【基础练习】《等腰三角形》(数学沪科版八上)【含答案】
(基础题)沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案

沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m)A.34.64mB.34.6mC.28.3mD.17.3m2、下面的图形中对称轴最多的()A.长方形B.平行四边形C.圆D.半圆3、如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1B.2C.3D.44、如图,是的边的垂直平分线,D为垂足,交于点E,且,则的周长是()A.12B.13C.14D.155、如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA= ;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是()A.①②B.①②③C.①③④D.①②④6、如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC.则下列四种不同方法的作图中正确的是()A. B. C.D.7、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8、如图,在矩形ABCD中,E是AB的中点,将沿CE翻折得到,连接AF,若,则的度数是()A. B. C. D.9、等腰三角形的一个外角是100° ,它的顶角的是()A.80°B.20°C.20°或80°D.100°10、如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是A. B. C. D.不能确定11、平面直角坐标系中,已知A(2,0),B(0,2)若在坐标轴上取C点,使△ABC为等腰三角形,则满足条件的点C的个数是()A.4B.6C.7D.812、如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20°B.60°C.50°D.40°13、等腰三角形边长分别为a , b , 2,且a , b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为().A.9B.10C.9或10D.8或1014、已知三角形三边的长分别为4,9,则这个等腰三角形的周长为()A.13B.17C.22D.17或2215、如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC 于E,连接DE,则四边形ABED的周长等于( )A.17B.18C.19D.20二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,AB=BC,∠ABC=90°,点D是AB的中点,连接CD,过点B作BG⊥CD,分别交CD,CA于点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:① ;②∠ADF=∠CDB;③点F是GE的中点;④AF= AB;⑤S△ABC =5S△BDF,其中正确结论的序号是________.17、如图,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=39°,那么∠BCE=________度.18、如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将∆ABC折叠,使A点与BC 的中点D重合,折痕为MN,则线段BN的长为________.19、等腰三角形ABC的周长为30,其中一个内角的余弦值为,则其腰长为________.20、如图,点,分别为等边三角形的边,上一点,且,,则________度.21、在长方形ABCD中,AB=6,AD=10,如图所示,折叠纸片,使点A落在边BC边上的A′处,折痕为PD.则BP= ________.22、如图所示,在△ABC中,∠B=90°,AB=3,BC=4,线段AC的垂直平分线DE 交AC于D,交BC于E,连接AE,则△ABE的周长为________.23、如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为________.24、已知,在△ABC中,AB=AC,AB的垂直平分线交直线BC于点D.当∠BAC =α(90°<α<180°)时,则∠CAD的度数为________.(用含α的代数式表示)25、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是________,折痕所在的直线叫做________.三、解答题(共5题,共计25分)26、如图在△ABC中,∠BAC=90°,AB=AC,AE是过点A的直线,CD⊥AE,BE⊥AE,若BE=2,CD=6,求DE的长度.27、在中,于点E,求的度数.28、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(5,1).①画出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;②连结BC1,在坐标平面的格点上确定一个点P,使△B C1P是以B C1为底的等腰直角三角形,画出△B C1P,并写出所有P点的坐标.29、如图所示,△ABC中,AB=AC,∠BAC=120°,AP⊥AB交BC于点P。
沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案

沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16B.16C.8D.82、下列图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3、关于等边三角形ABC的说法不正确的是()A.三个角均为60°B.三条边相等C.轴对称图形D.中心对称图形4、已知:如图,在半径为4的⊙O中,AB为直径,以弦AC(非直径)为对称轴将弧AC折叠后与AB相交于点D,如果AD=3DB,那么AC的长为()A. B. C. D.65、如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为( )A.2B.2C.2 +2D.2 +26、正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°7、已知,作的平分线,在射线上截取线段,分别以O、C为圆心,大于的长为半径画弧,两弧相交于E,F.画直线,分别交于D,交于G.那么,一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形8、如图,△ABC是等腰直角三角形,∠ACB=90°,若CD⊥AB,DE⊥BC垂足分别是D,E.则图中全等的三角形共有()A.2对B.3对C.4对D.5对9、如图,在中,,平分交于点D,于点E,下列结论中正确的个数是().①平分:②;③平分;④.A.3个B.2个 C.1个 D.4个10、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC =4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为()A. B. C.1 D.11、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12、下列图形中,不是轴对称图形的是()A. B. C. D.13、等腰三角形的对称轴是()A.顶角的平分线B.底边上的高C.底边上的中线D.底边上的高所在的直线14、如图,在中,点是边、的垂直平分线的交点,已知,则()A. B. C. D.15、如图,在Rt△ABC中,∠A=90°,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,若AE=1,则BE的长为()A.2B.C.D.1二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,对角线AC, BD交于点O,已知∠AOD=120°,AB=1,则BC的长为________17、如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为________.18、如图,将△ABC沿直线折叠,折痕为EF.