浙大版概率论与数理统计答案---第五章
概率论与数理统计及其应用_习题答案_(浙大_盛骤谢式千版本)

《概率论与数理统计》习题解答教材:《概率论与数理统计及其应用》,浙江大学盛骤、谢式千编,高等教育出版社,2004年7月第一版目录第一章随机事件及其概率1第二章随机变量及其分布9第三章随机变量的数字特征25第四章正态分布33第五章样本及抽样分布39第六章参数估计42第七章假设检验53第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+= )()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.485、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率 (1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第5章 大数定律及中心极限定理

p
P
50 I 1
X
i
300
1
300 50 50 6
5
=1
2.89
0.0019
3.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差相互独立 且在(-0.5,0.5)上服从均匀分布。
(1)将 1500 个数相加,问误差总和的绝对值超过 15 的概率是多少?? (2)最多可有几个数相加使得误差总和的绝对值小于 10 的概率不小于 0.90?
1500
P
k 1
Xk
1500 0
x
x
1500 1 / 12
于是
P X 15 1 P X 15 1 P 15 X 15
1
P
15 0
X 0
15 0
1500 1/12 1500 1/12 1500 1/12
1
15 1500
1
/
12
15 1500 1/12
a,记为
Yn P a 。
(2)性质
设 X n P a , Yn P b ,函数 g(x,y)在点(a,b)连续,则 g( X n ,Yn ) P g(a, b)
1 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
3.伯努利大数定理
设 fA 是 n 次独立重复试验中事件 A 发生的次数,p 是事件 A 在每次试验中发生的概率,
∀ε>0,有
lim P n
fA n
p
1
或
lim
n
P
fA n
p
1
伯努利大数定理表明:,当 n 很大时,可用事件的频率来代替概率。
二、中心极限定理
概率论与数理统计-浙江大学数学系

定理5.2 契比雪夫定理的特殊情形 : 设随机变量序列X 1 , X 2 , , X n , 相互独立,且具有相同的 数学期望 和相同的方差 2,作前n个随机变量的算术平均: Yn 1 X k , n k 1
n
则 0,有:
1 n lim P Yn lim P X k 1. n n n k 1 n 1 P 即, X k . n k 1 1 n 证明:由于E Yn E X k 1 n , n k 1 n 2 1 n 1 n 2 1 D Yn D X k 2 D X k 2 n n n n k 1 n k 1
师介绍——》统计研究所——》张彩伢
►
2
第五章 大数定律和中心极限定理
关键词: 契比雪夫不等式
大数定律 中心极限定理
3
§1 大数定律
背景
本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证
为了证明大数定理,先介绍一个重要不等式
4
定理5.1 契比雪夫不等式 :设随机变量X 具有数学期望E X , 方差D X 2
此外,定理中要求随机变量的方差存在,但当随 机变量服从相同分布时,就不需要这一要求。
定理5.3 辛钦定理 : 设随机变量序列X 1 , X 2 , , X n , 相互独立,服从同一分布, 且存在数学期望,作前n个随机变量的算术平均:Yn 1 X k n k 1 则 0,有: 1 n lim P Yn lim P X k 1. n n n k 1
§2 中心极限定理
背景:
有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。
《概率论与数理统计答案》第五章

P{ X − 8 > 3} = 0.1336
3.设 X 1 , X 2 , " , X n 为来自总体 X ~ P (λ ) 的一个样本, X 、 S 2 分别为样本均值 和样本方差。求 DX 及 ES 2 。 答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体 期望、总体方差的关系,显然应由定理 5-1 来解决这一问题。
2
=(
1
hd a
) e
n 2 − 1
n
为
2σ 2
2πσ 2
w. c
∑ ( xi − µ )2
i =1
om
,
8.设 X 1 , X 2 , " , X n 为来自正态总体 X ~ N ( µ , σ 2 ) 的一个样本, µ 已知,求 σ 2
第五章 习题参考答案与提示
⎧ ⎪λax a −1e − λx , x > 0, (2) f ( x, λ ) = ⎨ ⎪ x ≤ 0, ⎩ 0,
1 3 1 (3) X 1 + X 2Leabharlann + X 3 。 5 10 2
om
(1)
(2)
第五章 习题参考答案与提示
3,求 θ 的矩估计值和极大似然估计值。
ˆ = 1/ 4 。 答案与提示: θ 的矩估计值为 θ
对于给定的样本值,似然函数为 L(θ ) = 4θ 6 (1 − θ ) 2 (1 − 2θ ) 4 ,解得
其中 θ > −1 为未知参数。
网
9.设 X ~ N ( µ , 1) , X 1 , X 2 , " , X n 为来自正态总体 X 的一个样本,试求 µ 的极
概率论与数理统计(浙大版)第五章第六章课件资料.

