数量上供应完毕或得到满足时,划去运价表中对应的行或列,再重复上述步骤,即可得到一个初始的基可行解。
3、闭合回路的构成以及利用闭合回路法求检验数的基本操作。
答:判断基可行解的最优性,需计算空格(非基变量)的检验数。
闭合回路法即通过闭合回路求空格检验数的方法。
从给定的初始方案的任一空格出发寻找闭合回路,闭合回路顶点所在格括号内的数字是相应的单位运价,单位运价前的“+”、“-”号表示运量的调整方向。
空格处单位运量调整所引起的运费增量就是空格的检验数。
仿照此步骤可以计算初始方案中所有空格的检验数。
4、利用位势法求检验数以及利用闭合回路进行方案调整的基本操作。
答:位势法求解非基变量检验数的基本步骤:第一步:把方案表中基变量格填入其相应的运价并令;让每一个基变量都有,可求得所有的位势;第二步:利用计算各非基变量的检验数方案的优化基本步骤:在负检验数中找出最小的检验数,该检验数所对应的变量即为入基变量。
管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
运筹学运输问题案例

运筹学运输问题案例
以下是一个简单的运筹学运输问题的案例:
假设有一个公司需要将产品从三个工厂运输到四个销售点。
工厂和销售点的位置以及它们之间的运输成本如下:
工厂A到销售点1:10元
工厂A到销售点2:20元
工厂A到销售点3:30元
工厂A到销售点4:40元
工厂B到销售点1:20元
工厂B到销售点2:30元
工厂B到销售点3:10元
工厂B到销售点4:40元
工厂C到销售点1:30元
工厂C到销售点2:10元
工厂C到销售点3:20元
工厂C到销售点4:20元
公司希望找到一种运输策略,使得总运输成本最低。
可以使用运筹学中的运输模型来解决这个问题。
首先,我们需要确定每个工厂向每个销售点运输的货物数量。
为了最小化总成本,可以使用线性规划来求解这个问题。
在Excel或其他电子表格软件中,可以使用“Solver”插件来找到最优解。
根据最优解,我们可以计算出最低总运输成本。
例如,如果最优解是工厂A 向销售点1运输3个单位,向销售点2运输2个单位,向销售点3运输1
个单位,向销售点4运输0个单位;工厂B向销售点1运输2个单位,向
销售点2运输3个单位,向销售点3运输0个单位,向销售点4运输1个
单位;工厂C向销售点1运输1个单位,向销售点2运输0个单位,向销
售点3运输3个单位,向销售点4运输2个单位,那么最低总运输成本为150元。
运筹学中的运输问题例题

在运筹学中,运输问题是一类经典的线性规划问题,涉及将有限数量的货物从多个供应点运输到多个需求点,并且对应的成本最小化或者利润最大化。
以下是一个运输问题的例题:
假设有三个供应点A、B和C,和四个需求点X、Y、Z和W。
每个供应点都有一定数量的货物可供运输,每个需求点需要一定数量的货物。
给定的成本矩阵代表从每个供应点到每个需求点的运输成本。
供应点的供应量和需求点的需求量以及成本矩阵如下:
供应量:
A: 80单位
B: 70单位
C: 60单位
需求量:
X: 50单位
Y: 40单位
Z: 30单位
W: 70单位
成本矩阵:
X Y Z W
A 4 6 8 9
B 5 7 10 12
C 6 8 11 14
问题是如何将货物从供应点运输到需求点,以使总运输成本最小化。
在这个例题中,可以使用线性规划方法来解决运输问题,通过确定每个供应点向每个需求点运输的数量来最小化总成本。
解决该问题的线性规划模型可以表示为:
最小化ΣΣ(cost(i, j) * x(i, j))
i j
满足以下约束条件:
1. 每个供应点的供应量不能超过其可供应的数量:Σx(i, j) ≤供应点i的供应量, for each i
2. 每个需求点的需求量必须得到满足:Σx(i, j) ≥需求点j的需求量, for each j
3. x(i, j) ≥0, for each i, j
其中,x(i, j) 表示从供应点i到需求点j运输的货物数量,cost(i, j) 表示从供应点i到需求点j的运输成本。
通过求解该线性规划模型,我们可以获得最优的货物运输方案,以最小化总运输成本。
(典型例题)《运筹学》运输问题

xj0,yij0,zij0,(i=1,┈,4;j=1,┈,5)
2008/11
--22--
--《Ⅵ 产量
新购 1 第一天 M 第二天 M 第三天 M
第四天 M