使点C落在AB边中点M上,若AB=8,AC=10, 则△AEM的周长为________.19、如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:米,米,,,则的长为________米.(结果保留根号)20、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②点G到△ABC各边的距离相等;③;④设GD=m,AE+AF=n,则S△AEF=mn. 其中正确的结论有________.21、用一条长为20cm的细绳围成一个等腰三角形,如果腰长是底边长的2倍,则底边长为________cm22、如图,等边△ABC中,P为三角形内一点,过P作PD⊥BC,PE⊥AB,PF⊥AC,连结AP、BP、CP,如果S△APF +S△BPE+S△PCD=,那么△ABC的内切圆半径为________23、如图,在Rt△ABC中,∠C=90°,AC=10,BC=8,AB的垂直平分线分别交AC、AB于点D、E.则AD的长度为________.24、如图,菱形的周长是,,则________ .25、如图,在矩形中,,,将矩形沿折叠后,使点恰好落在对角线上的点处,则________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、已知抛物线y= x2+bx经过点A(4,0),另有一点C(1,﹣3),若点D 在抛物线的对称轴上,且AD+CD的值最小,求点D的坐标.28、如图,△ABC中,AB=AC,∠A=120°,MN垂直平分AB,求证:.29、如图,△ABC中,AC的中垂线交AB,AC于点D,E,点D是AB的中点,判断△ABC的形状,并写出理由.30、如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、A5、C6、C7、C8、A9、A10、D11、C12、A13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。
【基础练习】《等腰三角形》(数学沪科版八上)【含答案】

15.3《等腰三角形》基础练习第1课时《等腰三角形的性质定理及推论》一、选择题1.已知等腰三角形的顶角为40°,则这个等腰三角形的底角为()A.40°B.70°C.100°D.140°2.若等腰三角形中有两边长分别为2和5,则这个三角形的第三条边长为()A.2或5 B.3 C.4 D.53.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°4.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°5.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.66.若等腰三角形的一个外角等于140°,则这个等腰三角形的顶角度数为()A.40°B.100°C.40°或70°D.40°或100°7.如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是()A.55°B.45°C.35°D.65°8.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于()A.10°B.12.5°C.15°D.20°二、填空题9.等腰三角形的一个底角为50°,则它的顶角的度数为.10.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为cm.11.已知等腰三角形的一个外角为130°,则它的顶角的度数为.12.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B 为度.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.三、解答题14.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.15.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.第2课时一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50 B.∠A=40°,∠B=60°C.∠A=40°,∠B=70 D.∠A=40°,∠B=80°3.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个4.如图,正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.8 C.9 D.105.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:26.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条 D.8条7.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形8.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有()个.A.8 B.9 C.10 D.11二、填空题9.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.10.如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=时,△AOP为等边三角形.11.如图,在3×3的网格中有A、B两点,任取一个格点E,则满足△EAB是等腰三角形的点E有个.12.在△ABC中,∠A=80°,当∠B=时,△ABC是等腰三角形.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).三、解答题14.如图,BD是△ABC的角平分线,DE∥BC交AB于点E.(1)求证:BE=DE;(2)若AB=BC=10,求DE的长.15.已知:如图,AB=AC,∠ABD=∠ACD,求证:BD=CD.第3课时一、选择题1.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B.C.5 D.2.52.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=()A.15°B.30°C.45°D.60°3.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9 cm B.8 cm C.7cm D.6cm4.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且AB=6,则EC的长为()A.3 B.4.5 C.1.5 D.7.55.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,则最长边AB的长为()A.9cm B.8cm C.7cm D.6cm6.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=8,则BD=()A.2 B.3 C.4 D.67.某市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这种草皮每平方米售价为a元,则购买这种草皮至少需要()A.450a元B.225a元C.150a元D.300a元8.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=6m,∠A=30°,则DE等于()A.1.5m B.2m C.2.5m D.3m二、填空题9.在Rt△ABC中,∠A=30°,∠B=90°,AC=10,则BC=10.如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作圆弧,交AB 于点D,若CB=4,则BD的长为.11.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D 和点E,若CE=2,则AB的长为12.已知等腰三角形的底角为15°,腰长为8cm,则腰上的高为.13.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于.三、解答题14.如图,在△ABC中,BA=BC,∠B=120°,线段AB的垂直平分线MN交AC于点D,且AD=8cm.求:(1)∠ADG的度数;(2)线段DC的长度.15.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:(1)此时轮船与小岛P的距离BP是多少海里.