金属学与热处理期末复习总结
金属学及热处理要点总结

第一章金属的晶体结构决定材料性能的三个因素:化学成分、内部结构、组织状态金属:具有正的电阻温度系数的物质。
金属与非金属的主要区别是金属具有正的电阻温度系数和良好的导电能力。
金属键:处以聚集状态的金属原子,全部或大部分贡献出他们的价电子成为自由电子,为整个原子集体所共有,这些自由电子与所有自由电子一起在所有原子核周围按量子力学规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,依靠运动于其间的公有化的自由电子的静电作用结合起来,这种结合方式叫做金属键。
双原子模型:晶体:原子在三维空间做有规则周期性重复排列的物质叫做晶体。
晶体的特性:1、各向异性2、具有一定的熔点。
空间点阵:为了清晰地描述原子在三维空间排列的规律性,常将构成晶体的实际质点忽略,而将其抽象为纯粹的几何点,称为阵点或节点,这些阵点可以是原子或分子的中心,也可以是彼此等同的原子团或分子团的中心,各个阵点的周围环境都相同。
做许多平行的直线将这些阵点连接起来形成一个三维空间格架,叫做空间点阵。
晶胞:从点阵中选取的一个能够完全反映晶格特征的最小几何单元。
晶格常数:晶胞的棱边长度称为晶格常数,在X、Y、Z轴上分别以a、b、c表示。
致密度:表示晶胞中原子排列的紧密程度,可用原子所占体积与晶胞体积之比K表示。
三种典型的晶体结构:体心立方晶格、面心立方晶格、密排六方晶格。
体心立方晶格:α-Fe、Cr、W、V、Nb、Mo 配位数8 致密度0.68 滑移系:{110}*<111> 共12 个堆垛顺序ABAB 面心立方晶格:γ-Fe、Cu、Ni、Al、Au、Ag 配位数12 致密度0.74 滑移系:{111}*<110> 共12 个堆垛顺序ABCABC 密排六方晶格:Zn、Mg、Be、Cd 配位数12 致密度0.74 滑移系:{0001}*<1121> 堆垛顺序ABAB晶向族指数包含的晶向指数:一、写出<u v w>的排列二、给其中每个晶向加一个负号,分三次加三、给其中每个晶向加两个负号,分三次加四、给每个晶向加三个负号晶面族指数包含的晶面指数:(如果h k l 中有一个是零就写出排列各加一个负号,如果有两个零就只写出排列就行。
(金属学与热处理)工程材料学总结

(金属学与热处理)工程材料学总结第一篇:(金属学与热处理)工程材料学总结《工程材料学》总结第一部分:晶体结构与塑性变形一、三种典型的金属晶体结构1.bcc、fcc、hcp的晶胞结构、内含原子数,致密度、配位数。
Bcc:体心立方,内包含2个原子,致密度为0.68,配位数为8 Fcc:面心立方,4个原子,致密度0.74,配位数12 Hcp:密排六方,6个原子,致密度0.74,配位数12 2.立方晶系的晶向指数[uvw]、晶面指数(hkl)的求法和画法。
3.晶向族〈…〉/晶面族{…}的意义(原子排列规律相同但方向不同的一组晶向/晶面,指数的数字相同而符号、顺序不同),会写出每一晶向族/晶面族包括的全部晶向/晶面。
4.bcc、fcc晶体的密排面和密排方向。
密排面密排方向fcc {111} <110> bcc {110} <111>二、晶体缺陷1.点缺陷、线缺陷、面缺陷包括那些具体的晶体缺陷。
点缺陷:特征“三个方向尺寸都很小”空位,间隙原子,置换原子线缺陷:特征“两个方向上的尺寸很小”位错:刃型位错,螺型位错面缺陷:特征“在一个方向上尺寸很小”外表面,内界面:晶界,亚晶界,孪晶界,堆垛层错和相界 2.刃型位错的晶体模型。
三、塑性变形与再结晶1.滑移的本质:滑移是通过位错运动进行的。
2.滑移系=滑移面+ 其上的一个滑移方向。
滑移面与滑移方向就是晶体的密排面和密排方向。
3.强化金属的原理及主要途径:阻碍位错运动,使滑移进行困难,提高了金属强度。
主要途径是细晶强化(晶界阻碍)、固溶强化(溶质原子阻碍)、弥散强化(析出相质点阻碍)、加工硬化(因塑变位错密度增加产生阻碍)等。
4.冷塑性变形后金属加热时组织性能的变化过程:回复→再结晶→晶粒长大。
5.冷、热加工的概念冷加工:在再结晶温度以下进行的加工变形,产生纤维组织和加工硬化、内应力。
热加工:在再结晶温度以上进行的加工变形,同时进行再结晶,产生等轴晶粒,加工硬化、内应力全消失。
金属学与热处理复习资料(本)

