金属材料及热处理

合集下载

金属材料及热处理基础知识

金属材料及热处理基础知识

VS
金属材料可以根据其晶体结构、相组 成、显微组织等特征进行分类。例如 ,根据晶体结构,金属材料可分为面 心立方晶格、体心立方晶格和密排六 方晶格等。根据相组成,金属材料可 分为单相合金和多相合金。根据显微 组织,金属材料可分为奥氏体、铁素 体、马氏体等。
金属材料的性质与用途
金属材料的性质包括物理性质、化学性质和机械性能等。物理性质包括密度、熔点、导热性、导电性 和磁性等。化学性质包括耐腐蚀性、抗氧化性和抗疲劳性等。机械性能包括强度、硬度、韧性、塑性 和耐磨性等。
金属材料及热处理基础知识
2023-11-08
contents
目录
• 金属材料概述 • 金属材料的结构与性能 • 金属材料热处理原理及工艺 • 常用金属材料及其热处理 • 金属材料及热处理的应用与发展 • 金属材料及热处理案例分析
01
金属材料概述
金属材料的定义与分类
金属材料是指具有金属特性的材料, 通常包括纯金属和合金。纯金属是由 同种元素组成的金属材料,如铁、铜 、铝等。合金是由两种或两种以上的 金属元素组成的金属材料,如不锈钢 、钛合金等。
热处理缺陷及防止措施
热处理过程中可能出现多种缺陷,如裂 纹、变形、氧化、脱碳等。
裂纹是热处理过程中最常见的缺陷之一 ,它主要是由于加热或冷却速度过快、和冷却速度、选
择合适的加热温度等。
变形是热处理过程中常见的缺陷之一, 它主要是由于加热或冷却过程中产生的 应力引起的。防止变形的措施包括采用 多阶段加热或冷却、合理安排工件的放
性能。
退火
将金属材料加热到适当温度后缓慢 冷却,以消除内应力、提高韧性等 。
正火
将金属材料加热到适当温度后保温 一定时间,然后空冷,使金属材料 内部结构更均匀、硬度更高。

金属材料与热处理

金属材料与热处理

金属材料与热处理一、金属材料的性能:一般指使用性能和工艺性能。

使用性能——指为保证机械零件、工程构件或工具正常工作情况下,材料应具备的性能,它包括机械性能和物理性能、化学性能等。

工艺性能——指机械零件在冷加工或热加工的制造过程中,材料应具备的性能。

它包括铸造性能、锻造性能、热处理性能以及金属切削加工性能等。

(一)、工艺性能:1、金属的物理性能——包括:密度、熔点、热膨胀性、导热性、导电性和磁性等。

(1)、密度——表示某种物质单位体积的质量。

ρ=m/v 千克/米3(或kg/cm2)g/cm2m——质量v——体积常见金属材料的密度千克/米3(2)、熔点——金属或合金的熔程度叫熔点。

纯金属有固定的熔点,绝大多数合金的熔点是一个温度范围,从开始熔化到熔化终了的温度相差十到几百度。

如含碳3%的铸铁,其熔化温度范围为1148~1279℃。

熔点高低表示金属熔化难易程度。

熔点低的金属一般熔化后其液态流动性好,易铸造成型,且凝固后收缩量小。

熔点高的金属在温度高时,其工作性能变化较小,如高速钢、硬质合金钢就是利用这一特性。

(3)、热膨胀——固态金属或合金因温度变化而具有一定的温-度,在一定温度下,固体的各个线度是一定的。

当固休受热后,随着温度升高,它的各种线度都要增长。

工程上对金属的热膨胀大小常用线膨胀系数来表示。

线膨胀系数——单位长度每升高1℃所引起的延伸量。

即:αL=L1-L0//L0(t1-t0)厘米/厘米—℃(1/℃)式中:αL——线膨胀系数L1——升温后的长度t0——升温前的温度t1——升温后的温度体膨胀系数可用线膨胀系数的三倍近似计算,αV=3αL;面膨胀系数可用线膨胀系数的二倍近似计算,αS=2αL。