(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行使,请问轮船有没有触礁的危险?请说明理由.参考答案第1课时1.解:∵等腰三角形的顶角为50°,∴这个等腰三角形的底角为:(180°﹣40°)÷2=70°,故选:B.2.解:当腰为5时,根据三角形三边关系可知此情况成立,这个三角形的第三条边长为5;当腰长为2时,根据三角形三边关系可知此情况不成立;故选:D.3.解:∵AB∥CD,∴∠1=∠ACD=65°,∵AD=CD,∴∠DCA=∠CAD=65°,∴∠2的度数是:180°﹣65°﹣65°=50°.故选:A.4.解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.5.解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.6.解:①若顶角的外角等于140°,那么顶角等于40°,两个底角都等于70°;②若底角的外角等于140°,那么底角等于40°,顶角等于100°.故选:D.7.解:∵∠1=125°,∴∠ADE=180°﹣125°=55°,∵DE∥BC,AB=AC,∴AD=AE,∠C=∠AED,∴∠AED=∠ADE=55°,又∵∠C=∠AED,∴∠C=55°.故选:A.8.解:∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°﹣∠ADE=15°.故选:C.9.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.10.解:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.11.解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.12.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.13.解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.14.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.15.(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.第2课时1.解:A、∵1+1=2,∴本组数据不可以构成等腰三角形;故本选项错误;B、∵1+1<3,∴本组数据不可以构成等腰三角形;故本选项错误;C、∵1+2>2,且有两边相等,∴本组数据可以构成等腰三角形;故本选项正确;D、∵2+2<5,∴本组数据不可以构成等腰三角形;故本选项错误;故选:C.2.解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选:C.3.解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,△ABC是等腰三角形,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.4.解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有6个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:D.5.解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.6.解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.7.解:A、根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.故选:D.8.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选:B.9.解:∵在Rt△ABC中,∠C=90°,∠A=40°,∴当AB=BP1时,∠BAP1=∠BP1A=40°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×40°=20°,当AB=AP4时,∠ABP4=∠AP4B=×(180°﹣40°)=70°,当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°﹣40°×2=100°,∴∠APB的度数为:20°、40°、70°、100°.故答案为:20°或40°或70°或100°.10.解:∵AON=60°,∴当OA=OP=a时,△AOP为等边三角形.故答案是:a.11.解:如图,满足△EAB是等腰三角形的点E有5个,故答案为:5.12.解:∵∠A=80°,∴①当∠B=80°时,△ABC是等腰三角形;②当∠B=(180°﹣80°)÷2=50°时,△ABC是等腰三角形;③当∠B=180°﹣80°×2=20°时,△ABC是等腰三角形;故答案为:80°、50°、20°.13.解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:②14.(1)证明:∵BD是△ABC的角平分线,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EDB=∠EBD.∴BE=DE.(2)∵AB=BC,BD是△ABC的角平分线,∴AD=DC.∵DE∥BC,∴,∴.∴DE=5.15.证明:连接BC.∵AB=AC(已知),∴∠1=∠2(等边对等角).又∠ABD=∠ACD(已知),∴∠ABD﹣∠1=∠ACD﹣∠2(等式运算性质).即∠3=∠4.∴BD=DC(等角对等边).第3课时1.解:∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选:C.2.解:∵在Rt△ABC中,∠C=90°,AB=2BC,即BC=AB,∴∠A=30°,故选:B.3.解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,故选:B.4.解:∵△ABC是等边三角形,∴∠C=60°,AC=AB=BC=6,∵BD平分∠ABC交AC于点D,∴CD=AC=3,∵DE⊥BC,∴∠CDE=30°,∵EC=CD=1.5.故选:C.5.解:设∠A、∠B、∠C分别为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.故选:D.6.解:∴CD是高,∴∠BDC=90°,∵∠ACB=90°,∠A=30°,∴∠B=60°,BC=AB=×8=4,∴∠BCD=30°,∴BD=BC=2,故选:A.7.解:如图,作BH⊥AC于H,则∠ABH=180°﹣∠BAC=30°,在Rt△ABH中,BH=AB=10,所以S△ABC=×10×30=150,所以购买这种草皮至少需要150a元.故选:C.8.解:∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,BC=AB=3,∴DE=1.5.故选:A.9.解:∵∠A=30°,∠B=90°,∴BC=AC=5,故答案为:5.10.解:如图,过C点作BD的垂直平分线交BD于点E,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴∠BCE=∠A=30°,BE=BD,∴BE=2∴BD=2BE=4故答案为:4.11.解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC﹣∠EBA=30°,又∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直角三角形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD==2,∴AB=2AD=4.故答案为:4.12.解:如图,过C作CD⊥AB,交BA延长线于D,∵∠B=15°,AB=AC,∴∠DAC=30°,∵CD为AB上的高,AC=8cm,∴CD=AC=4cm.故答案为:4cm.13.解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故答案为4.14.解:(1)∵在△ABC中,已知BA=BC,∴∠A=∠C(等边对等角);又∵∠B=120°,∴∠A=(180°﹣120°)=30°(三角形内角和定理),∴∠ADG=90°﹣30°=60°;(2)连接BD.∵AB的垂直平分线DG交AC于点D,∴AD=BD,∠A=∠ABD=30°,∴∠CBD=90°;由(1)知∠A=∠C=30°,∴BD=CD(30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵AD=8cm,∴DC=16cm.15.解:(1)过P作PD⊥AB于点D,∵∠PBD=90°﹣60°=30°且∠PBD=∠PAB+∠APB,∠PAB=90﹣75=15°∴∠PAB=∠APB,∴BP=AB=7(海里).(2)作PD⊥AB于D,∵A处测得小岛P在北偏东75°方向,∴∠PAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠APB=15°,∴AB=PB=7海里,∵∠PBD=30°,∴PD=PB=3.5>3,∴该船继续向东航行,没有触礁的危险.。