1 1 1 1 0 5200
0.2 0.1 0.1 0.1 0 1000
2008/11
--21--
建立模型:
--《运筹学》 运输问题--
设 xj—第j天使用新毛巾的数量;yij—第i天送第j天使用快洗 餐巾的数量;zij—第i天送第j天使用慢洗餐巾的数量;
Min z=∑xj+∑∑0.2yij+∑∑0.1zij
第一天:x1=1000
需 第二天:x2+y12=700
求 约
m1
xij b j (j 1,2,...,n)
i1
x 0 (i 1,...,m,m 1; j 1,...,n) ij
2008/11
--16--
--《运筹学》 运输问题--
销>产问题单位运价表
产地销地 B1 B2 ┈
A1
C11 C12 ┈
A2
C21 C22 ┈
┊ ┆┊┈
Am Cm1 Cm2 ┈
2008/11
--8--
产销平衡表
--《运筹学》 运输问题--
单位运价表
B1 B2 B3 B4 产量
A1 (1) (2) 4 3 7 A2 3 (1) 1 (-1) 4 A3 (10) 6 (12) 3 9 销量 3 6 5 6
B1 B2 B3 B4 A1 3 11 3 10 A2 1 9 2 8 A3 7 4 10 5
Ⅰ Ⅱ
示。又如果生产出来的柴
Ⅲ
运筹学运输问题.

b K bK aL ,划掉运价表的第L行;反之,
'
若 x LK bK ,则令a L
的第k列。
'
aL bK ,划掉运价表
(2)在运价表剩余元素中重复(1),直
至运价表元素全部被划掉。
例:某糖果公司下设三个工厂,每日产量分别为:A1 — 7吨、A2 —4吨、A3 —9吨。该公司将这些产品运往四个 门市部,各门市部每日销量为:B1 —3吨、B2 —6吨、 B3 —5吨、B4 —6吨。各工厂到各门市部的单位运价如 下表,试确定最优的运输方案。
运输问题求解思路图
下面通过例子介绍它的计算步骤。
一、初始方案的给定
1、最小元素法★ 2、Vogel法★
1、最小元素法
基本思路是:就近供应,即从运价表中 最小运价开始确定调运量,然后次小,一直 到给出初始调运方案为止。
(1)找出运价表中最小元素 CLK ,确 定 xLK minaL , bK ,若 x LK a L,则令
x11 x21 xm1 b1 x x x b 12 22 m2 2 x1n x2n xmn bn xij 0(i 1,2,m; j 1,2,n)
min
Z cij xij
若总产量等于总销量(产销平衡),试确定总运费最省
的调运方案。
建 模 : 设 xij 为 从 产 地 Ai 运 往 销 地 Bj 的 物 资 数 量 (i=1,…m;j=1,…n。 销地 产地 A1 A2
. . .
B1 X11 X21
. . .
B2 X12 X22
. . .
... ... ...
. . .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
To
From
Chicago
St. Louis
Cincinnati Supply
6
8
10
Kansas City
150
150
7
11
Omaha
175
25 Des Moines
4
100
5
11
175
12 150
275
Demand
200
100
300
2020/9/27
特点:数字格(行数+列数-1),空格(其余)
11
优先满足运输表中西北角(即左上角)上空格的供销需求.
To From Kansas City Omaha Des Moines
Chicago 6
150
7 50
4
St. Louis Cincinnati
8
10
11
11
100
25
5 275 12
Supply 150 175 275
Demand
200
100
300
m+n-1。 证明(略) 原因是: 虽有m+n个约束条件,但由于总产量=总销量,导致只有
m+n-1个是独立的。因此有一个是多余的。 注:上述定理说明:解中非零变量的个数不超过m+n-1. 因此:非基变量的个数为:mn-(m+n-1) 定理2 运输问题一定有最优解。 原因:有可行解xij=aibj/Q. 且有下界.
运往三个货物需求地Chicago、St. Louis、Cincinnati,各供应地的 供应量、各需求地的需求量和各供应地运往各需求地的每单位物品的 运费如表。问如何安排运输,可是总费用最小?