金属的热膨胀量虽然很微小,但会产生很大的内应力,使工件变形或断裂。

但工业上也常利用这一特性来装配组合件。

(4)、导热性——金属在加热或冷却时能够传导热量的性质称为导热性。

不同金属的导热性各有不同,导热性的好坏用热导率来表示。

金属材料及热处理(最新版)

金属材料及热处理(最新版)
7、索氏体:在等温转变C形线鼻尖所得到的较细片状铁素体+较细片状渗碳体叫之索氏 体。等温转变温度 600-670oC(珠光体的一种)HB250-320,HRC24-32。
8、屈氏体:同上是珠光体的一种,更细片状铁素体+更细片状渗碳体叫之为屈氏体, 形成温度 600-550oC。HB330-400(HRC32-38)。
6
生产中防止回火脆性的方法主要有: z 回火后进行快速冷却(油或水冷)为消除重新产生的热应力,则在回火后可再进行
Ms, γ Fe转变为α Fe,碳原子全部被保留在α Fe中,形成一种过饱和的固溶体组织,这就
是马氏体。这种转变也称非扩散形转变。马氏体金相显微组织呈针状,黑色针状物为马氏 体,白色基体称为残余奥氏体。性能十分脆硬。HB可达 600-700(HRC60-65)。淬火即可 获得这种组织。硬度取决于C含量,低C钢淬不硬,含C量高于 0.8%,硬度几乎不再增加了。 马氏体的转变随C含量增高而降低含碳量 0.5%时Mz约 0oC,Ms290oC随着含C增Ms下降,C量 小于 0.8%时Mz也随C ↑ 而下降,0.9 以上时Mz在-100oC附近下降不大。奥氏体向马氏体的转 变有一个很大的特点:奥氏体不能百分之百转化为马氏体总有较少的奥氏保留下来,称保 留下来的为残氏奥氏体。因奥氏体为γ Fe面心产方晶格,比容(单位重量的体积)较小,约 只有 0.122—0.125,而马氏体为α Fe过饱和固溶体,比容较大,约有 0.127-0.130,可见, 在转变过程中,在马氏体形成的同时还伴随着体积的膨胀,从而会对尚未转变的奥氏体造 成一内压力,合使其不易发生向马氏体的转变而被保留下来。Ms Mz点越低剩余奥氏体量也 就越多。
金属材料与热处理
一、金属材料及热处理

金属材料及热处理基础知识.ppt

金属材料及热处理基础知识.ppt
硬质合金 HBW 450- 600 用于测量淬火钢
2 .洛氏硬度
以顶角为120度的金刚石圆锥体或直径1.588mm的淬火 钢球作为压头,以一定的压力使其压入材料表面,测量压痕 深度来确定其硬度,即为洛氏硬度。被测材料硬度,可直接 在硬度计刻盘读出。
洛氏硬度常用的有三种,分别以HRA、HRB、HRC来表示。 洛氏硬度符号、试验条件和应用表
下贝氏体:无方向性的针状铁素体上弥散分布着细小颗粒的 渗碳体
7、魏氏组织
魏氏组织是在比较大的过冷度下形成的。奥氏体过冷到这 一温度区内,便会形成魏氏组织。魏氏组织铁索体是以切变机 理形成的其生长往往都是由晶界网状铁索体分枝,许多铁赢体 片平行地向晶粒内部长大。铁素体片之间的奥氏体随后变成珠 光体。魏氏组织会降低钢的塑性和韧性,尤其是冲击韧性。
3.维氏硬度 测定维氏硬度的原理基本上和布氏硬度相同,区别在于压头
采用锥面夹角为136度的金刚石正四棱锥体,压痕是四方锥形。 维氏硬度值用HV表示。
压痕面
4. 里氏硬度
原理:当材料被一个冲击体撞击时,较硬材料使冲击体产生 的反弹速度大于较软者。
5. 硬度与强度值的对应关系 由于硬度值综合反映了材料在局部范围内对塑性变形等 的抵抗能力,故它与强度值也有一定关系。 工程上:
冷却速度对晶粒大小的影响
快速冷却,形核点多,晶粒细小 冷却速度慢,均匀长大,晶粒粗大
1.2.2 铁碳合金的基本组织 铁 碳含量>2%--弱而脆
铁碳合金
铁素体—碳熔于α铁或δ铁中的固溶体 F
钢 奥氏体—碳熔于γ铁中的固溶体 A 强而韧 碳含量 0.02%-2%
渗碳体—铁碳金属化合物含碳6.67% Fe3C
许用应力 o
n
安全系数