沪科版八年级上册数学第15章 轴对称图形和等腰三角形 含答案

沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、下列四个图形中,不是轴对称图形的是()A. B. C. D.2、如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠a的度数为()A.45°B.60°C.90°D.135°3、如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC,AB两边上的高的交点D.P为AC,AB两边的垂直平分线的交点4、如图,在第一个△ABA1中∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A 3,使得A2A3=A2D;…,按此做法进行下去,则以点A4为顶点的等腰三角形的底角的度数为()A.175°B.170°C.10°D.5°5、如图,在中,的垂直平分线交于点,交于点,连接.若,,则的周长为()A.8B.11C.16D.176、三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()A. B. C. D.7、下列四种垃圾分类回收标识中,是轴对称图形的是()A. B. C. D.8、如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE ∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cmB.9cmC.11cmD.10cm9、如图,在△ABC中,AB=AC,AE平分∠BAC,DE垂直平分AB,连接CE,∠B =70°.则∠BCE的度数为()A.55°B.50°C.40°D.35°10、下列图形中,不是轴对称图形的是()A. B. C. D.11、下列说法正确的是()A.角平分线上的点到这个角两边的距离相等B.角平分线就是角的对称轴 C.如果两个角相等,那么这两个角互为对顶角 D.到线段两端点距离相等的点不一定在线段的垂直平分线上12、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是()A.42°B.60°C.36°D.46°13、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14、∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5B.PQ≥5C.PQ<5D.PQ≤515、一个等腰直角三角形的面积为3,则直角边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间二、填空题(共10题,共计30分)16、如图,ABC是边长为1的等边三角形,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的周长记作C1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2.照此规律作下去,则C2021=________.17、如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有________(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP= .18、如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3 ,则AC=________.19、等腰三角形ABC中,∠A=40°,则∠B=________20、如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=________度.21、如图,E是正方形ABCD一边上的中点,AB=4,动点P从A→B→C→D在正方形的边上运动,若△PAE为等腰三角形时,则AP的长为________.22、如图,在△ABC中,∠ACB=90°,D为边AB的中点,E,F分别为边AC,BC 上的点,且AE=AD,BF=BD.若DE=2 ,DF=4,则AB的长为________.23、下图是屋架设计图的一部分,其中BC⊥AC,DE⊥AC,点D是AB的中点,∠A=30°,AB=7.4m,则BC=________m,DE=________m.24、如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为________.25、如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠OAE=15°,则∠AEO的度数为________.三、解答题(共5题,共计25分)26、已知ABC中∠BAC=140°, AB、AC的垂直平分线分别交BC于E、F,AEF的周长为10㎝,求BC的长度和∠EAF的度数.27、请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)28、如图,△ABC三个顶点坐标分别为A(-2,3) , B(-3,1) , C(-1,1).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出:。
完整版沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案

沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A. B. C. D.2、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.63、如图,过边长为2的等边三角形ABC的顶点C作直线l⊥ BC,然后作△ABC 关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.2+4、如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°5、如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA 和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°6、在正方形网格中,∠AOB的位置如图所示,到两边距离相等的点应是( )A.C点B.D点C.E点D.F点7、如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13B.15C.17D.198、已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形9、如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正四边形B.正六边形C.正八边形D.正十边形10、如图,Rt△ABC中,∠ACB =90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB的度数为()A.40°B.30°C.20°D.10°11、如图,在△ABC中,∠A=105º,AC的垂直平分线MN交BC于点E,AB+BE=BC,则∠B的度数是()A.45ºB.50ºC.55ºD.60º12、如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A. B. C. D.13、如图,将矩形ABCD沿对角线AC折叠,使B落在E处,AE交CD于点F,则下列结论中不一定成立的是()A.AD=CEB.AF=CFC.△ADF≌△CEFD.∠DAF=∠CAF14、如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°15、三角形ABC的三条内角平分线为AE,BF,CG,下面的说法中正确的个数有()①△ABC的内角平分线上的点到三边距离相等②三角形的三条内角平分线交于一点③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则ΔABC最小周长为 ________ 。