5
随机变量序列依概率收敛的定义
定义5.1:设随机变量序列X1, X2, X3, ,若存在某常数,
使得 0,均有:lim P n
Xn
0,
则称随机变量序列 X n 依概率收敛于常数,
记为:Xn p 。
性质:已知Xn p ,并知函数g(x)在x=处连续,
则g Xn p g
6
定理5.2 契比雪夫不等式的特殊情形:
,
, Xn,
相互独立同分布,Xi ~ b(1, p).
由于nA X1 X 2 X n ,
Pa nA b
( b np ) np(1 p)
( a np ) np(1 p)
由定理5.4,
lim
n
P
nA np np(1 p)
x
x
1
t2
e 2 dt
2
即:nA (近似) ~ N (np源自 np(1 p)). 二项分布和正态分布的关14 系
设随机变量序列X 1
,
X
2
,
, Xn,
相互独立,
且具有相同的数学期望和相同的方差 2,
作前n个随机变量的算术平均:Yn
1 n
n k 1
Xk
则 0,有:
lim P
n
Yn
lim
n
P
1 n
n
Xk
k 1
1
证明:由于E
Yn
E
1 n
n k 1
Xk
1 n
n
,
D
Yn
D
1 n
n k 1
则对于任意 0,都有:P
X EX
2 2
定理的等价形式为:P
X
概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计浙大四版习题答案第五章 (1)