常用金属材料及热处理

常用金属材料及热处理

常用金属材料及热处理金属材料是一类常用的工程材料,具有良好的导电性、导热性、机械性能和可塑性。

常见的金属材料包括铁、铝、铜、钢、锌等。

铁是一种常用的金属材料,常见的有铸铁和钢。

铸铁具有较高的硬度和脆性,适合用于制造机械零件和汽车零件。

而钢具有较好的韧性和可塑性,广泛应用于建筑、制造业等领域。

铝是一种轻质金属,具有良好的导电性和导热性,常用于航空航天、汽车制造和电子设备等行业。

铝也可以通过热处理来提高其强度和硬度。

铜具有良好的导电性和导热性,广泛用于电子电气、建筑和水管等领域。

铜也可以通过热处理来强化其力学性能。

钢是一种含有铁和碳的合金,具有高强度和韧性。

钢的热处理方法包括退火、淬火和回火,可以使钢具有不同的硬度和韧性,适用于不同的应用领域。

锌是一种蓝白色的金属,具有较好的防腐性和延展性。

常用于镀锌钢管、锌板等工业制品中。

锌也可以进行热处理来提高其力学性能和耐蚀性。

热处理是金属材料加工中的一项重要工艺,通过控制材料的加热和冷却过程,可以改变其组织结构和性能。

常见的热处理方法包括退火、淬火、回火、正火等。

这些热处理方法可以改变金属的硬度、韧性、强度、耐腐蚀性等性能,使金属材料更加符合特定的工程需求。

不同金属材料适用的热处理方法有所不同,需要根据具体材料的组织结构和性能来选择合适的热处理工艺。

总而言之,常见的金属材料如铁、铝、铜、钢、锌等具有广泛的应用领域,热处理可以改变金属材料的性能,使其更符合工程需求。

金属材料在工程领域中广泛应用,其性能常常可以通过热处理来改善。

热处理是一种通过控制材料的加热和冷却过程,使其发生组织和性能上的变化的工艺。

热处理通常分为退火、淬火、回火、正火等几种方式,每种方式都有不同的应用场景和效果。

退火是最基础的热处理方式之一,通过在适当温度下加热材料一段时间后缓慢冷却,以消除材料内部的应力和提高其延展性。

退火使金属材料结构上发生改变,晶粒变大并更加均匀,强度相对降低,但具有较好的塑性和韧性。

常用金属材料及热处理

常用金属材料及热处理

常用金属材料及热处理金属是人类社会重要的材料之一,广泛应用于各行各业。

常见的金属材料包括铁、铝、铜、钢等。

在使用金属材料的过程中,为了改善其性能,常常需要对其进行热处理。

下面将介绍一些常用的金属材料和其热处理方法。

1.铁:铁是一种性能优良的金属材料,常用于制作建筑结构、机械零件等。

铁的热处理方法有退火、正火、淬火和回火等。

退火可以降低材料的硬度,提高其塑性和延展性;正火可以提高材料的韧性和强度;淬火可以使材料获得高硬度和耐磨性;回火可以降低材料的脆性,并改善其强度和韧性。

2.铝:铝是一种轻质金属,常用于制造飞机、汽车等产品。

铝的热处理方法有固溶处理、时效硬化等。

固溶处理可以改善铝的强度和塑性;时效硬化可以在固溶处理基础上,进一步提高铝的强度和硬度。

3.铜:铜是一种导电性能优良的金属材料,常用于制造导线、电路板等。

铜的热处理方法有退火、退火软化等。

退火可以消除铜材料中的应力,改善其韧性和延展性;退火软化可以使铜材料变得更加易加工。