沪科版八年级上 16.3 等腰三角形(1)(含答案)-

16.3 等腰三角形(1)【课标解读】了解等腰三角形的性质,掌握等腰三角形的性质定理及推论,会用定理及推论解决简单问题.一、选择题(每小题5分,共25分)1. 等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( )A .42°B .60°C . 36°D . 46°2. △ABC 中,AB=AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC=75°,则∠A 的度数是( )A.35°B.40°C.70 °D.110°3. 等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线4. 一个等腰三角形的一边长是7cm ,另一边长是5cm ,那么这个等腰三角形的周长是( ).A .12cmB .17cmC .19cmD .17cm 或19cm5. 如图1,∠ABC 中,AD ⊥BC ,AB =AC , ∠BAD =30°,且AD =AE ,则∠EDC 等于( )A .10°B .12.5°C .15°D . 20° D B AE CE D C B A(1) (2) (3)二、填空题(每小题5分,共25分)6. 在△ABC 中,AB =AC ,若∠B =56º,则∠C =__________.7. 若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________.8.如图2,若等腰三角形的两腰长分别为 cm 和()cm ,且周长为17cm,则第三x 26x 边的长为________.9. 如图3,∠ABC =50°,∠ACB =80°,延长CB 到D ,使BD =AB ,延长BC 到E ,使CE =CA ,连接AD 、AE ,则∠DAE =_______.10. 如图,△MNP 中, ∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG=NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 .三、解答题(50分)11.(12分)如图,已知△ABC中AB=AC,点P是底边的中点,PD⊥AB,PE⊥AC,垂足分别是D、E, 求证:PD=PE.12.(12分)(12分)如图,已知:AB=AE,BC=ED, ∠B=∠E,求证:∠C=∠D13. 下面是数学课堂上的一个学习片断,阅读后,请回答下面的问题:学习等腰三角形后,薛老师请同学们讨论这样一个问题上:“已知等腰三角形的两边长分别是7㎝,8㎝,请你求出三角形的周长.”同学们经片刻思考交流后,李刚同学举手说“三角形的周长为22㎝”;王明同学说:“是23㎝,还有一些同学也提出了不同的看法.......(1)假如你也在课堂上,你的意见如何?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)14.(14分)如图,在△ABC中,AB= AC,D是AB的中点,且DE⊥AB,已知△BCE的周长为8,且AC-BC=2,求AB、BC的长.四、探究题(不计入总分)15.(2007.四川.乐山)如图,在等边中,点分别在边上,且ABC △D E ,BC AB ,,与交于点.BD AE =AD CE F (1)求证:;(2)求的度数.AD CE =DFC ∠参考答案1.A2.B3. D4. D5.C6. 56º7. 65 º或50 º8. 5 cm9. 115° 10.6+2a11.证明:连接AP ,因为AB=AC ,点P 是底边的中点,所以AP 平分∠BAC ,又因为PD ⊥AB ,PE ⊥AC ,所以PD=PE.12.证明:连接AC 、AD ,如图所示,则△AB C≌△AED (SSS ),所以∠ACB=∠ADE,AC=AD,所以∠ACD=∠ADC,所以∠ACB+∠ACD=∠ADE+∠ADC ,也即∠BCD=∠EDC 13.(1)本题存在两种情况,也即当7㎝为腰时,则8㎝为底,所以三角形的周长为7+7+8=22㎝;当8㎝为腰时,则7为底,所以三角形的周长为8+8+7=23cm ,而李刚和王明同学都只说出其中一种,故他们的答案不全面。
沪科版八年级上册数学第15章 轴对称图形和等腰三角形 含答案

沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、等腰三角形的周长是16,底边长是4,则它的腰长是()A.4B.6C.7D.82、在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有()种.A.5B.6C.8D.133、下列图形中为轴对称图形的是()A. B. C. D.4、如图,在中,平分交于点M,过点M作交于点N,且平分,若,则的长为()A. B. C. D.5、已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10B.PQ≥10C.PQ<10D.PQ≤106、如图,将△ABC沿着DE翻折,使B点与B'点重合,若∠1+∠2=80°,则∠B的度数为()A.20°B.30°C.40°D.50°7、如图,在△ABC中,AB=AC,AB+BC=8,将△ABC折叠,使点A落在点B处,折痕为DF,则△BCF的周长是()A.8B.16C.4D.108、下列图形中,不是轴对称图形,而是中心对称图形的是()A. B. C. D.9、如图,P是∠AOB的平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D.下列结论不一定成立的是()A.∠AOP=∠BOPB.PC=PDC.∠OPC=∠OPDD.OP=PC+PD10、如图,正△ABC的边长为1,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值和最大值分别是()A.2,1+2B.2,3C.2,1+D.2,1+11、等腰三角形一个角等于50°,则它的底角是()A.80°B.50C.65°D.50°或65°12、如图,在▱ABCD中,AB=6,AD=9,AF平分∠BAD交BC于点E,交DC的延长线于点F,BG⊥AF于点G,BG=4 ,EF= AE,则△CEF的周长为().A.8B.10C.14D.1613、如图,把矩形沿对折后使两部分重合,若,则=()A.110°B.115°C.120°D.130°14、如图是“人字形”钢架,其中斜梁AB=AC,顶角∠BAC=120°,跨度BC =10m,AD为支柱(即底边BC的中线),两根支撑架DE⊥AB,DF⊥AC,则DE+DF等于()A.10 mB.5 mC.2.5 mD.9.5 m15、下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有()A.1种B.2种C.3种D.4种二、填空题(共10题,共计30分)16、在△ABC中,∠C=90°,D是边BC上一点,连接AD,若∠BAD+3∠CAD=90°,DC=a,BD=b,则AB=________. (用含a,b的式子表示)17、如图,矩形ABCO中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC对折得到△AB′C,AB′交y轴于D点,则D点的坐标为________18、扬州园林中有许多花窗,图案中蕴含着对称之美,现从中选取如图的四种窗格图案,其中既是中心对称图形又是轴对称图形的有________个.19、如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=6。
沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案

沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、下列图形中,既是轴对称图形又是中心对称图形有()A.1个B.2个C.3个D.4个2、如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE =BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S:S△PAB=AC:AB;③BP垂直平分△PACCE;④∠PCF=∠CPF.其中,正确有()A.1个B.2个C.3个D.4个3、观察下列图案,既是中心对称图形又是轴对称图形的是()A. B. C. D.4、如图,在中,,点是的中点,连接,将沿翻折得到与交于点,连接.若,则点到的距离为()A. B. C. D.5、如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A,B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.55°D.90°6、如图∠AOP=∠BOP=15o, PC∥OA,PD⊥OA,若PC=10,则PD等于A.5B.C.10D.2.57、下列图形:①三角形,②线段,③正方形,④直角、⑤圆,其中是轴对称图形的个数是()A.4个B.3个C.2个D.1个8、如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段AE的长为()A. B.3 C. D.9、如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2 ﹣2B.6C.2 ﹣2D.410、如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等 C.折叠后得到的图形是轴对称图形 D.△EBA和△EDC′一定是全等三角形11、如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为( )A.m+nB.2m+nC.m+2nD.2m -n12、下列图形中,是轴对称图形的是()A. B. C. D.13、如图,E,F分别是矩形ABCD的边AB,CD上的点,将四边形AEFD沿直线EF折叠,点A与点C重合,点D落在点D处,已知AB=8,BC=4,则AE的长是()A.4B.5C.6D.714、如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°15、下列四个图案中,不是轴对称图案的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,以点B为圆心,小于AB长为半径作弧,分别交AB、BC于点E、F,再分别以点E、F为圆心,以大于长为半径作弧,两弧相交于点G,连结BG并延长交AC于点D,若∠A=80°,则∠ADB =________度.17、如图,在△ABC中,AB=AC,∠BAC=88°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠DOE的度数为________.18、如图,AB为OO的直径,,M为的中点,过M作MNllOC交AB于N,连结BM,则∠BMN的度数为________19、在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,以PB为边作等边△PBM,则线段AM的长最大值为________.20、如图,把△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A 与∠1.∠2之间有一种数量关系始终保持不变,请试着找出这个规律为________.21、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.22、如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为________.23、如图,在平行四边形ABCD 中,AB=4,BC=6,AE⊥BC 于点E,AF⊥CD 于点F,若∠EAF=60°,则平行四边形的面积是________.24、如图,将矩形ABCD沿对角线AC折叠,E是点D的对称点,CE交AB于点F.若AB=16,BC=8,则BF的长为________.25、已知的三条边长分别为3,4,6,在所在平面内画一条直线,将分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画________条三、解答题(共5题,共计25分)26、如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.27、如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.28、已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.29、如图,OB是∠AOC的平分线,OD是∠COE的平分线,∠AOE=150°,∠AOB=40°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.3 《等腰三角形》基础练习第 1 课时《等腰三角形的性质定理及推论》一、选择题1.已知等腰三角形的顶角为40°,则这个等腰三角形的底角为()A.40°B.70°C. 100 °D.140 °2.若等腰三角形中有两边长分别为 2 和5,则这个三角形的第三条边长为()A.2 或5B. 3C. 4D. 53.如图,AB∥ CD, AD=CD,∠ 1=65 °,则∠ 2 的度数是()A.50°B.60°C. 65°D.70°4.如图, AD,CE分别是△ ABC的中线和角均分线.若AB=AC,∠ CAD=20°,则∠ACE的度数是()A.20°B.35°C. 40°D. 70°5.若实数 m、n 知足等式 |m ﹣ 2|+=0,且 m、 n 恰巧是等腰△ ABC 的两条边的边长,则△ ABC的周长是()A.12B.10C.8 D.66.若等腰三角形的一个外角等于140 °,则这个等腰三角形的顶角度数为()A.40°B.100 °C. 40°或 70°D. 40°或 100 °7.如图,已知DE∥ BC, AB=AC,∠ 1=125 °,则∠ C 的度数是()A.55°B.45°C. 35°D. 65°8.如图,△ ABC中, AD⊥ BC, AB=AC,∠ BAD=30°,且 AD=AE,则∠ EDC等于()A.10°B. 12.5 °C. 15°D. 20°二、填空题9.等腰三角形的一个底角为50°,则它的顶角的度数为.10.一个等腰三角形的两边长分别为4cm 和 9cm ,则它的周长为cm.11.已知等腰三角形的一个外角为130 °,则它的顶角的度数为.12.如图,△ ABC中.点 D 在 BC边上, BD=AD=AC, E 为 CD 的中点.若∠CAE=16°,则∠ B 为度.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特点值”,记作k,若 k=,则该等腰三角形的顶角为度.三、解答题14.如图,点D、 E 在△ ABC 的 BC 边上, AB=AC,AD=AE.求证: BD=CE.15.如图,△ ABC是等边三角形,BD 是中线,延伸BC 至 E,CE=CD,(1)求证: DB=DE.(2)在图中过 D 作 DF⊥ BE交 BE于 F,若 CF=4,求△ ABC 的周长.第2课时一、选择题1.以以下各组数据为边长,能够组成等腰三角形的是()A.1, 1, 2B. 1,1,3C. 2,2, 1D. 2,2,52.在△ABC 中,其两个内角以下,则能判断△ABC为等腰三角形的是()A.∠ A=40°,∠ B=50B.∠ A=40°,∠ B=60°C.∠ A=40°,∠ B=70D.∠ A=40°,∠ B=80°AB 于点E,3.如图,在△ABC中,∠ A=36°,∠ C=72°,点 D 在AC 上, BC=BD, DE∥ BC交则图中等腰三角形共有()A.3 个B.4 个C.5 个D.6 个4.如图,正方形网格中,网格线的交点称为格点,已知A, B 是两格点,假如 C 也是图中C 的个数是()的格点,且使得△ABC为等腰三角形,则点A.6B. 8C.9D.105.以下条件中,不可以判断△ABC 是等腰三角形的是()A.a=3,b=3 ,c=4B. a: b: c=2: 3: 4C.∠ B=50°,∠ C=80°D.∠ A:∠ B:∠ C=1: 1:26.已知△ ABC 的三条边长分别为3,4,6,在△ ABC所在平面内画一条直线,将△ABC切割成两个三角形,使此中的一个是等腰三角形,则这样的直线最多可画()A.5 条B.6 条C.7 条D.8 条7.以下三角形,不必定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120 °的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形8.