金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。
2、非晶体:指原子呈不规则排列的固态物质。
3、晶格:一个能反映原子排列规律的空间格架。
4、晶胞:构成晶格的最基本单元。
5、晶界:晶粒和晶粒之间的界面。
6、单晶体:只有一个晶粒组成的晶体。
7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
8、组元:组成合金最基本的、独立的物质称为组元。
9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
11、结晶:纯金属或合金由液体转变为固态的过程。
12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。
13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。
14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。
15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。
16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。
17、珠光体:是由铁素体与渗碳体组成的机械化合物。
18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。
19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。
20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。
21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。
22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。
根据形貌不同又可分为上贝氏体和下贝氏体。
23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。
24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。
25、调质处理:淬火后高温回火的热处理工艺组合。
金属材料与热处理-考试复习笔记

热处理复习重点第一章金属材料基础知识1. 材料力学性能(1)材料在外力作用下抵抗变形和破坏的能力称为强度。
强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。
(2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。
(3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。
(4)硬度(材料表面局部区域抵抗更硬物体压入的能力)a. 布氏硬度(测较低硬度材料)用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。
HBS(钢球,<450)、HBW(硬质合金球,>650)。
b. 洛氏硬度(测较高硬度材料)利用一定载荷将交角为120°的金刚石圆锥体或直径为1.588mm的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。
HRA(金刚石圆锥,20~80)、HRB (1.588mm钢球,20~100)、HRC(金刚石圆锥,20~70)c. 维氏硬度(适用范围较广)维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。
(5)冲击韧性材料抵抗冲击载荷作用而不被破坏的能力。
通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。
(6)疲劳强度材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。
2. 铁碳相图第二章钢的热处理原理1. 钢的临界温度A c1——加热时珠光体向奥氏体转变的开始温度A c3——加热时先共析铁素体全部溶入奥氏体的终了温度A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度A r1——冷却时奥氏体向珠光体转变的开始温度A r3——冷却时奥氏体开始析出先共析铁素体的温度A rcm——冷却时奥氏体开始析出二次渗碳体的温度2. 钢在加热时的转变(1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。
最新金属学与热处理原理期末总结资料

金属学与热处理原理一、选择题(4×10)1.影响金属结晶过冷度的因素(1)金属本性,金属不同,其过冷度不同。
(2)金属纯度,纯度越高,过冷度越大(3)冷却速度,速度越大,过冷度越大(4)铸造模具所用材料,金属模具大于砂模的过冷度2.图中斜线所示晶面的晶面指数(图不好画,答案选第4个)(1)(120)(2)(102)(3)(201)(4)(012)3.影响再结晶温度的因素与规律(1)纯度越高,再结晶温度越低(2)冷变形越大,再结晶温度越低(3)加热速度越大,再结晶温度越低(4)金属本性,熔点越低,再结晶温度越低4.塑性变形后的金属随加热问题上升,时间延长,可能发生的变化(1)显微组织依次发生回复、再结晶和晶粒长大(2)组织由缺陷较高的纤维组织向低缺陷的等轴晶转变(3)内应力松弛或消除,应力腐蚀倾向减小(4)强度、硬度下降,塑性、韧性上升5.影响置换固溶体溶解度的因素(1)尺寸差,原子尺寸差越小,溶解度越大(2)电负性差,电负性差越小,溶解度越大(3)电子浓度,电子浓度越小,溶解度越大(4)晶体结构,晶格类型相同溶解度越大6.六方晶系[010]晶向还用四坐标轴表示(1)[-1-120](2)[11-20](3)[-12-10](4)[-2110]7.晶面(011)和(111)所在晶带轴(1)[-110](2)[1-10](3)[01-1](4)[-101]8.调幅分解是固分解的一中特殊形式,其特征有(1)一种固溶体分解为成分不同而结构相同的两种固溶体(2)无形核、长大过程(3)保持共格关系的转变(4)一种同素异构转变9.具有粗糙晶面的固溶体合金在正的温度梯度下(1)以二维晶核方式长大(2)以螺型位错方式长大(3)以垂直方式长大(4)晶体形态可能呈树枝状10.若某金属元素其键能越高,则(1)熔点越高(2)强度、模量越大(3)其原子半径越小(4)其热膨胀系数越小二、判断题(5×4)1.钢经加热转变得到成分单一、均匀的γ,随后水冷或者油冷的热处理工艺成为淬火,而采用空冷的工艺成为正火。
金属热处理期末总结