4.钢:钢是一种优质的金属材料,常用于制造建筑结构、机械零件等。

钢的热处理方法有退火、正火、淬火和回火等。

不同的钢材在热处理时的温度和时间以及冷却速度等参数都有所差异,可以根据具体需要来选择合适的热处理方法,以获得理想的性能。

此外,还有许多其他金属材料也需要经过热处理来改善其性能,比如镍、锌、锡等。

热处理方法的选择应根据具体的金属材料以及使用要求来确定。

综上所述,金属材料在使用过程中,经常需要进行热处理来改善其性能。

不同的金属材料有不同的热处理方法,通常包括退火、正火、淬火和回火等。

通过热处理可以改变金属材料的组织结构和性能,使其达到更加理想的状态。

热处理技术在金属材料的应用中起着重要的作用,对于提高产品质量和使用寿命具有重要意义。

金属材料热处理

金属材料热处理金属材料热处理是指通过控制金属材料在一定温度下的加热和冷却过程,改变其组织结构和性能的方法。

这种处理方法在金属材料制备和加工过程中起着至关重要的作用。

下面是关于金属材料热处理的一些相关内容的介绍。

1.热处理的目的金属材料热处理的主要目的是改变金属材料的组织结构和性能,使其达到特定的要求。

具体包括以下几个方面:(1)改变金属材料的晶粒尺寸和形态,以调整材料的强度、硬度和韧性等力学性能。

(2)改变金属材料的相组成和比例,以提高材料的耐腐蚀性能和耐磨损性能。

(3)改变金属材料的残余应力状态,以提高材料的机械性能和使用寿命。

(4)改变金属材料的导电性、磁性和热传导性等电磁性能,以满足特定的工程要求。

2.常用的热处理方法金属材料热处理中常用的方法包括退火、正火、淬火和回火等。

其基本原理如下:(1)退火:将金属材料加热到一定温度,在恒温下保温一段时间,然后缓慢冷却,以改善材料的塑性、韧性和可加工性等性能。

(2)正火:将金属材料加热到一定温度,保温一段时间,然后快速冷却,以提高材料的硬度和强度等力学性能。

(3)淬火:将金属材料加热到一定温度,保温一段时间,然后快速冷却,以在材料中形成淬火组织,提高材料的硬度和耐磨性能等。

(4)回火:将淬火后的金属材料再次加热到一定温度,保温一段时间,然后冷却,以消除淬火过程中的残余应力和脆性,并调整材料的力学性能。

3.常见的金属材料与热处理方法的应用各种金属材料的组织结构和性能特点不同,因此在热处理过程中需要选择不同的方法和参数。

以下是一些常见金属材料的热处理方法及其应用:(1)碳钢:通过正火和淬火处理,可以提高碳钢的硬度、强度和耐磨性能,广泛应用于机械加工和制造业。

(2)不锈钢:通过固溶和沉淀硬化处理,可以改善不锈钢的耐腐蚀性能和耐磨损性能,常见于化工和海洋工程。

(3)铝合金:通过固溶处理和时效处理,可以改善铝合金的强度、韧性和耐腐蚀性能,常用于航空和汽车制造业。

金属材料与热处理

金属材料与热处理金属材料是工业生产中常用的材料之一,其具有良好的导电性、导热性和机械性能,因此在各行各业中得到广泛应用。

然而,金属材料的性能在制造过程中往往不能达到最佳状态,这就需要进行热处理。

热处理是对金属材料进行加热或冷却处理,以改变其组织结构和性能的一种工艺。

