制备磁性纳米材料的研究进展

合集下载

磁性材料的研究进展与应用

磁性材料的研究进展与应用

磁性材料的研究进展与应用现代科技离不开材料科学的发展,而磁性材料便是其中的一个重要分支。

磁性材料在生产生活以及军事国防等各个领域都有广泛的应用,其重要性不言而喻。

近年来,磁性材料的研究也在不断深入,这篇文章就来谈一谈磁性材料的研究进展与应用。

一、人造磁体的磁场稳定性研究人造磁体的磁场稳定性是判断其使用寿命的关键指标之一。

磁场稳定性并不能通过一两次测量就确定,而是需要长时间的跟踪观测。

为了提高人造磁体的磁场稳定性,研究人员从各个方面入手,如材料制备、工艺改进、设计优化等。

在新材料的研究方面,研究人员发现具有高磁各向异性和高饱和磁感应强度的纳米晶粒磁体具有较好的稳定性。

同时,改进制备工艺也能提高磁体的稳定性。

比如改进成分比例、优化离子注入能量等。

在磁体设计方面,改变线圈组合方式、优化感应体积等也能提高磁场的稳定性。

深入研究人造磁体磁场稳定性的同时,也需要充分考虑其实际使用环境。

比如在核聚变反应堆等高辐射环境下的稳定性问题。

只有在真正的实际环境中进行测试,才能更准确地评估其稳定性表现。

二、磁制冷技术的应用磁制冷技术是一种新兴的制冷技术,与传统气体制冷、压缩机制冷等技术相比,磁制冷技术具有更高的制冷效率、更低的工作噪声、更小的体积等优势。

利用磁制冷技术可以制造出更节能、更环保、更健康的制冷设备。

磁制冷技术的核心就是磁性材料的磁焓变化,当一个磁体受到外界磁场的作用时,会发生一定的磁焓变化,这种磁焓变化会转化为温度变化,从而实现对制冷介质的冷却效果。

通过对磁性材料的磁焓变化机制的深入研究,科研人员逐渐掌握了其制冷原理。

目前,磁制冷技术已经在各个领域得到了广泛应用。

比如在电子设备、汽车空调、医疗领域等。

三、高磁场环境下的研究高磁场环境下的磁性材料研究一直是磁性材料领域的热点之一。

在高磁场环境下,磁性材料的磁化状态会发生变化,其性能表现也会发生变化。

因此,研究高磁场下的磁性材料,不仅对于制造高磁能器件、储能器等有着重要意义,还能推动整个磁性材料领域的发展。

磁性纳米材料的制备与应用发展趋势

磁性纳米材料的制备与应用发展趋势
通过 亲和 吸 附、 清洗 、 吸等 操作 ,】 解 【 r
化 法是在 非晶基 础上通 过退火的热处 理 方式 实现纳 米晶化 的一种 方法 ; 高 能球磨 法 是在 高能球 磨 机 中 , 几 十 将
微 米 的磁 性 材 料粗 颗 粒 通 过 与 研磨
以从 复杂 的生 物 体 系 中分 离 到 目标 生 物 分 子 ( 蛋 白、 酸 等 ) 具 有磁 如 核 ,
性分 离 方便 、 和吸 附 的特异 性及 敏 亲 感性 高等众 多优点 。
() 共 振 成 像 对 比 剂 2 磁
液 中的金属 阳离子直接 与沉淀剂发生
化学反 应而形 成沉淀 物 ; 均匀沉 淀法 是在金属盐溶 液 中加入沉 淀剂溶液 时
球 、 磨罐及颗粒 之问 的频繁 碰撞 , 研 使 这 些微米 的固体颗粒 发生反复地被挤
祖 先就 开始 利 用磁 性材 料 , 且制 造 并
出 4 发 明之 一 的指 南 针 , 于 军 事 大 用 和航 海 。 因此 , 磁性物 质的研究 是一个 古 老 而重要 的领 域 , 是 工业 应用 方 也 面广 泛研究 的课题 。 纳米材料 与常规粗 晶材料 具有很 大性质上 的不 同, 除了具有普通材料 的
压、 变形 、 断裂 、 合等 强 烈的塑 性变 焊 形, 磁性 材料 颗粒 表 面的 缺陷 密度增 加, 晶粒逐渐细化 , 至形成纳米级磁 直 性 颗粒 。 球磨法工 艺操作简 单 , 成本 也 较低 , 使用 该法 制备 的磁 性 纳米 材 但
磁 性 纳 米 材 料 的 制备 与应 用发 展 趋 势
■ 文/ 红 轩 任
国家纳米科学 中心
磁性物质 的应用 可以一直追溯 到 中国古 代 , 早在 公 元前 4 纪 , 世 我们 的