金属热处理期末总结一、引言金属热处理是制造业中非常重要的一部分,通过改变金属材料的组织及性能,来满足产品的使用要求。
在本学期学习金属热处理课程中,我对金属热处理的基本原理、工艺及设备有了更深入的了解。
通过实验操作与课堂学习相结合,我对金属热处理的理论知识有了更加系统的认识,并且对实际操作有了更强的操作能力。
在本篇期末总结中,我将分别从金属热处理的基本原理、工艺、设备及常见问题等方面进行总结。
二、金属热处理的基本原理金属热处理是指通过加热、保温和冷却等一系列工艺操作,使金属材料的组织及性能发生改变的过程。
金属热处理的基本原理可以归纳为三个方面:1.固溶处理:固溶处理是指将固溶体形态的材料在合适的温度范围内进行加热并保温,使合金元素得以溶解在基体中形成固溶体。
固溶处理可以提高金属材料的硬度、强度和耐腐蚀性能等。
2.时效处理:时效处理是指将固溶体形态的材料经过固溶处理后立即进行冷却到室温,并进行适当的加热保温,以增强材料的一些性能。
时效处理可以提高材料的强度、韧性和疲劳寿命等。
3.相变处理:相变处理是指将材料由一种晶体结构转变为另一种晶体结构的过程。
相变处理可以改变材料的硬度、强度、韧性等性能,同时也能改变材料的热处理工艺。
三、金属热处理的工艺金属热处理的工艺可以分为加热、保温和冷却三个阶段。
1.加热:加热是指将金属材料加热至所需的温度范围。
加热的目的是使金属材料达到固溶或相变的温度,以改变材料的组织结构。
加热的方式主要有火焰加热、电加热和电磁加热等。
2.保温:保温是指将金属材料在高温状态下保持一定的时间。
保温的过程是固溶、时效和相变等处理的基础。
保温的时间与温度应根据金属材料和所需的热处理效果进行合理选择。
3.冷却:冷却是指将金属材料从高温迅速冷却到室温或较低温度。
冷却的速度会直接影响到金属材料的组织结构及性能。
常见的冷却方法有水淬、油淬和风冷等。
四、金属热处理的设备金属热处理的设备有多种多样,根据加热方式可分为火焰加热设备、电加热设备和电磁加热设备。
金属学与热处理总结5则范文

金属学与热处理总结5则范文第一篇:金属学与热处理总结名词解释:退火:将钢加热到临界点Ac1以上或以下温度,保温以后随炉冷却以获得近于平衡状态组织的热处理工艺。
正火:将钢加热到Ac3(或Acm)以上适当温度,保温以后在空气中冷却得到珠光体类组织的热处理工艺。
淬火:将钢加热到临界点Ac3或Ac1以上一定温度,保温后以大于临界冷却速度的速度冷却得到马氏体(或下贝氏体)的热处理工艺。
回火:将淬火钢在A1以下温度加热,使其转变为稳定的回火组织,并以适当方式冷却到室温的工艺过程。
表面淬火:将工件快速加热到淬火温度,然后快速冷却,仅使表面层获得淬火组织的热处理方法。
渗碳:将低碳钢件放入渗碳介质中,在900-950加热保温,使活性原子渗入钢件表面并获得高渗碳体的工艺方法。
渗氮:向钢件表面渗入氮元素,形成富氮硬化层的化学热处理。
淬透性:钢材淬火时获得马氏体能力的特征。
淬硬性:钢材淬火时淬成马氏体可能得到的最高硬度。
回火稳定性:淬火钢对回火时发生软化过程的抵抗能力。
回火脆性:钢在一定温度范围内回火时,其冲击韧度显著下降,这种脆化现象叫做钢的回火脆性热应力:工件在加热(或冷却)时,由于不同部位的温度差异,导致热胀(或冷缩)的不一致所引起的应力称为热应力。
组织应力:由于工件不同部位组织转变不同时性而引起的内应力。
过冷奥氏体:在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体。
退火的目的:均匀钢的化学成分及组织;细化晶粒;调整硬度,消除内应力和加工硬化,改善钢的成形及切削加工性能,为淬火做好组织准备。
正火的目的:改善钢的切削加工性能;消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的力学性能。
淬火目的:提高工具、渗碳零件和其它高强度耐磨机器零件等的硬度、强度和耐磨性;回火目的:减少或消除淬火应力,保持相变的组织转变,提高钢的塑形和韧性,获得硬度强度塑形和韧性的适当结合1.试述奥氏体钢的形成过程及控制奥氏体晶粒的方法制定合适的加热规范,包括控制加热温度和保温时间;碳含量控制在一定范围内,并在钢中加入一定阻碍奥氏体晶粒长大的合金元素;考虑原始组织的影响2.珠光体、贝氏体、马氏体的特征、性能特点是什么?珠光体:片状珠光体,片间距越小,强度越高,塑性、韧性也越好;粒状珠光体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。
金属学与热处理总结【精选文档】

金属学与热处理总结一、金属的晶体结构重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性.基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念.铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法.过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程.从热力学的角度上看,没有过冷度结晶就没有趋动力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。