通过控制材料的加热温度、冷却速率和保温时间等参数,可以使金属材料达到理想的机械性能、延展性和强度等特性。

金属材料的热处理可以分为多种类型,包括退火、淬火、回火等。

其中,退火是指将金属材料加热到一定温度,然后缓慢冷却,以降低硬度、改善延展性和强度等性能。

淬火则是指将金属材料加热到相变温度,然后迅速冷却,以提高硬度和强度等性能。

回火是在淬火后对材料进行再加热处理,以减轻淬火时的残余应力和脆性。

热处理的过程非常关键,不同的热处理工艺对金属材料的性能影响很大。

例如,合理的退火处理可以使金属材料获得较好的塑性和韧性,适用于制造弯曲、拉伸等工艺要求较高的产品;而淬火处理则适用于需要获得较高硬度和强度的零部件。

另外,金属材料的选择也会影响热处理效果。

不同金属材料具有不同的热处理特性和需求,因此需要根据具体情况选择合适的金属材料和热处理工艺。

一些常见的金属材料包括钢铁、铝、铜等,它们各自有不同的机械性能和热处理特点。

总的来说,金属材料与热处理密不可分。

通过合理的热处理工艺,可以改善金属材料的性能,提高产品的质量和使用寿命。

因此,在金属加工和制造领域,热处理是一项重要的工艺,需要专业人员严格控制各项参数,以保证金属材料的优良性能和性价比。

热处理在金属材料加工和制造中起着至关重要的作用,它可以改善金属材料的组织结构和性能,提高其强度、耐磨性、耐腐蚀性等特性,同时也能够消除金属材料制造过程中产生的应力、缩小尺寸误差等问题,从而提高产品的质量和使用寿命。

一种常见的热处理工艺是退火。

退火是指将金属材料加热到其临界温度以上,然后进行缓慢冷却。

通过退火处理,金属材料的晶粒可以重新长大,原来的晶界处的碎屑得到消除;同时,还能消除金属的内应力,提高塑性和韧性。

金属材料与热处理(全)精选全文


2、常用的细化晶粒的方法:
A、增加过冷度
B、变质处理 C、振动处理。
三、同素异构转变
1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。
用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。
应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。
2、洛氏硬度
(1)测试原理:
采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。
表示符号:HR
(2)标尺及其适用范围:
每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。
见表:P21 2-2
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬
度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测
试及表示的方法。
§2-2金属的力学性能 教学过程:
复习:强度、塑性的概念及测定的方法。
2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。