第五章 大数定理和中心极限定理1.[一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。
解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP3.[三] 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为X i ( ,2,1=i ,1500),它们都在(-0.5, 0.5)上服从均匀分布。
于是: 025.05.0)(=+-==p X E i 12112)]5.0(5.0[)(2=--=i X D 18.111251211500)(,0)(==⨯==i i X nD X nE⎭⎬⎫⎩⎨⎧≤≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>∑∑∑===1515115115150011500115000i i i i i i X P X P X P ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤≤--=∑=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-⨯=Φ-=-Φ-Φ-=8.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8,医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 大数定律及中心极限定理注意: 这是第一稿(存在一些错误)1、 解(1)由于{0}1P X ≥=,且()36E X =,利用马尔科夫不等式,得(){50}0.7250E X P X ≥≤= (2)2()2D X =,()36E X =,利用切比雪夫不等式,所求的概率为:223{3240}1(364)10.75164P X P X <<=--≥≥-==2、解:()500,0.1iX B ,5005001211500111610%5%192.8%5000.05125i i i i D X P X ==⎛⎫ ⎪⎧⎫⎝⎭-<≥-==⎨⎬⎩⎭∑∑3、 解 ξ服从参数为0.5的几何分布,11(),(2,3,4)2n P n n ξ-⎛⎫=== ⎪⎝⎭可求出2()()3,()2n E nP n D ξξξ∞=====∑于是令()2a b E ξ+=,2b aε-=,利用切比雪夫不等式,得 有2()()1(())175%D P a b P E ξξξξεε<<=--≥≥-=从而可以求出()3()3a E b E εξεξε==-=-=+=+4、解:()()()()()()()1,,n nnX n n n x F x P X x P X x X x F x a=≤=≤≤==,()0,x a ∈。
则()()()()()11nn n X n nx p x n F x p x a--==,()0,x a ∈。
()()101n n aX n nx n E x x dx a a n -=⋅=+⎰,()()()()21222121n n aX n nx n n D x x dx a a a n n n -⎛⎫=⋅-= ⎪+⎝⎭++⎰。
()()()222121n n n P X a a n n n εε⎧⎫-≥≤⎨⎬+++⎩⎭, 所以(){}lim 0n n P X a ε→∞-≥=。
5、 解 服从大数定律。
由题意得:()2/32/32/3{},()()!kii i i i e P X k E X D X i k -====由1/32/32221111111()()0nn n n i i i i i D X D X i n n n n ->∞===⎛⎫==≤−−−→ ⎪⎝⎭∑∑∑根据马尔科夫大数定律,可判断该序列服从大数定律的。
6、解:(1)()2h x x =,则()h x 连续。
()()22211E h X EX σμ==+<∞,则0ε∀>,有()22211lim 0n i n i P X n σμε→∞=⎧⎫-+≥=⎨⎬⎩⎭∑,则()22211n p i i X n σμ=−−→+∑,()n →∞。
(2)()()2h x x μ=-连续,()()()2211E h X E X μσ=-=<∞,则0ε∀>,有()2211lim 0n i n i P X n μσε→∞=⎧⎫--≥=⎨⎬⎩⎭∑,则()2211n p i i X n μσ=-−−→∑,()n →∞。
(3)12122211lim pnnnnn iii i X X X X X X EXX→∞==++++++−−→∑∑12pnX X X X n μ+++=−−→,()()2222111npi i X n S nX n n σμ==-+−−→-+∑,故()12222221lim1pnnn ii X X X n n n Xμμσμσμ→∞=+++−−→=-++∑(4)原式依概率收敛,即12lim pnnn nX X X X E→∞+++++−−→⎫⎛⎫lim lim nn n X nX →∞→∞++=⎫n XS=)nSμ=+n Sμ= E Sμ=μσ=7 解 (1)由题意得:221111{}1110n n i i i i P X a P X a n n εε==⎧⎫-≥=--<=-=⎨⎬⎩⎭∑∑根据推论5.1.4,可求得22122()x a E X x e dx λλλ∞-===⎰(2)由题意得:211(),()i i E X D X λλ==,100100100211112111(),()()5050250025i i i i i i E X D X D X λλ======∑∑∑ 根据中心极限定理,可知10021121~(,)5025ii X N λλ=∑ (3) 2224224(),()i i E X a D X λλ===,利用中心极限定理,可知10022411224~(,)100100ii X N λλ=∑ 从而10022112{}0.5100i i P X λ=≤=∑8、解:()500,150X N -近似地,()()()506016010.210.27.9%50X P P X P X P -⎛⎫=>=-≤=-≤=-Φ= ⎪⎝⎭9、解 (1)由题意得:记{}20.95 1.050.95 1.05 1.122p P X =<<=--,引入随机变量 10,i i Y i ⎧=⎨⎩,第次试验中该事件发生,i=1,2,3第次试验中该事件不发生,且(1)i P Y p ==于是1nii Y Y ==∑服从二项分布:1001001001()()(1)n k k ii P Y k P Y k Cp p -=====-∑方法一:(Y 的精确分布)10099(2)1(0)(1)1(1)100(1)99.756%P Y P Y P Y p p p >=-=-==----=方法二(泊松分布)Y 近似服从参数为100p 的泊松分布100100(2)1(0)(1)110099.66%p p P Y P Y P Y e pe -->=-=-==--=方法三:(中心极限定理)Y 近似服从(100,100(1))N p p p -于是:(2)1(2)199.55%P Y P Y >=-≤=-Φ=(2)设至少需要n 次观察 记133224q P X ⎧⎫=<<=⎨⎬⎩⎭,这时(1)i P Y q ==于是1ni i Y Y ==∑近似服从(,(1))N nq nq q -95%(80)1P Y P ≤≥=≥=-Φ1.65≈,从而求得n=11710、解:1,0.3,2,0.5,3,0.2. X⎧⎪=⎨⎪⎩10.320.500.2 1.3EX=⨯+⨯+⨯=,2220.30.30.70.5 1.30.20.61 DX=⨯+⨯+⨯=,()80011.30,1iXN-∑近似地,则8008001110001.3 1.31000iiiXP X P=⎛⎫--⎪⎛⎫>=>⎪⎝⎭∑∑()1.8196.48%=Φ=11 、解(1)由题意得,引入随机变量101000,0iiXi⎧=⎨⎩,第名选手得分,i=1,2,3,第名选手不得分,且(1)0.3iP X==所求的概率为:100100110.33586.21%iiiXP X P=-⎛⎫≤=≤=Φ=⎪⎝⎭∑∑(2)用iX表示第i名选手的得分,则23(0)0.2,(1)0.2*0.80.16(2)0.2*0.80.128,(4)0.80.512i ii iP X P XP X P X===========并且() 2.464,() 2.793i iE X D X==1002.464*100~(0,1)iXN-∑,于是所求的概率为:1001(220)1(1.58)94.3%iiP X=≥=-Φ=Φ=∑。