磁性纳米复合材料的制备及其应用研究

磁性纳米复合材料的制备及其应用研究

磁性纳米复合材料的制备及其应用研究近年来,纳米复合材料因其独特的性质和广泛的应用前景得到了越来越多的关注。

尤其是磁性纳米复合材料,因其具备磁性和纳米晶体两种特殊性质,已被广泛应用于医学、环保、电子、能源和生物领域等方面。

本文将介绍磁性纳米复合材料的制备方法和其在各个领域中的应用研究。

磁性纳米复合材料的制备方法磁性纳米复合材料的制备方法主要包括物理法和化学法两种。

物理法包括溅射法、电化学沉积法、磁控溅射法等,其中最常用的是磁控溅射法。

这种方法利用高能量离子轰击靶材,将靶材中的原子或分子释放出来,并在基底上形成纳米颗粒。

通过控制制备过程中的工艺参数,如离子束能量、靶材组成、沉积时间等,可以控制纳米颗粒的大小、形状和分散性。

该方法制备出的磁性纳米复合材料具有高精度、高可控性和优异的尺寸控制效果,但由于需要高能量离子轰击靶材,因此制备成本较高。

化学法包括溶胶-凝胶法、共沉淀法、聚合物复合法等,其中最常用的是共沉淀法。

这种方法通过将化学试剂在溶液中混合反应,形成纳米颗粒。

通过控制反应条件,如温度、pH值、反应时间等,可以控制纳米颗粒的大小、形状和分散性。

该方法制备出的磁性纳米复合材料具有低成本、规模化生产和较好的可控性,但易受到反应条件的影响,制备难度较大。

磁性纳米复合材料的应用研究磁性纳米复合材料在医学领域中有着广泛的应用。

例如,磁性纳米复合材料可以作为MRI(磁共振成像)对比剂,提高成像的对比度,从而更精确地诊断疾病。

此外,通过将磁性纳米复合材料与药物分子结合,可以制备出具有定向、可控释放的靶向药物传递系统,从而提高药物的效果、减少副作用。

磁性纳米复合材料在环保领域中也有着广泛的应用。

例如,磁性纳米复合材料可以用来吸附重金属离子,在废水处理中发挥重要作用。

此外,磁性纳米复合材料还可以用来吸附有机污染物,如苯、甲苯等,解决城市空气污染。

磁性纳米复合材料在电子领域中也有不少应用。

例如,磁性纳米复合材料可以用来制备高密度磁盘、磁性条形媒体等。

纳米磁性材料的制备及其在生物医药领域中的应用研究

纳米磁性材料的制备及其在生物医药领域中的应用研究

纳米磁性材料的制备及其在生物医药领域中的应用研究一、前言作为在纳米科学中的一个重要分支,纳米磁性材料近年来在各个领域都得到了广泛关注和应用。

作为精细材料领域中的一种核心技术,纳米磁性材料在生物医药领域中也迎来了越来越普及的发展机遇,成为生物医学领域研究和治疗的新技术。