金属材料及其热处理

㈡ 合金的晶体结构 合金:由两种或两种以上元素组成的具有金属特性的物质。如碳钢、合金钢、铸铁、有色合金。 相:金属或合金中凡成分相同、结构相同,并与其他部分有界面分开的均匀组成部分。 1、固溶体:与组成元素之一的晶体结构相同的固相. ⑴ 置换固溶体:溶质原子占据溶剂晶格结点位置形成的固溶体。多为金属元素之间形成的固溶体。
㈡ 热处理工艺
工艺
目的
加热温度
组织
退火
1.调整硬度,便于切削加工。 2.细化晶粒,为最终热处理作组织准备。
亚共析钢Ac3+30~50℃ 共析钢 Ac1+30~50℃ 过共析钢Ac1+30~50℃
F+P P P球
正火
1.低中碳钢同退火。 2.过工析钢:消除网状二次渗碳体。 3.普通件最终热处理
三、组织
㈠ 纯金属的组织 1、结晶:金属由液态转变为晶体的过程 ⑴ 结晶的条件——过冷:在理论结晶温度以下发生结晶的现象。 过冷度:理论结晶温度与实际结晶温度的差。 ⑵ 结晶的基本过程——晶核形成与晶核长大 形核——自发形核与非自发形核 长大——均匀长大与树枝状长大
⑶ 结晶晶粒度控制方法:①增加过冷度;②变质处理;③机械振动、搅拌 2、纯金属中的固态转变 同素异构转变:物质在固态下晶体结构随温度而发生变化的现象。 固态转变的特点:①形核部位特殊;②过冷倾向大;③伴随着体积变化。
2、冷却时的转变
⑴ 等温转变曲线及产物
650℃
600℃
550℃
350℃
A1
MS
Mf
时间
P
S
T
B上
B下
M
M+A’
A→P
A→S
A→T
A→B上
A→B下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 钢和铁的区别在于含碳量的多少: • 含碳量﹤0.02%为工业纯铁; • 含碳量在 0.02~2.06%为钢(共析 钢0.77%); • 含碳量>2.06%为生铁(铸铁) • 钢加热到高于723 ℃时出现A组织,则塑 性好的抗变形能力强。
1-3 钢的热处理
• • • • • • 一、概述 1.热处理的基本概念: 1)改善钢的性质,通常可以通过两种途径来实现: ①调整钢的化学成分; ②对钢进行热处理。 2)钢的热处理是指对钢在固态下加热,保温和冷 却,以改变其内部组织结构,从而改变钢的性能 的一种工艺法; • 3)目的在于充分发挥材料潜力、节约钢材、提高 产品质量、延长使用寿命;
临界
• 图中:V1— 相当于缓冷(退火)与“C”相交位置可以判断转变为P; • V2— 相当于空冷(正火)可判断转变为 氏体(细P) • V3— 相当于油冷(油淬)与“C”开始相交故一部分转变为T;另 一部分来不及转变,为过冷A最后转为Ms; • V4— 相当于水冷(水淬)不与“C”线相交,冷却时A来不及发生 分解,象马氏体转变。
例: 共析钢在冷却时的转变
• A等温转变曲线
过冷奥氏体 珠光体开始形成 珠光体形成中间 珠光体形成结束
珠光体形 马氏体形 贝氏体形
珠光体10~20 转 变
2 1 1
索氏体25~30
转 变 终 始
3
屈氏体30~40

温度/
上贝氏体40~45 了
≈240℃Ms
下贝氏体 50~60
时间/ 图1-21 共析碳钢的奥氏体等温转变曲线
三、钢的热处理工艺 • 1.退火— 将钢件加热到AC1或AC3以上 某一温度,保温一定时间后随炉冷却,从 而得到近似平衡组织的热处理方法。 • 目的:降低硬度,细化晶粒,提高强度, 塑性和韧性,消除内应力等 • ① 完全退火(重结晶退火):将钢加热到 AC3以上20~40 ℃使钢组织完全重结晶, 可细化晶粒、均匀组织、降低强度。