To From Kansas City Omaha Des Moines
Chicago 6 7 4
St. Louis 8
2.2 运输问题的求解--表上作业法
产销平衡的运输问题求解
针对运输问题的特点,设计了一个方法--表上作业法。它是一种 求解运输问题的特殊方法,其实质是单纯形法。
步骤 第一步 第二步 第三步
描述
求初始基行可行解(初始调运方案) 表上给出m+n-1个数字格
求检验数并判断是否得到最优解当非基变 量的检验数σij 全都非负时得到最优解,若 存在检验数σij <0,说明还没有达到最优, 转第三步。计算表中空格检验数 调整运量,即换基,选一个变量出基,对 原运量进行调整得到新的基可行解,转入 第二步
方法 最小元素法、 西北角法、元 素差额法、
闭回路法和位 势法
表上调整(闭 回路调整)
2020/9/27
7
产销平衡的运输问题
mn
min Z
cij xij
i1 j1
s.t.
n
xij ai
j1
m
xij
bj
i1
xij
0
m ai
n
bj
i 1
j 1
2020/9/27
8
求初始基本可行解---西北角法
x11 x21
x12 x22
x13 x23
150 175
x31
x32
x33
275
x11 x21 x31 200
x12
x22
x32
100
x13 x23 x33 300
xij
0.(i
1,2,3;
j
1,2,3)
2020/9/27
3
设 xij 为从产地 Ai 运往销地 Bj 的运输量
8
10
25
125
7
11
11
175
200 4 75 5
12
200
100
300
Supply 150 175 275 600
特点:数字格(行数+列数-1),空格(其余)
2020/9/27
10
求初始基本可行解----伏格尔法
对最小元素法进行了改进,考虑到产地到销地的最小运价和次小运
价之间的差额,如果差额很大,就选最小运价先调运,否则会增加总 运费。避免最小元素法有可能出现“顾此失彼”的坏事情。
第二章 运输问题
(Transportation Problem , TP)
运输问题的数学模型(单一物品的调 度运输问题。)
运输问题的求解 产销平衡的运输问题求解 产销不平衡的运输问题求解
应用举例 软件应用
2020/9/27
1
2.1 运输问题的数学模型
例1 现需将三个供应地Kansas City、Omaha、Des Moines的物品
B1 B2 B3 B4
产地
A1 A2 A3
×
3 11 13 9
×
74
3 5 10 2×8 10× 5
销量 3 6 5 6
列差额 2 5
3
产量
7 4 9
行差 额
7
7 1
第1步 求初始方案-方法3: 沃格尔(Vogel)法
单位 销地
运价
B1 B2 B3 B4
s.t.
供应地 约束
等
n
xij ai (i 1,m)
j1
式
m
xij
bj ( j 1,, n)
约 束
i1
xij
0(i
1,m,
j
1,, n)
m
n
ai bj
Hale Waihona Puke i 1j 1总产量=总销量
供需平衡
显然,运输问 题是一类特殊 的线性规划问 题
需求 地约 束
2020/9/27
5
关于运输问题的基本结论: 定理1: 设有m个产地n个销地且产销平衡的运输问题,则基变量数为
第1步 求初始方案-方法3: 沃格尔(Vogel)法
单位 销地
运价
B1 B2 B3 B4
产地
A1 3 A2 1 A3 7
11 3 5 10
9 2×8 4 10× 5
销量 3 6 5 6
列差额 2
5
1
3
产量
7 4 9
行差额
7 1 1
第1步 求初始方案-方法3: 沃格尔(Vogel)法
单位 销地
运价
销地 产地
B1
B2
…
A1
x11 c11 x12 c12 …
A2
x21 c21 x22 c22 …
…
…
…
…
Am
销量
xm1 cm1 xm2 cm2 …
b1 b2 …
Bn 产量
x1n c1n a1 x2n c2n a2
…
…
xmn cmn am
bn
模型一般形式:
mn
min Z
cij xij
i1 j1
600
特点:数字格(行数+列数-1),空格(其余)
2020/9/27
9
求初始基本可行解---最小元素法
就近供应,即从单位运价最小的地方开始供应(调运),然后次小, 直到最后供完为止。
To From
Kansas City
Omaha
Des Moines Demand
Chicago 6
St. Louis Cincinnati
Cincinnati 10
11
11
5
12
Supply 150 175 275
Demand
200
100
300
600
2020/9/27
2
设 xij (i 1,2,3; j 1,2,3) ,从供应地调往需求地的运输量
min f 6x11 8x12 10x13 7x21 11x22 11x23 4x31 5x32 12x33 s.t.