二、纳米磁性材料制备技术1. 软化学合成纳米磁性材料的制备方法中,软化学合成法是最常用的一种。

该方法通过溶液中化学还原、水热合成、微波辐射等化学反应方法制备纳米磁性材料。

这种方法有一些优点,例如合成过程容易控制,易于实现大规模生产,产物纯度高等。

同时,合成过程中的控制条件可以影响产物形态、尺寸、内部结构等,因此可以根据实际需要对产物进行修饰。

2. 气相法气相法是纳米磁性材料制备方法的另一种方式,该法通过在一定温度下对气体原子或分子进行反应制备产品。

这种方法对于制备具有一定结构的纳米材料、以及制备大面积纳米材料来说有一定的优点,但是由于需要高温来进行反应,因此也存在安全性问题。

3. 机械法机械法是纳米磁性材料制备的另一种方式,在该方法中,加入一定数量的粉末材料和球磨介质在球磨器中进行机械合成。

由于这种方法可以在短时间内制备高性能的纳米磁性材料,并且可以根据需求调整颗粒尺度和组成,因此也在相关领域得到了广泛应用。

三、纳米磁性材料在生物医药领域中的应用1. 生物成像由于纳米磁性材料具有特殊的磁性和表面结构,因此适合成为高分辨率成像的材料。

在生物医药领域中,纳米磁性材料多被用来作为新型的生物成像探针,例如:超级顺磁性氧化铁。

2. 靶向治疗纳米磁性材料可以与抗癌药物等解离在细胞内,这可以帮助实现对肿瘤的精确诊治。

纳米磁性材料还可以用于制备新型的靶向抗癌药物,实现在肿瘤区域释放药物并减轻产生药物的副作用。

3. 细胞标记纳米磁性材料也被用于细胞追踪和定位,可以用来显微照明等技术进行内部成像。

通过使用纳米磁性材料进行纵向、横向研究,可以帮助研究人员更深入了解生物学方面的一系列问题。

磁性纳米Fe3O4吸附材料的制备及在废水处理中的应用

磁性纳米Fe3O4吸附材料的制备及在废水处理中的应用

磁性纳米Fe3O4吸附材料的制备及在废水处理中的应用磁性纳米Fe3O4吸附材料的制备及在废水处理中的应用引言:随着工业的发展和人类生活水平的提高,废水排放成为一个严峻的环境问题。

废水中存在着各种有害物质,如重金属离子、有机污染物等,对环境和人体健康都造成了严重的威胁。

因此,研发高效吸附材料用于废水处理成为一项迫切任务。

磁性纳米Fe3O4吸附材料因其优良的吸附性能和易分离特性,在废水处理中得到了广泛的应用。

本文将介绍磁性纳米Fe3O4吸附材料的制备方法和在废水处理中的应用研究进展。

一、磁性纳米Fe3O4吸附材料的制备方法1. 化学共沉淀法:该方法是将Fe2+、Fe3+以适当的摩尔比例加入溶液中,在适当pH条件下加入碱溶液,通过共沉淀反应合成纳米Fe3O4颗粒。