二、在铁碳合金中出现以下四种基本组织 • 1.铁素体(F)— 是碳溶解于α—Fe中形 成的间隙固溶体。室温时铁内含碳量为 0.006%。 • 特点:具有良好的塑性和韧性,强度、 硬度低。 • 2.渗碳体(Fe3C)— 是铁和碳的化合物。 其含碳量为6.67%. • 特点:熔点高、硬度高、脆性大、塑性 和韧性几乎为零。
2)洛氏硬度—原理和布氏硬度相同
• 金属体压头对金属表面加压,用一定的载荷P把 压头压入被测金属表面,卸载后以压痕的深度来 确定金属材料的硬度。压痕越深,硬度越低。 • 可用于测定从极软到极硬的金属或合金。 • 洛氏硬度与布氏硬度的关系大致如下: • • HV≈HB(当HB<400时) • HRC≈1/10HB(HB在200~600之间) • 硬度可确定焊接接头热影响组织的淬硬情况。
E
723oC
加热
P+Fe3CⅡ
时间
时间
• 图中是在极其缓慢的加热和冷却条件下建 立的,故相变点称为理论临界点。在实际 生产中钢的加热和冷却总有一定的过热和 过冷度,实际发生组织转变的温度和状态 图上所示的理论临界点之间有一定的偏离。 为区别,故加热时的临界点加注“C”,冷 却时的临界点加注“γ”
二、钢在加热及冷却时的组织转变来自强度与塑性. 1.拉伸试验
载荷
伸长量Δ
2.强度—金属材料在外力作用下抵抗变形和 破坏的能力。
• • σ=P/F (N/mm2) ①弹性极限 σe=Pe/Fo (N/mm2) • ②屈服极限(σs)— 材料承受的载荷不再增 加,而仍继续发生塑性变形时的应力。 σs= Ps/Fo (N/mm2) • 有许多金属或合金材料,并没有明显的屈 服现象发生,为表明这些材料的屈服极限。 规定的试样产生的伸长量为试样长度的0.2% 时的应力作为材料“条件屈服极限”,用 σo.2表示。
• b.在550 ℃ ~Ms(240 ℃ )之间为贝氏体转变, 中温转变区。在500~350 ℃转变为白光条状组织, 形若羽毛为上B(其塑性差);在350~320 ℃区 间转变为呈黑色个体状的BT(硬度高韧性较好); • c.在Ms(240 ℃ )~Ms之间为马氏体转变,称 为低温转变,产物为马氏体(碳在α—Fe中的过 饱和固溶体)。它具有很高的硬度,但冲击韧性 低、脆性大、延伸率很低。 • 在实际生产中,A的转变是在连续冷却的过程中 进行的,它与等温转变有区别。但为了方便在生 产实践中,把代表连续冷却的冷却速度线(V1、 V2、V3等)点在等温转变曲线上。根据与c曲线 的相交位置,可得出组织及性质
三、铁碳合金状态图 — 用来表示在平衡状态下不同 含碳量的铁碳合金在不同温度下的状态、晶 体结构和显微组织特征。
A
1534 oC 1600
D
δ
H
γ +δ δ +A
B
1493 oC
N
1390 oC
γ γ +A γ +Fe3CⅠ
A G A3 F+A A+Fe3CⅡ P r F 0.02Po S 723oC F+P P P1 Fe Q 0.8 P+Fe3CⅡ
第一章 金属材料及热处理
1-1 金属的机械性能 金属材料在一定的温度条件和受外力(载荷)作 用下,抵抗变形和断裂的能力称材料的机械性能 金属材料的常规机械性能指标包括:强度、塑性、 硬度、韧性等。 对锅炉压力容器压力管道的用材,最关心的 是材料的强度指标、塑性指标和韧性指标。 强度和塑性指标,可通过拉伸试验得知。 韧性指标,可通过冲击试验得知。
• 1.钢在加热时的转变 • 例,对共析钢,加热到AC1以上时P转变为A, 具体转变过程通过以下四个步骤
• • • • 奥氏体晶粒的产生; 奥氏体晶粒的长大; 剩余Fe3C体中的继续溶解; A的成分均匀化
• 在加热过程中,P开始全部转变为A时晶粒比较细 小,再继续加热、保温,晶粒就可长大,结果使 钢在常温下机械性能(特别是αk值)变坏。
6、疲劳 — 材料在无数次重复和交变载荷下 发生损坏的现象