如图, A、B 两点在正方形网格的格点上,每个方格都是边长为 1 的正方形,点 C 也在格点上,且△ABC是等腰三角形,则切合条件是点C共有()个.A.8B.9C. 10D. 11二、填空题9.如图,在△ABC中,∠ ACB=90°,∠ BAC=40°,在直线 AC上找点 P,使△ ABP 是等腰三角形,则∠ APB的度数为.10.如图已知OA=a, P 是射线 ON 上一动点,∠ AON=60°,当 OP=时,△ AOP为等边三角形.11.如图,在3× 3 的网格中有A、B 两点,任取一个格点E,则知足△EAB是等腰三角形的点 E 有个.12.在△ ABC中,∠ A=80°,当∠ B= 13.如图,以下 4 个三角形中,均有这个三角形分红两个小等腰三角形的是时,△ ABC 是等腰三角形.AB=AC,则经过三角形的一个极点的一条直线不可以够将(填序号).三、解答题14.如图, BD 是△ ABC的角均分线,DE∥ BC 交 AB 于点 E.(1)求证: BE=DE;(2)若 AB=BC=10,求 DE 的长.15.已知:如图,AB=AC,∠ ABD=∠ ACD,求证: BD=CD.第3课时一、选择题1.如图∠ AOP=∠ BOP=15°, PC∥ OA, PD⊥ OA,若 PC=10,则 PD 等于()A.10B.C. 5D.2.52.如图,在Rt△ ABC中,∠C=90°, AB=2BC,则∠A=()A.15°B. 30°C. 45°D. 60°3.如图,在Rt△ ABC中,∠ C=90°,∠ A=30°, BC=4cm,则 AB 等于()A.9 cm B. 8 cm C. 7cm D. 6cm4.如图,在等边△ABC中,BD 均分∠ABC交AC于点D,过点D 作 DE⊥BC于点E,且AB=6,则 EC的长为()A 3B 4.5C 1.5D 7.55.△ ABC中,∠A:∠ B:∠ C=1: 2: 3,最小边BC=3cm,则最长边AB 的长为()A.9cm B. 8cm C. 7cm D. 6cm6.如图,在△ABC中,∠ ACB=90°, CD是高,∠A=30°,AB=8,则BD=()A.2B.3C. 4D.67.某市为了美化环境,计划在以下图的三角形空地上栽种草皮,已知这类草皮每平方米售价为 a 元,则购置这类草皮起码需要()A.450a 元B. 225a 元C.150a 元D. 300a 元8.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=6m,∠ A=30°,则 DE等于()A.1.5m B. 2m C. 2.5m D. 3m二、填空题9.在 Rt△ ABC中,∠ A=30°,∠ B=90°, AC=10,则 BC=10.如图,在△A BC 中,∠ ACB=90°,∠ A=30°,以点 C 为圆心, CB 长为半径作圆弧,交AB 于点 D,若 CB=4,则 BD 的长为.11.如图,在Rt△ ABC 中,∠ C=90°,∠ ABC=60°, AB 的垂直均分线分别交AB 与 AC 于点 D 和点 E,若 CE=2,则 AB 的长为12.已知等腰三角形的底角为15°,腰长为 8cm,则腰上的高为.13.如图,在△A BC 中,∠ B=∠ C=60°,点 D 在 AB 边上, DE⊥ AB,并与 AC 边交于点E.如果 AD=1, BC=6,那么 CE等于.三、解答题14.如图,在△A BC 中, BA=BC,∠ B=120°,线段AB 的垂直均分线MN 交 AC 于点 D,且AD=8cm.求:(1)∠ ADG 的度数;(2)线段 DC的长度.15.某轮船由西向东航行,在 A 处测得小岛 P 的方向是北偏东 75°,又持续航行 7 海里后,在 B处测得小岛 P 的方向是北偏东 60°,求:( 1)此时轮船与小岛P 的距离 BP 是多少海里.(2)小岛点 P 方圆 3 海里内有暗礁,假如轮船持续向东履行,请问轮船有没有触礁的危险?请说明原因.参照答案第1课时1.解:∵等腰三角形的顶角为50°,∴这个等腰三角形的底角为:( 180°﹣ 40°)÷ 2=70°,应选: B.2.解:当腰为 5 时,依据三角形三边关系可知此状况建立,这个三角形的第三条边长为5;当腰长为 2 时,依据三角形三边关系可知此状况不建立;应选: D.3.解:∵ AB∥ CD,∴∠ 1=∠ ACD=65°,∵ AD=CD,∴∠ DCA=∠ CAD=65°,∴∠ 2 的度数是: 180°﹣ 65°﹣ 65°=50°.应选: A.4.解:∵ AD 是△ ABC 的中线, AB=AC,∠ CAD=20°,∴∠ CAB=2∠ CAD=40°,∠ B=∠ ACB=(180°﹣∠ CAB)=70°.∵ CE是△ ABC的角均分线,∴∠ ACE= ∠ ACB=35°.应选: B.5.解:∵ |m ﹣ 2|+=0,∴m﹣2=0, n﹣ 4=0,解得 m=2, n=4,当 m=2 作腰时,三边为 2,2, 4,不切合三边关系定理;当 n=4 作腰时,三边为2, 4, 4,切合三边关系定理,周长为:2+4+4=10.应选: B.6.解:①若顶角的外角等于140 °,那么顶角等于 40°,两个底角都等于70°;②若底角的外角等于140°,那么底角等于40°,顶角等于100°.应选: D.7.解:∵∠ 1=125 °,∴∠ ADE=180°﹣125°=55°,∵DE∥BC, AB=AC,∴AD=AE,∠ C=∠ AED,∴∠ AED=∠ ADE=55°,又∵∠ C=∠ AED,∴∠C=55°.应选:A.8.解:∵△ ABC中, AD⊥ BC, AB=AC,∠ BAD=30°,∴∠ DAC=∠BAD=30°(等腰三角形的顶角均分线、底边上的中线、底边上的高互相重合),∵AD=AE(已知),∴∠ ADE=75°∴∠ EDC=90°﹣∠ADE=15°.应选: C.9.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为 80°.故填 80°.10.解:①当腰是4cm ,底边是9cm 时:不知足三角形的三边关系,所以舍去.②当底边是4cm,腰长是9cm 时,能组成三角形,则其周长=4+9+9=22cm.故填 22.11.解:当50°为顶角时,其余两角都为65°、 65°,当50°为底角时,其余两角为50°、80°,所以等腰三角形的顶角为 50°或 80°.故答案为: 50°或 80°.12.解:∵ AD=AC,点 E 是 CD 中点,∴AE⊥ CD,∴∠ AEC=90°,∴∠ C=90°﹣∠CAE=74°,∵ AD=AC,∴∠ADC=∠C=74°,∵ AD=BD,∴2∠ B=∠ ADC=74°,∴∠ B=37°,故答案为 37°.13.解:∵△ ABC中, AB=AC,∴∠ B=∠ C,“特点值”,记作k,若k=,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的∴∠ A:∠ B=1: 2,即 5∠ A=180°,∴∠ A=36°,故答案为: 36.14.证明:如图,过点 A 作 AP⊥ BC于 P.∵ AB=AC,∴BP=PC;∵ AD=AE,∴DP=PE,∴BP﹣ DP=PC﹣ PE,∴BD=CE.15.( 1)证明:∵△ ABC是等边三角形,BD 是中线,∴∠ ABC=∠ ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵ CE=CD,∴∠ CDE=∠CED.又∵∠ BCD=∠ CDE+∠CED,∴∠ CDE=∠CED=∠ BCD=30°.∴∠ DBC=∠ DEC.∴ DB=DE(等角平等边);(2)∵∠ CDE=∠ CED= ∠ BCD=30°,∴∠ CDF=30°,∵ CF=4,∴ DC=8,∵ AD=CD,∴ AC=16,∴△ ABC的周长 =3AC=48.第2课时1.解: A、∵ 1+1=2,∴本组数据不可以够组成等腰三角形;故本选项错误;B、∵ 1+1< 3,∴本组数据不可以够组成等腰三角形;故本选项错误;C、∵1+2>2,且有两边相等,∴本组数据能够组成等腰三角形;故本选项正确;D、∵ 2+2<5,∴本组数据不可以够组成等腰三角形;故本选项错误;应选: C.2.解;当顶角为∠A=40°时,∠ C=70°≠ 50°,当顶角为∠ B=50°时,∠ C=65°≠40°所以 A 选项错误.当顶角为∠ B=60°时,∠ A=60°≠40°,当∠ A=40°时,∠ B=70°≠ 60°,所以 B 选项错误.当顶角为∠ A=40°时,∠ C=70°=∠ B,所以 C 选项正确.当顶角为∠ A=40°时,∠ B=70°≠ 80°,当顶角为∠ B=80°时,∠ A=50°≠40°所以 D 选项错误.应选: C.3.