这种方法简单、成本低廉,是制备磁性纳米Fe3O4吸附材料的常用方法。

2. 热分解法:该方法首先将适量的铁酸二铵溶解在溶剂中,然后在氮气保护下,将溶液置于高温下进行热分解,生成纳米Fe3O4粒子。

这种方法所得产物纯度高、粒径均匀,但操作条件较为苛刻。

3. 热反应法:该方法是将适量的FeCl2和FeCl3加入去离子水中,加热反应得到纳米Fe3O4颗粒。

这种方法操作简单、可控性好,且所得产物纳米颗粒分散性好。

二、磁性纳米Fe3O4吸附材料在废水处理中的应用1. 重金属离子吸附:纳米Fe3O4颗粒具有较大的比表面积和丰富的表面活性位点,能够有效吸附废水中的重金属离子。

研究发现,纳米Fe3O4吸附剂对重金属离子的吸附性能受pH、离子浓度、温度等因素的影响。

磁性纳米Fe3O4吸附材料还可以通过外加磁场实现分离和回收,具有较好的循环利用性。

2. 有机污染物吸附:磁性纳米Fe3O4吸附材料对有机污染物也有良好的吸附性能。

有机污染物分子可以通过静电相互作用、氢键等方式与纳米Fe3O4表面发生吸附作用,从而有效去除废水中的有机污染物。

此外,纳米Fe3O4材料还可以通过紫外光催化降解有机污染物,具有较好的降解效果。

纳微磁学的研究进展与应用前景

纳微磁学的研究进展与应用前景

纳微磁学的研究进展与应用前景近年来,纳微磁学作为一种新兴的研究领域备受关注。

纳微磁学是磁学的分支领域,在微观尺度上研究磁性现象。

它通过深入研究物质的磁性本质,探究磁性材料在不同条件下的行为和特性,揭示物质内部微观结构与宏观物性之间的关系,为相关领域的应用提供了理论依据和实验基础。

下面我们将重点探讨纳微磁学的研究进展和应用前景。

一、纳微磁学研究进展1.磁性材料的微构变化研究纳微磁学主要研究磁性材料的微观结构和磁性特性之间的关系。

现代纳米技术的发展使得研究人员能够制备出各种尺寸的磁性纳米颗粒。

这些纳米颗粒具有鲜明的量子尺寸效应和表面效应,相比于宏观物质,会表现出更为复杂的磁性行为。

通过研究纳米颗粒的尺寸和形态等因素对其磁性的影响,可以进一步认识磁性材料的微观结构和磁性特性之间的关系。

2.磁色谱技术的研究和发展磁色谱技术是基于磁性材料对磁场的响应而发展起来的一种分析方法。

它具有灵敏度高、分辨率高等优点,可以用于分离、富集和确定各种物质中微量的磁性成分,如Fe、Mn、Ni等,对于化学、生物、环境等领域的研究具有重要意义。

近年来,磁色谱技术的研究重点主要集中在纳米颗粒的制备、表面修饰和离子交换等方面,以提高其分离效率和分离选择性。

3.磁性元件的研究和开发磁性元件是指通过磁性效应实现信息存储、传输和处理等功能的元器件,如磁存储器、磁头、磁光器件、磁阻传感器等。

其中,磁存储器作为信息技术发展的基础之一,一直是纳微磁学的重要研究领域。

近年来,磁存储器的发展主要围绕提高存储密度、降低功耗、提高性能等方向展开。

此外,磁阻传感器作为一种新型的传感器,在诸多领域也有着广泛的应用前景。

二、应用前景展望随着信息技术和微纳技术的飞速发展,纳微磁学的应用前景也变得越来越广阔。

下面我们将就纳微磁学在信息存储、生物医学、环保等领域的应用前景进行展望。

1.信息存储领域信息存储是纳微磁学的一个重点应用领域。

随着云计算和大数据时代的到来,对于磁性材料的高密度存储需求越来越高。

纳米四氧化三铁的化学制备方法研究进展

纳米四氧化三铁的化学制备方法研究进展

纳米四氧化三铁的化学制备方法研究进展一、本文概述纳米四氧化三铁(Fe₃O₄),作为一种重要的磁性纳米材料,因其独特的磁学、电学以及催化性质,在生物医学、信息存储、环境保护等多个领域具有广泛的应用前景。

随着纳米技术的不断发展,纳米四氧化三铁的化学制备方法研究成为了当前材料科学领域的热点之一。

本文旨在对近年来纳米四氧化三铁的化学制备方法研究进展进行全面的概述,旨在探讨其制备方法的发展趋势、面临的挑战以及未来可能的应用方向。

通过系统综述已有研究成果,旨在为科研人员和相关从业人员提供有益的参考和借鉴,进一步推动纳米四氧化三铁在实际应用中的发展和进步。

二、纳米四氧化三铁的化学制备方法概述纳米四氧化三铁(Fe₃O₄)的制备方法多种多样,其中化学制备法因其实验条件温和、操作简便、产物纯度高和粒径可控等优点而受到广泛关注。