• 大多数锅炉压力容器都是在交变载荷(大小、方 向周期性变化)作用下工作,其断裂时的应力远 低于该材料的抗拉强度,且低于其屈服强度,这 种现象称为金属的“疲劳”破坏。 • GB4337《金属旋转弯曲疲劳实验方法》规定, 低碳钢在5×106交变载荷作用,低合金钢在107交 变载荷作用下不会断裂时最大应力值称为疲劳强 度,用σ-1表示。 • σ-1 ≈(0.4~0.6)σb • 提高钢材的疲劳强度可采取改善结构、避免应力 集中、提高表面光洁度、进行表面热处理等措施。
• • • • • • • • • ①延伸率(δ) δ=(L1-L0)/ L0×100% L1——试样拉断后的标准长度。 L0——试样原始的标准长度。 ②断面收缩率(Ψ) Ψ=(F1-F0)/ F0×100% F1——试样断后细颈处最小截面积。 F0——拉伸前试样原始截面积。 例 低碳钢 δ=20~30%,在铸铁δ=1%。
1-2 金属的结构及铁碳合金
• • 一、铁碳合金的基本组织 钢材的性能不仅取决于钢材的化学成分,而且 还与钢材的组织有关。钢材组织无法用肉眼直 接观察,只有经过取样打磨、抛光、腐蚀显示 后在金相显微镜下才能观察到钢材的组织。 钢材是铁碳合金,在固态下都是晶体,流态纯 铁在1538℃开始结晶,得到体心立方晶格的 α—Fe,继续冷却到1394℃转变为面心立方晶 格的γ—Fe,继续冷却到910℃时又转变为体 心立方晶格的α—Fe,如再继续冷却晶格类型 不再变化。以上这些变化称铁的同素异构转变。
• ③强度极限(σb)— 材料抵抗拉力破坏作 用的最大能力。 • σb= Pb/Fo (N/mm2) • 在锅炉压力容器选材上,不仅希望材料具 有高的σs,而且具有一定的屈强比 (σs/σb),屈强比越小,结构零件的可靠 性越高,由于塑性变形不致立即破坏。
3.塑性 — 金属材料在外力作用下,产生最 大塑性变形(永久变形)而不破坏的能力。 以试样断裂后残留塑性变形的大小来表示。
2.钢冷却时的转变 • 钢在热处理时,加热和保温的主要目的是 为了使钢获得细而均匀的A晶粒。试验说明, 钢的机械性能,不仅与高温加热状态获得 奥氏体晶粒的大小,化学成分的均匀程度 有关,而且与奥氏体在冷却时的转变有直 接的关系(冷却方式和冷却速度等),冷 却速度不同,组织结构也不同,钢的性能 也不同。
E
1147
C
F
A+Fe3CⅡ+L(A+Fe3CⅡ+Fe3C) K' P+Fe3CⅡ+L(P+Fe3CⅡ+Fe3C)
L(P+Fe3CⅡ +Fe3C)
Fe3CⅠ+L
2.06
4.3
6.67
• 1.状态图的主要特性线 • ①ACD —液相线 • ②AECF —固相线 • ③PSK’ —又叫A1线表示钢在缓慢冷却时,A开始转 变为P的温度线(共析线) • ④GS线又叫A3线,表示钢在缓慢冷却时,A开始析出 F的温度线。 • ⑤PQ — 碳在F中的溶解度曲线 • ⑥ES线又叫AC线,表示钢在缓慢冷却时由A开始析出 Fe3C的温度线(表示碳在奥氏体中的溶解度曲线) • ⑦S点为共析点对应该点钢含碳量为0.8%,共析钢 • ⑧E点,碳在γ—Fe中的最大溶解度点。其含碳量为 2.06%,也是钢和铸铁(白口铁)的分界点 • ⑨P点,碳在α—Fe中的最大溶解度,其含碳量为 0.02%。还是纯铁与钢的分界点。
A等温转变的组织和性能
• 上图中有两条“C”字行曲线,左边Ⅰ曲线是A转 变开始线,曲线Ⅰ以左的区域为过冷A区,即过 冷到A1(723℃)以下未发生转变的区域,此区 域A过冷不稳定。右边曲线Ⅱ是A转变终了线,曲 线Ⅱ以右的区域为转变产物区,不同温度区域组 织转变的产物及其特性为: • a.在A1(723~550℃)为P转变即高温转变区, 按转变温度的高低产物可分为粗P、 氏体(即由P 在650 ℃)和 氏体(极细P在540 ℃ );
相关文档
最新文档