解:∵在△ABC中, AB=AC,∠ A=36°,∴∠ ABC=∠ C==72°,△ ABC是等腰三角形,∵BD 均分∠ ABC,∴∠ABD=∠ DBC=36°,∵DE∥BC,∴∠ EDB=∠ DBC=36°,∴∠ ABD=∠ EDB=∠A,∴AD=BD, EB=ED,即△ ABD 和△ EBD是等腰三角形,∵∠ BDC=180°﹣∠ DBC﹣∠ C=72°,∴∠ BDC=∠ C,∴BD=BC,即△ BCD是等腰三角形,∵DE∥BC,∴∠ AED=∠ ABC,∠ ADE=∠ C,∴∠ AED=∠ ADE,∴AE=AD,即△ AED是等腰三角形.∴图中共有 5 个等腰三角形.应选: C.4.解:如图,分状况议论:① AB 为等腰△ ABC的底边时,切合条件的C点有 6 个;② AB 为等腰△ ABC此中的一条腰时,切合条件的 C 点有4 个.应选: D.5.解: A、∵ a=3, b=3,c=4,∴ a=b,∴△ ABC是等腰三角形;B、∵ a: b: c=2: 3: 4∴ a≠ b≠ c,∴△ ABC不是等腰三角形;C、∵∠ B=50°,∠ C=80°,∴∠ A=180°﹣∠ B﹣∠ C=50°,∴∠ A=∠ B,∴ AC=BC,∴△ ABC是等腰三角形;D、∵∠ A:∠ B:∠ C=1: 1: 2,∵∠ A=∠ B,∴ AC=BC,∴△ ABC是等腰三角形.应选: B.6.解:以下图:当 BC1=AC1, AC=CC2,AB=BC3, AC4=CC4, AB=AC5, AB=AC6, BC7=CC7时都能获得切合题意的等腰三角形.应选: C.7.解: A、依占有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120 °的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角必定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.应选:D.8.解:①点 C 以点 A 为标准,AB 为底边,切合点 C 的有 5 个;②点 C 以点 B 为标准, AB 为等腰三角形的一条边,切合点 C 的有4 个.所以切合条件的点C共有 9 个.应选: B.9.解:∵在Rt△ ABC中,∠ C=90°,∠ A=40°,∴当 AB=BP1时,∠ BAP1=∠ BP1A=40°,当 AB=AP3 时,∠ ABP3=∠AP3B= ∠ BAC= × 40°=20°,当 AB=AP4 时,∠ ABP4=∠AP4B= ×( 180°﹣40°)=70°,当 AP2=BP2时,∠ BAP2=∠ ABP2,∴∠ AP2B=180°﹣ 40°× 2=100°,∴∠ APB 的度数为: 20°、40°、70°、 100°.故答案为: 20°或 40°或 70°或 100°.10.解:∵ AON=60°,∴当 OA=OP=a时,△ AOP 为等边三角形.故答案是: a.11.解:如图,知足△ EAB是等腰三角形的点 E 有5 个,故答案为: 5.12.解:∵∠A=80°,∴①当∠ B=80°时,△ ABC是等腰三角形;②当∠ B=( 180°﹣ 80°)÷ 2=50°时,△ ABC 是等腰三角形;③当∠ B=180°﹣ 80°× 2=20°时,△ ABC是等腰三角形;故答案为: 80°、 50°、20°.13.解:由题意知,要求“被一条直线分红两个小等腰三角形”,①中分红的两个等腰三角形的角的度数分别为:36°,36°,108°和 36°,72°72°,能;②不可以;③明显原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°, 72, 72°和 36°, 36°, 108°,能.故答案为:②14.( 1)证明:∵ BD 是△ ABC 的角均分线,∴∠ EBD=∠ CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EDB=∠ EBD.∴BE=DE.( 2)∵ AB=BC, BD 是△ ABC 的角均分线,∴ AD=DC.∵DE∥BC,∴,∴.∴DE=5.15.证明:连结BC.∵AB=AC(已知),∴∠ 1=∠ 2(等边平等角).又∠ ABD=∠ ACD(已知),∴∠ ABD﹣∠ 1=∠ ACD﹣∠ 2(等式运算性质).即∠ 3=∠ 4.∴ BD=DC(等角平等边).第3课时1.解:∵ PC∥ OA,∴∠ CPO=∠ POA,∵∠ AOP=∠ BOP=15°,∴∠ AOP=∠ BOP=∠ CPO=15°,过点 P 作∠ OPE=∠CPO交于 AO 于点 E,则△ OCP≌△ OEP,∴PE=PC=10,∵∠ PEA=∠OPE+∠ POE=30°,∴PD=10× =5.应选: C.2.解:∵在Rt△ ABC中,∠ C=90°, AB=2BC,即 BC= AB,∴∠ A=30°,应选: B.3.解:∵在Rt△ ABC中,∠ C=90°,∠ A=30°, BC=4cm,∴AB=2BC=8cm,应选: B.4.解:∵△ ABC是等边三角形,∴∠ C=60°, AC=AB=BC=6,∵BD 均分∠ ABC交 AC 于点 D,∴CD= AC=3,∵ DE⊥BC,∴∠ CDE=30°,∵EC= CD=1.5.应选: C.5.解:设∠ A、∠ B、∠ C 分别为 k、2k、 3k,则 k+2k+3k=180°,解得 k=30°,2k=60 °,3k=90 °,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.应选: D.6.解:∴ CD 是高,∴∠ BDC=90°,∵∠ ACB=90°,∠ A=30°,∴∠ B=60°,BC= AB=× 8=4,∴∠ BCD=30°,∴BD= BC=2,应选: A.7.解:如图,作BH⊥ AC于 H,则∠ ABH=180°﹣∠ BAC=30°,在 Rt△ ABH 中, BH= AB=10,所以 S△ ABC=× 10× 30=150,所以购置这类草皮起码需要150a 元.应选: C.8.解:∵立柱BC、 DE 垂直于横梁AC,∴BC∥ DE,∵D是 AB中点,∴ AD=BD,∴ AE: CE=AD: BD,∴ AE=CE,∴ DE 是△ ABC的中位线,∴DE= BC,在 Rt△ ABC中, BC= AB=3,∴ DE=1.5.应选: A.9.解:∵∠ A=30°,∠ B=90°,∴BC= AC=5,故答案为: 5.10.解:如图,过 C 点作 BD 的垂直均分线交BD 于点 E,∵在△ ABC中,∠ ACB=90°,∠ A=30°, BC=4,∴∠ BCE=∠ A=30°, BE=BD,∴BE=2∴BD=2BE=4故答案为: 4.11.解:∵在Rt△ ABC中,∠ C=90°,∠ ABC=60°,∴∠ A=30°,∵DE 是线段 AB 的垂直均分线,∴ EA=EB, ED⊥ AB,∴∠ A=∠ EBA=30°,∴∠ EBC=∠ ABC﹣∠ EBA=30°,又∵ BC⊥ AC, ED⊥ AB,∴DE=CE=2.在直角三角形ADE 中, DE=2,∠ A=30°,∴AE=2DE=4,∴ AD==2 ,∴ AB=2AD=4.故答案为: 4.12.解:如图,过C作CD⊥AB,交BA延长线于D,∵∠ B=15°,AB=AC,∴∠ DAC=30°,∵CD 为 AB 上的高, AC=8cm,∴CD= AC=4cm.故答案为: 4cm.13.解:∵在△ABC 中,∠ B=∠ C=60°,∴∠ A=60°,∵DE⊥AB,∴∠ AED=30°,∵AD=1,∴AE=2,∵ BC=6,∴AC=BC=6,∴CE=AC﹣ AE=6﹣ 2=4,故答案为 4.14.解:(1 )∵在△ ABC中,已知BA=BC,∴∠ A=∠ C(等边平等角);又∵∠ B=120°,∴∠ A=(180°﹣120°)=30°(三角形内角和定理),∴∠ ADG=90°﹣30°=60°;( 2)连结 BD.∵ AB 的垂直均分线DG 交 AC 于点 D,∴AD=BD,∠ A=∠ABD=30°,∴∠ CBD=90°;由( 1)知∠ A=∠ C=30°,∴BD= CD( 30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵ AD=8cm,∴DC=16cm.15.解:(1 )过 P 作 PD⊥AB 于点 D,∵∠ PBD=90°﹣ 60°=30°且∠ PBD=∠ PAB+∠ APB,∠ PAB=90﹣ 75=15°∴∠ PAB=∠ APB,∴BP=AB=7(海里).( 2)作 PD⊥ AB于 D,∵ A 处测得小岛 P 在北偏东 75°方向,∴∠ PAB=15°,∵在 B 处测得小岛 P 在北偏东 60°方向,∴∠ APB=15°,∴AB=PB=7海里,∵∠ PBD=30°,∴PD= PB=3.5> 3,∴该船持续向东航行,没有触礁的危险.。