化学制备纳米四氧化三铁的方法主要包括共沉淀法、热分解法、微乳液法、溶胶-凝胶法和水热法等。

共沉淀法是最常用的制备纳米四氧化三铁的方法之一。

通过向含有铁盐(如FeCl₃、FeSO₄等)的溶液中加入沉淀剂(如NaOH、NH₃·H₂O等),使铁离子在溶液中发生沉淀,再通过热处理得到纳米四氧化三铁。

共沉淀法具有操作简单、反应条件温和、易于工业化生产等优点,但制备过程中易引入杂质,影响产物的纯度。

热分解法是通过在高温下分解含铁有机化合物或无机化合物来制备纳米四氧化三铁的方法。

常用的含铁有机化合物有乙酰丙酮铁、油酸铁等,无机化合物有草酸铁、碳酸铁等。

热分解法可以制备出高纯度、结晶性好的纳米四氧化三铁,但设备成本高,制备过程需要高温,操作较为困难。

微乳液法是一种在微乳液滴中进行化学反应制备纳米材料的方法。

通过将含铁盐溶液和沉淀剂分别溶于两种不同的表面活性剂形成的微乳液中,在微乳液滴内部发生沉淀反应,从而制备出纳米四氧化三铁。

微乳液法具有粒径分布窄、易于控制等优点,但制备过程中需要使用大量的表面活性剂,对环境造成一定污染。

磁性材料研究进展

磁性材料研究进展

磁性材料研究进展磁性材料是一种重要的功能材料,在现代科技中有着广泛的应用,从电子设备到医疗领域,从能源存储到交通运输,几乎无处不在。

随着科学技术的不断发展,磁性材料的研究也在不断深入,取得了许多令人瞩目的成果。

一、磁性材料的分类及特点磁性材料根据其磁性能的不同,可以分为软磁材料和硬磁材料两大类。

软磁材料具有低矫顽力和高磁导率的特点,容易被磁化和退磁。

常见的软磁材料有电工纯铁、硅钢片、坡莫合金等。

它们在变压器、电机、电感等电气设备中得到了广泛应用,能够有效地提高能量传输和转换效率。

硬磁材料则具有高矫顽力和高剩磁的特点,一经磁化难以退磁。

钕铁硼、钐钴等稀土永磁材料就是典型的硬磁材料。

这类材料在风力发电、电动汽车、机器人等领域发挥着关键作用,为设备提供强大而稳定的磁场。

此外,还有一些特殊的磁性材料,如磁致伸缩材料、磁记录材料等。

磁致伸缩材料能够在磁场作用下发生尺寸的变化,可用于制作传感器和执行器。

磁记录材料则是信息存储的重要载体,如硬盘中的磁性涂层。

1、高性能永磁材料的研发近年来,稀土永磁材料的性能不断提升。

通过优化成分和改进制备工艺,如采用晶界扩散技术等,大大提高了钕铁硼永磁材料的磁性能。

同时,新型的永磁材料也在不断探索中,为未来的应用提供了更多可能。

2、软磁材料的高频特性改进随着电子设备向高频化发展,对软磁材料在高频下的性能提出了更高要求。

研究人员通过纳米晶化、薄膜化等手段,改善了软磁材料的高频损耗和磁导率,使其在高频变压器、射频器件等领域有更好的表现。

3、磁性纳米材料的研究磁性纳米材料由于其独特的尺寸效应和表面效应,展现出了许多与常规磁性材料不同的性质。

在生物医药领域,磁性纳米粒子可用于药物靶向输送和肿瘤热疗;在催化领域,它们可以作为高效的催化剂载体。

4、多功能磁性复合材料的开发将磁性材料与其他功能材料复合,制备出具有多种性能的复合材料是当前研究的一个热点。

例如,将磁性材料与聚合物复合,可以得到具有磁性和柔韧性的材料,用于智能纺织品和柔性电子器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制备磁性纳米材料的研究进展
文章介绍了国内外磁性纳米粒子的研究近况。

制备磁性纳米材料的方法大致可分为两类,物理法和化学法,分别介绍了球磨法、溅射法、共沉降法、辐射合成法、液相沉积法、热液法制备磁性纳米材料的研究进展,并比较各种方法的优缺点。

标签:纳米材料;磁性;制备
1 引言
纳米科技发展于20世纪九十年代,人们研究发现,当材料尺寸缩小到纳米级别时,材料的许多宏观性能发生很大改变。

具有很多特殊性质,如:表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等[1,2]在纳米材料研究领域中,磁性材料的研究受到诸多学者的关注,由于磁性的存在,纳米粒子的一般性质在磁性纳米粒子上有特殊的表现形式,主要表现在超顺磁性、高矫顽力和磁化率等方面,使磁性纳米材料在许多行业得到了广泛应用并具有巨大的应用前景。

2 制备磁性纳米粒子的物理方法
磁性纳米粒子合成的关键是防止纳米粒子团聚,如果团聚现象出现,会导致材料粒径不处于纳米级别,从而导致失去超顺磁性。

常用制备纳米磁性材料的方法大致可分为两类,物理法和化学法,物理方法有球磨法、溅射法等,化学方法有共沉降法、辐射合成法、液相沉积法、热液法等[3,4]。

2.1 球磨法
高能球磨法有成果机械合金化法,是目前最为普遍的制备纳米材料的方法,相较于其他制备方法,高能球磨法具有低成本,设备简单、适合于大规模生产等诸多优点。

它的基本原理是在干燥的容器内,通过反复的机械研磨来诱发化学反应或诱导材料组织、结构和性能的变化,使晶粒不断细化,最终达到纳米尺寸,从而得到新材料。

但它的缺点是制备的纳米粒子易团聚,使粒径增加,也易混入杂质。

刘琪等采用高能球磨法制备片状羰基铁,通过研磨速度和时间的研究发现,增加研磨时间和降低研磨速度均可有效改善电磁性能。

在转速为250r/min,研磨16h时铁粉出现片状化结构,以其制备的复合材料当厚度为1.5mm时,其反射率小于-10dB的带宽为7.5GHz,最低反射率损耗为-29dB;张柯等采用机械球磨方法制备Fe-C单相固溶体纳米晶粉体材料,球磨时间大于85h后,颗粒和晶粒尺寸均趋于稳定。

Ding以球磨法制备出粒径约为25nm、磁性能优异的CO0.5Fe2.5O4铁氧体。

2.2 溅射法
溅射法是在两金属板间施加电压,以溅射方法制备纳米微粒。

具有可制备不同熔点的纳米金属、制备多组元的纳米颗粒和产量较高等优点。

潘成福通过对溅射时间、氩气压强及两种金属比例,用溅射法同时将铁和氧化铝溅射到同一衬底制得铁微粒薄膜。

3 制备磁性纳米粒子的化学方法
3.1 共沉降法
共沉降法适用于在Fe2+和Fe3+盐的水溶液制备高纯度纳米粒子,Maaz用化学共沉淀法合成了粒径为15-48nm的CoFe2O4纳米颗粒,其矫顽力在28nm附近有最大值。

Kuo在一定条件下,用氢氧化钠沉淀Fe2+、Fe3+成功制备纳米级Fe3O4。

Tang以相同的方法在100℃制备得到了MnFe2O4三元体系的氧化物。

3.2 辐射合成法
γ射线是一种可以将金属还原的方法,以辐射法制备的纳米材料具有周期短、常温常压、纯度高等优点。

近年来越来越得到研究人员的青睐。

赵弘韬以磁场辅助γ射线制备磁性金属纳米粒子,发现磁场的引入可以实现纳米钴及纳米镍的有序排列,且磁场强度对排列程度有较大影响。

3.3 液相沉积法
刘颖在液相还原法制备纳米铁粉过程中加入碱性介质,发现在有碱性介质存在的条件下,纳米铁粉微观聚集状态发生变化,呈非晶态;王翠英等在C2H5OH-H2O为溶剂的条件下,通过含镍盐对制备的纳米铁进行电化学修饰,制备出多层复合的纳米结构;张锡凤等在12-丙二醇体系中加入多种物质混合共同作为修饰剂,制备多种形貌球型多晶纳米镍。

3.4 热液法
热液法包括水热法和溶剂热法,热液法具有价格便宜,具有可调性和操作性强等优点。

Park以高温热分解CO2(CO)8来制备钴纳米晶,发现改变外包裹层NaAOT 和油酸的用量可以控制生成的钴纳米晶粒径。

彭韬等用溶液合成法制备COFe2O4纳米粉体,发现制备的粉体粒径分布均匀,平均为5nm,热处理后具有良好的顺磁性。

4 结束语
随着现代科技日新月异的发展,人们对于材料的需求也在逐渐加大,纳米磁性材料除具有普通纳米材料的基本性能之外,还具有优异的磁学性能,具有广阔
的应用前景。

制备纳米磁性材料的方法仍然有待发展,这也将对于推动纳米材料的开发研究和应用起到积极的作用。

参考文献
[1]张效岩,王英,张亚非.磁性纳米粒子的制备及应用[J].磁性材料及器件,2004,35(6):14-17.
[2]张立德,牟季美.纳米材料和纳米结构[M]北京,科学出版社,2002:74-79.
[3]郑方才.磁性纳米复合材料的制备及性能研究[D].安庆:安庆师范学院,2012.
[4]马向东.纳米材料的进展及展望[J].水利电力机械,2004,26(2):3537-3541.。

相关文档
最新文档